

Kit Revision Date: 10/05/2021

832HD Black 1:1 Epoxy Potting Encapsulating Compound KIT

MG Chemicals Multipart Product Kit

This product is a kit made up of multiple parts. Each part is an independently packaged chemical component and has independent hazard assessments.

Kit Content

Part	Product Name	Product Use
А	832HD-A	Epoxy resin for use with hardeners
В	832HD-B	Epoxy hardener for use with resins

Safety Data Sheets for each part listed above follow this cover sheet.

Transportation Instruction

Before offering this product kit for transport, read Section 14 for <u>all</u> parts listed above.

832HD-A Black 1:1 Epoxy Potting and Encapsulating Compound (Part A) MG Chemicals UK Limited

Version No:A-2.00

Safety data sheet according to REACH Regulation (EC) No 1907/2006, as amended by UK REACH Regulations SI 2019/758

Issue Date: 04/10/2021 Revision Date: 04/10/2021 L.REACH.GB.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

1.1. Product Identifier			
Product name	832HD-A		
Synonyms	SDS Code: 832HD-Part A; 832HD-25ML, 832HD-50ML, 832HD-400ML, 832HD-1.7L, 832HD-7.4L, 832HD-40L UFI:S1G0-F0EM-U00P-5VEQ		
Other means of identification	Black 1:1 Epoxy Potting and Encapsulating Compound (Part A)		

1.2. Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Epoxy resin for use with hardeners	
Uses advised against	Not Applicable	

1.3. Details of the supplier of the safety data sheet

Registered company name	MG Chemicals UK Limited	MG Chemicals (Head office)	
Address	Hearne House, 23 Bilston Street, Sedgely Dudley DY3 1JA United Kingdom	9347 - 193 Street Surrey V4N 4E7 British Columbia Canada	
Telephone +(44) 1663 362888		+(1) 800-201-8822	
Fax	Not Available	+(1) 800-708-9888	
Website	Not Available	www.mgchemicals.com	
Email	sales@mgchemicals.com	Info@mgchemicals.com	

1.4. Emergency telephone number

Association / Organisation	Verisk 3E (Access code: 335388)		
Emergency telephone numbers	+(44) 20 35147487		
Other emergency telephone numbers	+(0) 800 680 0425		

SECTION 2 Hazards identification

2.1. Classification of the substance or mixture

Classified according to GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567 [1]	H411 - Hazardous to the Aquatic Environment Long-Term Hazard Category 2, H315 - Skin Corrosion/Irritation Category 2, H319 - Serious Eye Damage/Eye Irritation Category 2, H317 - Sensitisation (Skin) Category 1
Legend:	1. Classified by Chemwatch; 2. Classification drawn from GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567

2.2. Label elements

Hazard pictogram(s)	
Signal word	Warning

Hazard statement(s)

H411	Toxic to aquatic life with long lasting effects.	
H315	Causes skin irritation.	
H319	Causes serious eye irritation.	
H317	May cause an allergic skin reaction.	

Supplementary statement(s)

EUH205 Contains epoxy constituents. May produce an allergic reaction.

Page 2 of 21

832HD-A Black 1:1 Epoxy Potting and Encapsulating Compound (Part A)

Precautionary statement(s) Prevention

P280	Wear protective gloves, protective clothing, eye protection and face protection.		
P261	Avoid breathing mist/vapours/spray.		
P273	Avoid release to the environment.		
P264	Wash all exposed external body areas thoroughly after handling.		
P272	Contaminated work clothing should not be allowed out of the workplace.		

Precautionary statement(s) Response

P302+P352	IF ON SKIN: Wash with plenty of water.
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.
P337+P313	If eye irritation persists: Get medical advice/attention.
P362+P364	Take off contaminated clothing and wash it before reuse.
P391	Collect spillage.

Precautionary statement(s) Storage

Not Applicable

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

2.3. Other hazards

Cumulative effects may result following exposure*.

Limited evidence of a carcinogenic effect*.

Possible respiratory sensitizer*.

