DESCRIPTION The MP6613 is an H-bridge motor driver IC designed to drive stepper motors, brushed DC motors, and other loads. The MP6613 operates across a 4.5V to 45V input voltage (V_{IN}) range. It can deliver motor current up to 5A, depending on the ambient temperature (T_A) and PCB layout. Internal safety and diagnostic features include over-current protection (OCP), input overvoltage protection (OVP), input under-voltage protection (UVP), and thermal shutdown. The MP6613 has several control modes that are configurable via pins. The MP6613 is available in QFN-28 (4mmx5mm) and TSSOP-28EP packages. ## **FEATURES** - 4.5V to 45V Operating Input Voltage (V_{IN}) - 5A Maximum Output Current (I_{OUT_MAX}) - Single H-Bridge Driver - Low $75m\Omega$ On Resistance (R_{DS(ON)}) per **MOSFET** - Protection Functions Include: - Over-Current Protection (OCP) - Over-Voltage Protection (OVP) - Under-Voltage Protection (UVP) - Over-Temperature (OT) Shutdown - Fault Indication Output - Available in QFN-28 (4mmx5mm) and **TSSOP-28EP Packages** ## **APPLICATIONS** - **Bipolar Stepper Motors** - Stage Lighting - 3D Printers - Laser Printers and Copiers - **Textile Machines** All MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance. "MPS", the MPS logo, and "Simple, Easy Solutions" are trademarks of Monolithic Power Systems, Inc. or its subsidiaries. ### TYPICAL APPLICATION © 2023 MPS. All Rights Reserved. ### ORDERING INFORMATION | Part Number* | Package | Top Marking | MSL Rating | |--------------|------------------|-------------|------------| | MP6613GV | QFN-28 (4mmx5mm) | See Below | 2 | | MP6613GF | TSSOP-28EP | See Below | 2a | ^{*} For Tape & Reel, add suffix -Z (e.g. MP6613GV-Z). # **TOP MARKING (MP6613GV)** MPSYWW MP6613 LLLLLL MPS: MPS prefix Y: Year code WW: Week code MP6613: Part number LLLLL: Lot number # **TOP MARKING (MP6613GF)** M<u>PSYYWW</u> MP6613 LLLLLLLLL MPS: MPS prefix YY: Year code WW: Week code MP6613: Part number LLLLLLLL: Lot number # **PACKAGE REFERENCE** ^{*} For Tape & Reel, add suffix -Z (e.g. MP6613GF-Z). # **PIN FUNCTIONS** | | - | | | |----------------|------------------|--------|---| | Pin
(QFN) | Pin #
(TSSOP) | Name | Description | | 1, 8 | 4, 11 | VIN | Input supply voltage. Decouple the VIN pin to ground using a minimum 100nF ceramic capacitor. Additional bulk capacitance may be required. | | 2, 7 | 5, 10 | OUT1 | Bridge output terminal 1. Connect the OUT1 pins together on the PCB. | | 3, 6 | 6, 9 | PGND | Power ground for H-bridge outputs. | | 4, 5 | 7, 8 | OUT2 | Bridge output terminal 2. Connect the OUT2 pins together on the PCB. | | 11, 24 | 14, 28 | GND | Ground. | | 12 | 15 | VREG | Internal regulator. Connect a 1µF, 16V ceramic capacitor (X7R) to ground. | | 13 | 16 | nRESET | Reset input. Pull the nRESET pin active low to reset the protection circuits and disable the outputs. This pin is pulled down internally. | | 14 | 17 | nSLEEP | Sleep mode input. Pull the nSLEEP pin logic low to enter low-power sleep mode. This pin is pulled down internally. | | 15 | 18 | nFAULT | Fault indication. The nFAULT pin is an open-drain output. During fault conditions, pull nFAULT logic low using an external pull-up resistor. | | | | IN2 | Output 2 control input. If INM[1:0] = 00, this pin configures output 2's pulsewidth modulation (PWM) input pin. Set the IN2 pin to 1 for output H. | | 16 | 20 | PHASE | Phase node. If INM[1:0] = 01, this pin configures the H-bridge's DIR input pin. The PHASE pin sets the motor rotation direction. | | | | | High-side (HS) output 1 control input. If INM[1:0] = 10, this pin configures output 1's HS input. Set the INH1 pin to 1 to enable HS output 1. | | | | IN1 | Output 1 control input. If INM[1:0] = 00, this pin configures output 1's PWM input pin. Set the IN1 pin to 1 for output H. | | 17 | 21 | ENBL | H-bridge enable input. If INM[1:0] = 01, this pin configures the H-bridge's enable input pin. Set the ENBL pin to 1 to enable the entire H-bridge. | | | | INL1 | Low-side (LS) output 1 control input. If INM[1:0] = 10, this pin configures output 1's LS input. Set the INL1 pin to 1 to enable LS output 1. | | | | nEN2 | Output 2 enable input. If INM[1:0] = 00, this pin configures output 2's enable input pin. Set the nEN2 pin to 0 to enable the input. | | 19 | 23 | BRK | Brake. If INM[1:0] = 01, this pin configures the brake input. Set the BRK pin to 1 to allow the H-bridge to enter brake mode. | | | | INH2 | HS output 2 control input. If INM[1:0] = 10, this pin configures output 2's HS input. Set the INH2 pin to 1 to enable HS output 2. | | | | nEN1 | Output 1 enable input. If INM[1:0] = 00, this pin configures output 1's enable input pin. Set the nEN1 pin to 0 to enable the input. | | 20 | 24 | BMOD | Brake mode. If INM[1:0] = 01, this pin configures the BMOD input. Set the BMOD pin to 1 for the HS brake; set BMOD to 0 for the LS brake. | | | | INL2 | LS output 2 control input. If INM[1:0] = 10, this pin configures output 2's LS input. Set INL2 to 1 to enable LS output 2. | | 22 | 26 | INM0 | Input mode selection. If INM[1:0] = 00, this pin sets ENA/PWM as the input. If | | 23 | 27 | INM1 | INM[1:0] = 01, this pin sets PHASE/ENBL as the input. If INM[1:0] = 10, this pin sets HS/LS as the input. | | 25 | 2 | CPA | Charge pump capacitor. Connect a 100nF ceramic capacitor (X7R) between | | 26 | 1 | CPB | the CPA and CPB pins. This capacitor must be rated for at least V _{IN} . | | 27 | 3 | VCP | Charge pump output. The VCP pin requires a 1µF, 16V ceramic capacitor connected to VIN. | # **ABSOLUTE MAXIMUM RATINGS (1)** Supply voltage (V_{IN})-0.3V to +48V OUTx voltage (V_{OUT1}, V_{OUT2}).....-0.7V to +48V VCP, CPBV_{IN} to V_{IN} + 6.5V PGND to GND-0.3V to +0.3V All other pins to GND-0.3V to +6.5V Continuous power dissipation (T_A = 25°C) (2) QFN-28 (4mmx5mm)......3.125W Storage temperature......-55°C to +150°C Junction temperature150°C Lead temperature (solder)260°C ESD Ratings Human body model (HBM) ±2kV Charged device model (CDM).....±2kV Recommended Operating Conditions (3) Supply voltage (V_{IN})4.5V to 45V PGND to GND-0.2V to +0.2V Operating junction temp (T_J).... -40°C to +125°C | Thermal Resistance (4) | $oldsymbol{ heta}$ JA | $oldsymbol{ heta}$ JC | | |------------------------|-----------------------|-----------------------|----| | QFN-28 (4mmx5mm) | 40 | 9 | °C | | TSSOP-28EP | | | | #### Notes: - 1) Exceeding these ratings may damage the device. - 2) The maximum allowable power dissipation is a function of the maximum junction temperature, T_J (MAX), the junction-to-ambient thermal resistance, θ_{JA} , and the ambient temperature, T_A . The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D (MAX) = $(T_J$ (MAX) $T_A)$ / θ_{JA} . Exceeding the maximum allowable power dissipation can produce an excessive die temperature, which may cause the regulator to go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage. - The device is not guaranteed to function outside of its operating conditions. - 4) Measured on JESD51-7, a 4-layer PCB. # **ELECTRICAL CHARACTERISTICS** $V_{IN} = 24V$, $T_A = 25$ °C, unless otherwise noted. | Parameter | Symbol | Condition | Min | Тур | Max | Units | |---|-----------------------------|-------------------------------------|------|------|------|-------| | Power Supply | | | | | | | | Input supply voltage | V _{IN} | | 4.5 | | 45 | V | | Quiescent current | I _{INQ} | nSLEEP = 1, with no load | | 2.8 | | mA | | Quiescent current | I _{INSLEEP} | nSLEEP = 0 | | 0.9 | 10 | μA | | Internal MOSFETs | | | | | | | | Output on resistance | R _{DS(ON)_HS} | $I_{OUT} = 1A, T_J = 25^{\circ}C$ | | 67.5 | 85 | mΩ | | Output on resistance | R _{DS(ON)_LS} | $I_{OUT} = 1A, T_{J} = 25^{\circ}C$ | | 75 | 92.5 | mΩ | | Body diode forward voltage | V_{F} | I _{OUT} = 1A | | | 1.1 | V | | Control Logic Inputs | | | | | | | | Logic-low input threshold | VIL | | | | 0.8 | V | | Logic-high input threshold | V _{IH} | | 2 | | | V | | Logic input current | I _{IN_H} | $V_{IN} = 5V$ | -100 | | +100 | μA | | Logic input current | I _{IN_L} | $V_{IN} = 0V$ | -20 | | +20 | μΑ | | Internal pull-down resistance | R _{PD} | To GND | | 100 | | kΩ | | nFAULT Output | | | | | | | | Output low voltage | V _{OUT_L} | I _{OUT} = 5mA | | | 0.5 | V | | Output high leakage current | Іоит_н | V _{OUT} = 5V | | | 1 | μA | | Protection Circuits | | | | | | | | V _{IN} under-voltage lockout (UVLO) rising threshold | V _{IN_ULVO_RISING} | | | | 4.5 | V | | V _{IN} UVLO hysteresis | V _{IN_UVLO_HYS} | | | 300 | | mV | | V _{IN} over-voltage protection (OVP) threshold | V _{OVP} | | 45 | | 48 | V | | Over-current (OC) trip level | I _{OCP1} | Sinking | 6 | 9 | | Α | | ` , ' | I _{OCP2} | Sourcing | 6 | 9 | | Α | | OC deglitch time | tocp | | | 1 | | μs | | Thermal shutdown | T _{TSD} | | | 165 | | °C | | Thermal shutdown hysteresis | T _{TSD_HYS} | | | 15 | | °C | # TYPICAL TIMIMG CHARACTERISTICS $V_{IN} = 24V$, $T_A = 25$ °C, unless otherwise noted. Figure 1: Timing Diagram **Table 1: Timing Characteristics** | Parameter | Symbol | Condition | Min | Тур | Max | Units | |----------------------------------|----------------|-----------|-----|-----|-----|-------| | INx high to OUTx high delay time | t ₁ | | 40 | | 360 | ns | | INx low to OUTx low delay time | t ₂ | | 40 | | 360 | ns | | Output rise time | t 3 | | 1 | | 55 | ns | | Output fall time | t ₄ | | 1 | | 165 | ns | | Dead time | | | | | 80 | ns | 6 # TYPICAL CHARACTERISTICS # Quiescent Current (I_{INSLEEP}) vs. **Temperature** # **HS-FET On Resistance vs. Temperature** # V_{IN} OVP Threshold vs. Temperature # Quiescent Current (I_{INQ}) vs. **Temperature** # LS-FET On Resistance vs. **Temperature** 7 # TYPICAL CHARACTERISTICS (continued) # TYPICAL PERFORMANCE CHARACTERISTICS V_{IN} = 24V, nSLEEP = 3.3V, INM[1:0] = 00, OUT1 switching with 20kHz frequency, OUT2 LS-FET on, T_A = 25°C, resistor + inductor load: 4Ω + 1.5mH between OUT1 and OUT2, unless otherwise noted. # TYPICAL PERFORMANCE CHARACTERISTICS (continued) V_{IN} = 24V, nSLEEP = 3.3V, INM[1:0] = 00, OUT1 switching with 20kHz frequency, OUT2 LS-FET on, T_A = 25°C, resistor + inductor load: 4Ω + 1.5mH between OUT1 and OUT2, unless otherwise noted. ### **LS-FET Minimum On Time** # **FUNCTIONAL BLOCK DIAGRAM** Figure 2: Functional Block Diagram ### **OPERATION** The MP6613 is a general-purpose H-bridge motor driver designed to drive bipolar stepper motors, brushed DC motors, solenoids, and other loads. It integrates four N-channel power MOSFETs connected as a full H-bridge, with a 5A current capability. The device operates across a wide 4.5V to 45V supply input voltage (V_{IN}) range. #### nSLEEP and nRESET Pull the nSLEEP pin low to force the MP6613 to enter low-power sleep mode. In this mode, the gate drive charge pump stops, and all the internal circuits and H-bridge outputs are disabled. All inputs are ignored when nSLEEP is active low. Once entering sleep mode, 600µs must pass before the motor can exit sleep mode. This allows the internal circuitry to stabilize. nSLEEP has an internal pull-down resistor. Pull the nRESET pin low to reset the latched protection features, including over-current protection (OCP) and over-voltage protection (OVP), as well as to disable the outputs to a high-impedance (Hi-Z) state. ## Input Interface The MP6613 contains a single full H-bridge or two half H-bridges that operate independently, depending on the configuration set by the INM1 and