May possibly affect fertility*.

naphtha petroleum, heavy alkylate	Listed in the Europe Regulation (EU) 2018/1881 Specific Requirements for Endocrine Disruptors
bisphenol A/ diglycidyl ether resin, liquid	Listed in the Europe Regulation (EU) 2018/1881 Specific Requirements for Endocrine Disruptors

SECTION 3 Composition / information on ingredients

3.1.Substances

See 'Composition on ingredients' in Section 3.2

3.2.Mixtures

1.CAS No 2.EC No 3.Index No 4.REACH No	%[weight]	Name	Classified according to GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567	Nanoform Particle Characteristics
1.1675-54-3 2.216-823-5 3.603-073-00-2 603-074-00-8 4.Not Available	89	bisphenol A diglycidyl ether	Skin Corrosion/Irritation Category 2, Serious Eye Damage/Eye Irritation Category 2, Sensitisation (Skin) Category 1; H315, H319, H317 ^[2]	Not Available
1.17557-23-2 2.241-536-7 3.603-094-00-7 4.Not Available	6	neopentyl alycol dialycidyl ether	Skin Corrosion/Irritation Category 2, Sensitisation (Skin) Category 1; H315, H317 ^[2]	Not Available
1.64741-65-7. 2.265-067-2 3.649-275-00-4 4.Not Available	2	naphtha petroleum. heavy alkylate [e]	Flammable Liquids Category 3, Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3, Aspiration Hazard Category 1; H226, H336, H304 ^[1]	Not Available
1.25068-38-6 2.500-033-5 3.603-074-00-8 4.Not Available	1	bisphenol A/ diglycidyl ether resin, liquid [e]	Skin Corrosion/Irritation Category 2, Serious Eye Damage/Eye Irritation Category 2, Sensitisation (Skin) Category 1, Hazardous to the Aquatic Environment Long-Term Hazard Category 2; H315, H319, H317, H411 [2]	Not Available
1.1333-86-4 2.215-609-9 435-640-3 422-130-0 3.Not Available 4.Not Available	0.4	carbon black	Carcinogenicity Category 2; H351 ^[1]	Not Available
1.68609-97-2 2.271-846-8 3.603-103-00-4 4.Not Available	0.3	<u>(C12-14)alkylglycidyl</u> ether	Skin Corrosion/Irritation Category 2, Sensitisation (Skin) Category 1; H315, H317 ^[2]	Not Available
Legend:	Legend: 1. Classified by Chemwatch; 2. Classification drawn from GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567; 3. Classification dra from C&L * EU IOEL Vs available: [e] Substance identified as baving endocrine disrupting properties			Classification drawn

SECTION 4 First aid measures

4.1. Description of first aid measures

Eye Contact	 If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary.
Ingestion	 Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.

4.2 Most important symptoms and effects, both acute and delayed

See Section 11

4.3. Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

SECTION 5 Firefighting measures

5.1. Extinguishing media

- Water spray or fog.
- Foam.
- Dry chemical powder.
- BCF (where regulations permit). Carbon dioxide.

5.2. Special hazards arising from the substrate or mixture

Fire Incompatibility	Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result
5.3. Advice for firefighters	
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire.
Fire/Explosion Hazard	 Combustible. Slight fire hazard when exposed to heat or flame. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). May emit acrid smoke. Mists containing combustible materials may be explosive. Combustion products include: carbon dioxide (CO2) aldehydes other pyrolysis products typical of burning organic material.

SECTION 6 Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

See section 8

6.2. Environmental precautions

See section 12

6.3. Methods and material for containment and cleaning up

Minor Spills	 In the event of a spill of a reactive diluent, the focus is on containing the spill to prevent contamination of soil and surface or ground water. If irritating vapors are present, an approved air-purifying respirator with organic vapor canister is recommended for cleaning up spills and leaks. For small spills, reactive diluents should be absorbed with sand.

	 Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal.
Major Spills	Environmental hazard - contain spillage. Industrial spills or releases of reactive diluents are infrequent and generally contained. If a large spill does occur, the material should be captured, collected, and reprocessed or disposed of according to applicable governmental requirements. An approved air-purifying respirator with organic-vapor canister is recommended for emergency work. Moderate hazard. • Clear area of personnel and move upwind. • Alert Fire Brigade and tell them location and nature of hazard. • Wear breathing apparatus plus protective gloves. • Prevent, by any means available, spillage from entering drains or water course. • No smoking, naked lights or ignition sources. • Increase ventilation. • Stop leak if safe to do so. • Contain spill with sand, earth or vermiculite. • Collect recoverable product into labelled containers for recycling. • Absorb remaining product with sand, earth or vermiculite. • Collect solid residues and seal in labelled drums for disposal. • Wash area and prevent runoff into drains. • If contamination of drains or waterways occurs, advise emergency services.

6.4. Reference to other sections

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

7.1. Precautions for safe handling

Safe handling	 Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. Avoid smoking, naked lights or ignition sources. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. DO NOT allow clothing wet with material to stay in contact with skin
Fire and explosion protection	See section 5
Other information	 Store in original containers. Keep containers securely sealed. Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS.

7.2. Conditions for safe storage, including any incompatibilities

Suitable container	 Metal can or drum Packaging as recommended by manufacturer. Check all containers are clearly labelled and free from leaks.
Storage incompatibility	In general, uncured epoxy resins have only poor mechanical, chemical and heat resistance properties. However, good properties are obtained by reacting the linear epoxy resin with suitable curatives to form three-dimensional cross-linked thermoset structures. This process is commonly referred to as curing or gelation process. Curing of epoxy resins is an exothermic reaction and in some cases produces sufficient heat to cause thermal degradation if not controlled. Curing may be achieved by reacting an epoxy with itself (homopolymerisation) or by forming a copolymer with polyfunctional curatives or hardeners. In principle, any molecule containing a reactive hydrogen may react with the epoxide groups of the epoxy resin. Common classes of hardeners for epoxy resins include amines, acids, acid anhydrides, phenols, alcohols and thiols. Relative reactivity (lowest first) is approximately in the order: phenol < anhydride < aromatic amine < cycloaliphatic amine < aliphatic amine < thiol. The epoxy curing reaction may be accelerated by addition of small quantities of accelerators. Tertiary amines, carboxylic acids and alcohols (especially phenols) are effective accelerators. Bisphenol A is a highly effective and widely used accelerator, but is now increasingly replaced due to health concerns with this substance. Epoxy resin may be reacted with itself in the presence of an anionic catalyst (a Lewis base such as tertiary amines or imidazoles) or a cationic catalyst (a Lewis acid such as a boron trifluoride complex) to form a cured network. This process is known as catalytic homopolymerisation. The resulting network contains only ether bridges, and exhibits high thermal and chemical resistance, but is brittle and often requires elevated temperature to effect curing, so finds only niche applications industrially. Epoxy homopolymerisation is often used when there is a requirement for UV curing, since cationic UV catalysts may be employed (e.g. for UV coatings). Epoxides:

may polymerise in the presence of peroxides or heat - polymerisation may be violent
may react, possibly violently, with water in the presence of acids and other catalysts.
Glycidyl ethers:
may form unstable peroxides on storage in air ,light, sunlight, UV light or other ionising radiation, trace metals - inhibitor should be maintained at adequate levels
may polymerise in contact with heat, organic and inorganic free radical producing initiators
may polymerise with evolution of heat in contact with oxidisers, strong acids, bases and amines
react violently with strong oxidisers, permanganates, peroxides, acyl halides, alkalis, ammonium persulfate, bromine dioxide
attack some forms of plastics, coatings, and rubber
Reactive diluents are stable under recommended storage conditions, but can decompose at elevated temperatures. In some cases,
decomposition can cause pressure build-up in closed systems.
Avoid cross contamination between the two liquid parts of product (kit).
If two part products are mixed or allowed to mix in proportions other than manufacturer's recommendation, polymerisation with gelation and
evolution of heat (exotherm) may occur.
This excess heat may generate toxic vapour
Avoid reaction with amines, mercaptans, strong acids and oxidising agents

7.3. Specific end use(s) See section 1.2

SECTION 8 Exposure controls / personal protection

8.1. Control parameters

Ingredient	DNELs Exposure Pattern Worker	PNECs Compartment		
bisphenol A diglycidyl ether	Dermal 0.75 mg/kg bw/day (Systemic, Chronic) Inhalation 4.93 mg/m ³ (Systemic, Chronic) Dermal 89.3 µg/kg bw/day (Systemic, Chronic) * Inhalation 0.87 mg/m ³ (Systemic, Chronic) * Oral 0.5 mg/kg bw/day (Systemic, Chronic) *	0.006 mg/L (Water (Fresh)) 0.001 mg/L (Water - Intermittent release) 0.018 mg/L (Water (Marine)) 0.341 mg/kg sediment dw (Sediment (Fresh Water)) 0.034 mg/kg sediment dw (Sediment (Marine)) 0.065 mg/kg soil dw (Soil) 10 mg/L (STP) 11 mg/kg food (Oral)		
carbon black	Inhalation 1 mg/m ³ (Systemic, Chronic) Inhalation 0.5 mg/m ³ (Local, Chronic) Inhalation 0.06 mg/m ³ (Systemic, Chronic) *	1 mg/L (Water (Fresh)) 0.1 mg/L (Water - Intermittent release) 10 mg/L (Water (Marine))		
(C12-14)alkylglycidyl ether	Dermal 1 mg/kg bw/day (Systemic, Chronic) Inhalation 3.6 mg/m ³ (Systemic, Chronic) Dermal 0.5 mg/kg bw/day (Systemic, Chronic) * Inhalation 0.87 mg/m ³ (Systemic, Chronic) * Oral 0.5 mg/kg bw/day (Systemic, Chronic) *	0.106 mg/L (Water (Fresh)) 0.011 mg/L (Water - Intermittent release) 0.072 mg/L (Water (Marine)) 307.16 mg/kg sediment dw (Sediment (Fresh Water)) 30.72 mg/kg sediment dw (Sediment (Marine)) 1.234 mg/kg soil dw (Soil) 10 mg/L (STP)		