INM0 pins. The two OUT1 pins and two OUT2 pins must be externally connected in parallel on the PCB. Three configurable input modes are available on the MP6613, allowing for several different control methods to be used. INM1 and INM0 configure the input interface. Table 2 shows the input logic when INM[1:0] = 00. Table 2: Input Logic for INM[1:0] = $00^{(5)}$ | nENx | INx | OUTx | |------|-----|------| | L | Н | VIN | | L | L | GND | | Н | Χ | Hi-Z | #### Note: 5) "X" means not applicable. Table 3 shows the input logic when INM[1:0] = 01. Table 3: Input Logic for INM[1:0] = $01^{(6)}$ | ENBL | PHASE | BRK | BMOD | OUT1 | OUT2 | |------|-------|-----|------|------|------| | L | Χ | Х | Х | Hi-Z | Hi-Z | | Н | Χ | Н | L | GND | GND | | Н | Χ | Н | Н | VIN | VIN | | Н | L | L | Χ | GND | VIN | | Н | Η | L | Χ | VIN | GND | #### Note: 6) "X" means not applicable. Table 4 shows the input logic when INM[1:0] = 10. Table 4: Input Logic for INM[1:0] = 10 | INHx | INLx | OUTx | |------|------|------| | L | L | Hi-Z | | L | Ι | GND | | Н | L | VIN | | Н | Н | Hi-Z | Note that all logic inputs have weak, internal pull-down resistors. # **Automatic Synchronous Rectification** If the output high-side MOSFET (HS-FET) and low-side MOSFET (LS-FET) are turned off, then the recirculation current must continue to flow when driving current through an inductive load. This current is typically passed through the MOSFET body diodes. To prevent excess power dissipation in the body diodes, the MP6613 implements automatic synchronous rectification. If both the HS-FET and LS-FET are turned off and the voltage on an OUTx pin (V_{OUTx}) is pulled below ground, then the LS-FET turns on until the current flowing through it approaches 0A or the HS-FET turns on. Similarly, if V_{OUTx} exceeds V_{IN} , then the HS-FET turns on until the current approaches 0A or the LS-FET turns on. ### Internal Supply Voltages (V_{REG} and V_{CP}) The internal regulators generate a 5V supply voltage (V_{REG}) for the low-side (LS) gate drive, and a supply exceeding V_{IN} by 5V (V_{CP}) for the high-side (HS) gate drive. These supplies require external capacitors. The VREG pin requires a $1\mu F$ ceramic capacitor connected to ground. The VCP pin requires a $1\mu F$ ceramic capacitor connected to VIN. Both capacitors should be X7R ceramic capacitors, and rated for a voltage of at least 16V. Connect the charge pump flying capacitor between the CPA and CPB pins using a 100nF ceramic capacitor (X7R) that is rated for at least the maximum $V_{\rm IN}$. #### **nFAULT** The MP6613 provides an nFAULT pin to report to the system if a fault condition such as OCP, OVP, or over-temperature protection (OTP) occurs. nFAULT is an open-drain output, and is pulled low during fault conditions. If used, nFAULT should be pulled high via an external pull-up resistor. # **Over-Current Protection (OCP)** OCP circuitry limits the current through the HS-FET and LS-FET by disabling the gate driver. If the over-current (OC) limit threshold is reached and lasts for longer than the OC deglitch time (tocp), then all the MOSFETs in the H-bridge are disabled and nFAULT is pulled low. The driver remains disabled until the device is reset by pulling nRESET low or by cycling the power on the MP6613. OC conditions on the HS and LS devices (e.g. an OC condition to ground, supply, or across a motor winding) all result in an OC shutdown. ### Over-Voltage Protection (OVP) If V_{IN} exceeds the OVP threshold (V_{OVP}), then the H-bridge output is disabled and nFAULT is pulled low. The driver remains disabled until the device is reset by pulling nRESET low or cycling the power on the MP6613. # Input Under-Voltage Lockout (UVLO) Protection If V_{IN} falls below the under-voltage lockout (UVLO) threshold (V_{IN_UVLO}), then all circuitry