* Values for General Population

Occupational Exposure Limits (OEL)

INGREDIENT DATA

	Source	Ingredient	Material name		TWA	STEL	Peak	Notes
	UK Workplace Exposure Limits (WELs)	carbon black	Carbon black		3.5 mg/m3	7 mg/m3	Not Available	Not Available
l	Emergency Limits							
	Ingredient	TEEL-1		TEEL-	2		TEEL-3	
	bisphenol A diglycidyl ether	39 mg/m3		430 m	g/m3		2,600 mg/m3	
	bisphenol A diglycidyl ether	90 mg/m3		990 m	g/m3		5,900 mg/m3	
	bisphenol A/ diglycidyl ether resin, liquid	90 mg/m3		990 m	g/m3		5,900 mg/m3	
	carbon black	9 mg/m3		99 mg/	′m3	590 mg/m3		
	Ingredient	Original IDLH				Revised IDLH		
	bisphenol A diglycidyl ether	Not Available	Not Available			Not Available		
	neopentyl glycol diglycidyl ether	Not Available	Not Available			Not Available		
	naphtha petroleum, heavy alkylate	Not Available			Not Available			
	bisphenol A/ diglycidyl ether resin, liquid	Not Available				Not Available		
	carbon black	1,750 mg/m3				Not Available		
	(C12-14)alkylglycidyl ether	Not Available				Not Available		
ļ	Occupational Exposure Banding							
	Ingredient	Occupational Exposu	re Band Rating			Occupational Ex	posure Band Limit	
	Notes:	Occupational exposure banding is a process of assigning chemicals into			specific categories o	r bands based on a chemic	al's potency and the	

Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit
bisphenol A diglycidyl ether	E	≤ 0.1 ppm
neopentyl glycol diglycidyl ether	E	≤ 0.1 ppm
bisphenol A/ diglycidyl ether resin, liquid	E	≤ 0.1 ppm
(C12-14)alkylglycidyl ether	E	≤ 0.1 ppm
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a	

adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to range of exposure concentrations that are expected to protect worker health.

MATERIAL DATA

Sensory irritations are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- + acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

For epichlorohydrin

Odour Threshold Value: 0.08 ppm

NOTE: Detector tubes for epichlorohydrin, measuring in excess of 5 ppm, are commercially available.

Exposure at or below the recommended TLV-TWA is thought to minimise the potential for adverse respiratory, liver, kidney effects. Epichlorohydrin has been implicated as a human skin sensitiser, hence individuals who are hypersusceptible or otherwise unusually responsive to certain chemicals may NOT be adequately protected from adverse health effects. Odour Safety Factor (OSF)

OSF=0.54 (EPICHLOROHYDRIN)

NOTE P: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 0.01% w/w benzene (EINECS No 200-753-7). Note E shall also apply when the substance is classified as a carcinogen. This note applies only to certain complex oil-derived substances in Annex VI.

European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP

8.2. Exposure controls

	Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard 'physically' away from the worker and ventilation that strategically 'adds' and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in specific circumstances. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying 'escape' velocities which, in turn, determine the 'capture velocities' of fresh circulating air required to effectively remove the contaminant.				
	Type of Contaminant:			Air Speed:	
	solvent, vapours, degreasing etc., evaporating from tank	0.25-0.5 m/s (50-100 f/min)			
	aerosols, fumes from pouring operations, intermittent con drift, plating acid fumes, pickling (released at low velocity	0.5-1 m/s (100-200 f/min.)			
8.2.1. Appropriate engineering controls	direct spray, spray painting in shallow booths, drum filling, generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)			
	grinding, abrasive blasting, tumbling, high speed wheel gevery high rapid air motion).	2.5-10 m/s (500-2000 f/min.)			
	Within each range the appropriate value depends on:				
	Lower end of the range	Upper end of the range			
	1: Room air currents minimal or favourable to capture	1: Disturbing room air currents			
	2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity			
	3: Intermittent, low production.	3: High production, heavy use			
	4: Large hood or large air mass in motion	4: Small hood-local control only			
	Simple theory shows that air velocity falls rapidly with dista with the square of distance from the extraction point (in sim accordingly, after reference to distance from the contamina 1-2 m/s (200-400 f/min) for extraction of solvents generated producing performance deficits within the extraction appara more when extraction systems are installed or used.	nce away from the opening of a sin ople cases). Therefore the air speed ting source. The air velocity at the d in a tank 2 meters distant from the tatus, make it essential that theoretic	nple extraction pipe. Velocii d at the extraction point sho extraction fan, for example, e extraction point. Other me cal air velocities are multipli	y generally decreases uld be adjusted, should be a minimum of echanical considerations, ed by factors of 10 or	

Page 7 of 21

832HD-A Black 1:1 Epoxy Potting and Encapsulating Compound (Part A)

8.2.2. Personal protection	
Eye and face protection	 Safety glasses with side shields. Chemical goggles. Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]
Skin protection	See Hand protection below
Hands/feet protection	 The standard may induces shin specification in prediaposed individuals. Care must be taken, when removing gloves and other protective in the sacetaria terms, such as shocks, belts and watch hands should be removed and destroyed. The standard of a subhard gives are not only depend to the material, but also on huther marked of quality which vary from manufacturer to manufacturer to the expectition to the expectition. The standard of the observed when making a final choice. Personal hygiene is a key dement of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and risk to roughly, application of a non-perturned motistrater is in commended. Subtaility and durability of glove type is dependent on usage. Important factors in the selection of gloves include: in frequency and duration of contact, gloves finctions and any duration of contact, gloves and and are strated as a protection duration of a of soft physical barrier barrier and the strate an
Body protection	See Other protection below
Other protection	 Overalls. P.V.C apron. Barrier cream. Skin cleansing cream.

Eye wash unit.

Respiratory protection

Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the 'Exposure Standard' (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	A-AUS	-	A-PAPR-AUS / Class 1
up to 50 x ES	-	A-AUS / Class 1	-
up to 100 x ES	-	A-2	A-PAPR-2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

+ Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.

- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

8.2.3. Environmental exposure controls

See section 12

SECTION 9 Physical and chemical properties

9.1. Information on basic physical and chemical properties

Appearance	Black		
Physical state	Liquid	Relative density (Water = 1)	1.15
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	>235
pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	5086.96
Initial boiling point and boiling range (°C)	>150	Molecular weight (g/mol)	Not Available
Flash point (°C)	142	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Miscible	pH as a solution (%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available
Nanoform Solubility	Not Available	Nanoform Particle Characteristics	Not Available
Particle Size	Not Available		

9.2. Other information

Not Available

SECTION 10 Stability and reactivity

10.1.Reactivity	See section 7.2
10.2. Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.

10.3. Possibility of hazardous reactions	See section 7.2
10.4. Conditions to avoid	See section 7.2
10.5. Incompatible materials	See section 7.2
10.6. Hazardous decomposition products	See section 5.3

SECTION 11 Toxicological information

11.1. Information on toxicological effects

Inhaled	The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. In animal testing, exposure to aerosols of some reactive diluents (notably o-cresol glycidyl ether, CAS RN: 2210-79-9) has been reported to affect the adrenal gland, central nervous system, kidney, liver, ovaries, spleen, testes, thymus, and respiratory tract. Inhalation hazard is increased at higher temperatures. Not normally a hazard due to non-volatile nature of product
Ingestion	Reactive diluents exhibit a range of ingestion hazards. Small amounts swallowed incidental to normal handling operations are not likely to cause injury. Male rats exposed to a single oral dose of bisphenol A diglycidyl ether (BADGE) at 750, 1000, and 2000 mg/kg/day showed a significantly increase in the number of immature and maturing sperm on the testis. There were no significant differences with respect to sperm head count, sperm motility, and sperm abnormality in the BADGE treatment groups. The material has NOT been classified by EC Directives or other classification systems as 'harmful by ingestion'. This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.
Skin Contact	The material may accentuate any pre-existing dermatitis condition Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions. Bisphenol A diglycidyl ether (BADGE) may produce contact dermatitis characterised by erythema and oedema, with weeping followed by crusting and scaling. A liquid resin with a molecular weight of 350 produced severe skin irritation in rabbits when applied daily for 4 hours over 20 days. Following the initial contact there may be a discrete erythematous lesion, confined to the point of contact, which may persist for 48 hours to 10 days; the erythema may give way to a papular, vesicular rash with scaling. In animals uncured resin produces moderate ante-mortem depression, loss of body weight and diarrhoea. Local irritation, inflammation and death resulting from respiratory system depression are recorded. Higher molecular weight resins generally produce lower toxicity. Skin contact with reactive diluents may cause slight to moderate irritation with local redness. Repeated or prolonged skin contact may cause burns. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. The material produces mild skin irritation; evidence exists, or practical experience predicts, that the material either • produces mild inflammation of the skin in a substantial number of individuals following direct contact, and/or • produces slightficant, but mild, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure preiod. Skin irritation may also be present after prolonged or repeate
Eye	Eye contact with reactive diluents may cause slight to severe irritation with the possibility of chemical burns or moderate to severe corneal injury. Evidence exists, or practical experience predicts, that the material may cause severe eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Eye contact may cause significant inflammation with pain. Corneal injury may occur; permanent impairment of vision may result unless treatment is prompt and adequate. Repeated or prolonged exposure to irritants may cause inflammation characterised by a temporary redness (similar to windburn) of the conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.
Chronic	Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical systems. Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals. Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyper-responsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance who are likely to become hyper-responsive. Substances than can cuase occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or respiratory sensitisers Wherever it is reasonably practicable, exposure to substances that can cuase occupational asthma should be prevented. Where this is not possible the primary aim is to apply adequate standards of control to prevent workers from becoming hyper-responsive. Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance. All glycidyl ethers show genotoxic potential due their alkylating properties. Those glycidyl ethers that have been investigated in long term studies exhibit