in the device is disabled and the internal logic resets. Once V_{IN} exceeds V_{IN_UVLO} , the device starts up again and resumes normal operation. #### Thermal Shutdown If the die temperature exceeds safe limits, then all the MOSFETs in the H-bridge are disabled and nFAULT is pulled low. Once the die temperature returns to a safe level, the MP6613 automatically starts up again and resumes normal operation. # **APPLICATION INFORMATION** ### Selecting the External Components Bypass the two VIN pins to GND using a minimum 100nF ceramic capacitor with X7R dielectrics, placed as close to the IC as possible. Place an additional 1µF to 10µF ceramic capacitor close to the 100nF capacitor. Depending on the supply impedance and distance to other large capacitors, electrolytic bulk capacitor may also be required to stabilize VIN. Connect a 100nF ceramic capacitor rated for V_{IN} between the CPA and CPB pins. Connect a 1µF, 16V ceramic capacitor between the VIN and VCP pins. Connect a 1µF, 16V ceramic capacitor with X7R dielectrics from the VREG pin to GND. ### **PCB Layout Guidelines** Efficient PCB layout is critical for stable operation. For the best results, refer to Figure 3 and Figure 4, and follow the guidelines below: - 1. Place the supply bypass and charge pump capacitors as close to the IC as possible, ideally adjacent to the pins on the same PCB laver. - 2. Each VIN pin requires a bypass capacitor. - 3. Place as much copper on the long pads as possible. - 4. Place large copper areas on the pads and the device's outer copper layer. - 5. The thermal pad should be soldered directly to the copper on the PCB. - 6. Add thermal vias to transfer heat to the other PCB layers. Figure 3: Recommended PCB Layout (MP6613GF) Figure 4: Recommended PCB Layout (MP6613GV) # **TYPICAL APPLICATION CIRCUIT** **Figure 5: Typical Application Circuit** # **PACKAGE INFORMATION** # **QFN-28 (4mmx5mm)** **SIDE VIEW** **DETAIL A** RECOMMENDED LAND PATTERN ### NOTE: - 1) ALL DIMENSIONS ARE IN MILLIMETERS. - 2) EXPOSED PADDLE SIZE DOES NOT INCLUDE MOLD FLASH. - 3) LEAD COPLANARITY SHALL BE 0.10 MILLIMETER MAX. - 4) DRAWING CONFORMS TO JEDEC MO-220, VARIATION VHGD-3. - 5) DRAWING IS NOT TO SCALE. # PACKAGE INFORMATION (continued) ### TSSOP-28EP **TOP VIEW** ### **RECOMMENDED LAND PATTERN** **FRONT VIEW** ### **SIDE VIEW** **BOTTOM VIEW** **DETAIL "A"** #### **NOTE:** - 1) ALL DIMENSIONS ARE IN MILLIMETERS. - 2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURR. - 3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. - 4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.10 MILLIMETERS MAX. - 5) DRAWING CONFORMS TO JEDEC MO-153, VARIATION AET. - 6) DRAWING IS NOT TO SCALE. # **CARRIER INFORMATION** | | Part Number | Package
Description | Quantity/
Reel | Quantity/
Tube | Reel
Diameter | Carrier
Tape Width | Carrier
Tape Pitch | |---|-------------|------------------------|-------------------|-------------------|------------------|-----------------------|-----------------------| | ĺ | MP6613GV-Z | QFN-28 (4mmx5mm) | 5000 | N/A | 13in | 12mm | 8mm | | Part Number | Package | Quantity/ | Quantity/ | Reel | Carrier | Carrier | |-------------|-------------|-----------|-----------|----------|------------|------------| | | Description | Reel | Tube | Diameter | Tape Width | Tape Pitch | | MP6613GF-Z | TSSOP-28EP | 2500 | 50 | N/A | 13in | 16mm | # **REVISION HISTORY** | Revision # | Revision Date | Description | Pages Updated | |------------|---------------|---|---------------| | 1.0 | 12/19/2022 | Initial Release | - | | 1.1 | 5/12/2023 | Updated the MSL rating of the MP6613GV orderable SKU to "2" in the Ordering Information section | 2 | **Notice:** The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third-party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.