Page 10 of 21

832HD-A Black 1:1 Epoxy Potting and Encapsulating Compound (Part A)

reported. Haemopoietic abnormalities following exposure to glycidyl ethers, including alteration of the leukocyte count, atrophy of lymphoid tissue, and bone marrow cytotoxicity have also been reported. These abnormalities were usually observed along with pneumonia and/or toxemia, and therefore may be secondary effects. However, especially in light of the generalized reduction in leukocytes and the atrophy of lymphoid tissues, the observed haemopoietic abnormalities may have been predisposing factors to pneumonia. While none of the individual research reports are conclusive with respect to the ability of glycidyl ethers to produce permanent changes to the testes or haemopoietic system in laboratory animals, the pattern of displayed effects is reason for concern

Glycidyl ethers have been shown to cause allergic contact dermatitis in humans. Glycidyl ethers generally cause skin sensitization in experimental animals. Necrosis of the muccus membranes of the nasal cavities was induced in mice exposed to allyl glycidyl ether. A study of workers with mixed exposures was inconclusive with regard to the effects of specific glycidyl ethers. Phenyl glycidyl ether, but not n-butyl glycidyl ether, induced morphological transformation in mammalian cells in vitro. n-Butyl glycidyl ether, induced micronuclei in mice in vivo following intraperitoneal but not oral administration. Phenyl glycidyl ether did not induce micronuclei or chromosomal aberrations in vivo or chromosomal aberrations in animal cells in vitro. Alkyl C12 or C14 glycidyl ether did not induce DNA damage in cultured human cells or mutation in cultured animal cells. Allyl glycidyl ether induced mutation in Drosophila. The glycidyl ethers were generally mutagenic to bacteria. Bisphenol A diglycidyl ethers (BADGEs) produce sensitisation dermatitis characterised by a papular, vesicular eczema with considerable itching of the back of the hand, the forearm and face and neck. This lesion may persist for 10-14 days after withdrawal from exposure and recur immediately on re-exposure. This dermatitis may persist for longer periods following each exposure but is unlikely to become more intense. Lesions may develop a brownish colour and scaling occurs frequently. Lower molecular weight species produce sensitisation more readily. In mice technical grades of bisphenol A diglycidyl ether produced epidermal tumours and a small increase in the incidence kidney tumours in

males and of lymphoreticular/ haematopoletic tumours in females. Subcutaneous injection produced a small number of fibrosarcomas in rats. BADGE is listed as an IARC Group 3 carcinogen, meaning it is 'not classifiable as to its carcinogenicity to humans'. Concern has been raised over this possible carcinogenicity because BADGE is used in epoxy resins in the lining of some tin cans for foodstuffs, and unreacted BADGE may end up in the contents of those cans.

For some reactive diluents, prolonged or repeated skin contact may result in absorption of potentially harmful amounts or allergic skin reactions Exposure to some reactive diluents (notably neopentylglycol diglycidyl ether, CAS RN:17557-23-2) has caused cancer in some animal testing. Bisphenol A exhibits hormone-like properties that raise concern about its suitability in consumer products and food containers. Bisphenol A is thought to be an endocrine disruptor which can mimic oestrogen and may lead to negative health effects. More specifically, bisphenol A closely mimics the structure and function of the hormone oestradiol with the ability to bind to and activate the same oestrogen receptor as the natural hormone. The presence of the p-hydroxy group on the benzene rings is though to be responsible for the oestradiol mimicry.

. Early developmental stages appear to be the period of greatest sensitivity to its effects and some studies have linked prenatal exposure to later physical and neurological difficulties. Regulatory bodies have determined safety levels for humans, but those safety levels are being questioned or are under review.

A 2009 study on Chinese workers in bisphenol A factories found that workers were four times more likely to report erectile dysfunction, reduced sexual desire and overall dissatisfaction with their sex life than workers with no heightened bisphenol A exposure. Bisphenol A workers were also seven times more likely to have ejaculation difficulties. They were also more likely to report reduced sexual function within one year of beginning employment at the factory, and the higher the exposure, the more likely they were to have sexual difficulties.

Bisphenol A in weak concentrations is sufficient to produce a negative reaction on the human testicle. The researchers found that a concentration equal to 2 ug/ litre of bisphenol A in the culture medium, a concentration equal to the average concentration generally found in the blood, urine and amniotic fluid of the population, was sufficient to produce the effects. The researchers believe that exposure of pregnant women to bisphenol A may be one of the causes of congenital masculinisation defects of the hypospadia and cryptorchidism types the frequency of which has doubled overall since the 70's. They also suggested that 'it is also possible that bisphenol A contributes to a reduction in the production of sperm and the increase in the incidence of testicular cancer in adults that have been observed in recent decades'

One review has concluded that obesity may be increased as a function of bisphenol A exposure, which '...merits concern among scientists and public health officials'

One study demonstrated that adverse neurological effects occur in non-human primates regularly exposed to bisphenol A at levels equal to the United States Environmental Protection Agency's (EPA) maximum safe dose of 50 ug/kg/day This research found a connection between bisphenol A and interference with brain cell connections vital to memory, learning, and mood.

A further review concluded that bisphenol-A has been shown to bind to thyroid hormone receptor and perhaps have selective effects on its functions. Carcinogenicity studies have shown increases in leukaemia and testicular interstitial cell tumours in male rats. However, 'these studies have not been considered as convincing evidence of a potential cancer risk because of the doubtful statistical significance of the small differences in incidences from controls'. Another in vitro study has concluded that bisphenol A is able to induce neoplastic transformation in human breast epithelial cells.[whilst a further study concluded that maternal oral exposure to low concentrations of bisphenol A, during lactation, increases mammary carcinogenesis in a rodent model. In vitro studies have suggested that bisphenol A can promote the growth of neuroblastoma cells and potently promotes invasion and metastasis of neuroblastoma cells. Newborn rats exposed to a low-dose of bisphenol A (10 ug/kg) showed increased prostate cancer susceptibility when adults. At least one study has suggested that bisphenol A suppresses DNA methylation which is involved in epigenetic changes.

Bisphenol A is the isopropyl adduct of 4,4'-dihydroxydiphenyl oxide (DHDPO). A series of DHDPO analogues have been investigated as potential oestrogen receptor/anti-tumour drug carriers in the development of a class of therapeutic drugs called 'cytostatic hormones'. Oestrogenic activity is induced with 1 to 100 mg/kg body weight in animal models. Bisphenol A sealants are frequently used in dentistry for treatment of dental pits and fissures. Samples of saliva collected from dental patients during a 1-hour period following application contain the monomer. A bisphenol-A sealant has been shown to be oestrogenic in vitro; such sealants may represent an additional source of xenoestrogens in humans and may be the cause of additional concerns in children.

Concerns have been raised about the possible developmental effects on the foetus/embryo or neonate resulting from the leaching of bisphenol A from epoxy linings in metal cans which come in contact with food-stuffs.

Many drugs, including naproxen, salicylic acid, carbamazepine and mefenamic acid can, in vitro, significantly inhibit bisphenol A glucuronidation (detoxification).

BPA belongs to the list of compounds having this property as the rodent models have shown that BPA exposure is linked with increased body weigh (obesogens)t. Several mechanisms can help explain the effect of BPA on body weight increase. A possible mechanism leading to triglyceride accumulation is the decreased production of the hormone adiponectin from all human adipose tissue tested when exposed to very low levels (below nanomolar range) of BPA in cell or explant culture settings. The expression of leptin as well as several enzymes and transcription factors is also affected by BPA exposure in vivo as well as in vitro. Together, the altered expression and activity of these important mediators of fat metabolism could explain the increase in weight following BPA exposure in rodent models. These results also suggest that, together with other obesogens, low, environmentally relevant levels of BPA may contribute to the human obesity phenomenon. On the basis, primarily, of animal experiments, concern has been expressed by at least one classification body that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment.

Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following.

832HD-A Black 1:1 Epoxy	TOXICITY	IRRITATION	
Compound (Part A)	Not Available	Not Available	9
	TOXICITY	RRITATION	
bisphenol A diglycidyl ether	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye (rabbit): 2 mg/2	24h - SEVERE
	Oral(Rat) LD50; >2000 mg/kg ^[1]	Eye: adverse effect	observed (irritating) ^[1]

		ſ			
		Sk	in (rabbit): 5	00 mg - mild	200[1]
		5K	in: adverse e	enect observed (irritatin	l g),, ,
	ΤΟΧΙΟΙΤΥ	1	RRITATION		
noonontul alugol dialugidul	Dermal (rabbit) LD50: 2150 mg/kg ^[2]	E	Eve: adverse	effect observed (irritat	ting) ^[1]
ether	Oral(Rat) LD50; 4500 mg/kg ^[2] Skin (human): Sensitiser [Shell]				5,
		ç	Skin: adverse	e effect observed (irrita	ting) ^[1]
	ΤΟΧΙΟΙΤΥ				IRRITATION
naphtha petroleum, heavy	Dermal (rabbit) LD50: >2000 mg/kg ^[2]				Not Available
alkylate	Inhalation(Rat) LC50; >5.04 mg/l4h ^[2]				
	Oral(Rat) LD50; >7000 mg/kg ^[2]				
	ΤΟΧΙΟΙΤΥ			IRRITATION	
bisphenol A/ diglycidyl ether resin, liquid	dermal (rat) LD50: >1200 mg/kg ^[2]			Eye (rabbit): 100mg -	Mild
	Oral(Mouse) LD50; >500 mg/kg ^[2]				
	ΤΟΧΙΟΙΤΥ	IRRITA	TION		
carbon black	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye: no	adverse effe	ect observed (not irritat	ing) ^[1]
	Oral(Rat) LD50; >8000 mg/kg ^[1]	Skin: no	o adverse eff	ect observed (not irrita	ting)[¹]
		IRRI			
	Oral(Rat) LD50; >2000 mg/kg ^{L1}	Eye (Eve: adverse effect observed (irritation)[1]		
carbon black (C12-14)alkylglycidyl ether Legend: 1 S		Eye: Skin	(quinea pig)	sensitiser	[''
		Skin	(human): Irri	tant	
	Skin (human): non- sensitiser				
		Skin	Skin (rabbit): moderate		
		Skin	Skin : Moderate		
	Skin: adverse effect observed (irritati				[1]
Legend:	1. Value obtained from Europe ECHA Registered Subs	stances - Acute	toxicity 2.* \	/alue obtained from ma	anufacturer's SDS. Unless otherwise
	specified data extracted from RTECS - Register of Toxi	kic Effect of che	mical Substa	ances	
832HD-A Black 1:1 Epoxy Potting and Encapsulating Compound (Part A)	The various members of the bisphenol family produce I receptors (ERRs; not to be confused with estrogen rec A suspected estrogen-related receptors (ERR) binding Estrogen-related receptors (ERR, oestrogen-related re- appear to bind estrogens or other tested steroid hormo- metabolism and mitochondrial biogenesis, while effectin placenta, macrophages, and demonstrated additional n ERRs bind enhancers throughout the genome where the Although their overall functions remain uncertain, they estrogen receptors ERalpha and ERbeta and may funce - ERR-alpha has wide tissue distribution but it is m as kidney, heart, brown adipose tissue, cerebellum, intri tissues, in which its expression is possibly related to ac dehydroepiandrosterone (DHEAS) production in adrena adrenal androgens such as androstenedione, although as early pubic and axillary hair growth, adult-type body - ERR-beta is a nuclear receptor. Its function is u development - ERR-gamma is a nuclear receptor that behaves an endocrine disruptor by binding strongly to ERRgam ERR-gamma has been found in high concentration in t ERR-gamma has been found in high concentration in t	hormone like et septors) g agent: aceptors) are so ones. The ERR ing mammalian roles in diabete: hey exert effect also share DN/ ction to modular most highly exert testine, and ske drenal developr harche, and also n relatively weal v dor, increase unknown; howe as a constitutiv ma BPA as we to the estrogen t parts of the bo	ffects, seemi p named bec family have physiology i s and cance s on gene re A-binding situ te estrogen s ressed in tiss- letal muscle ment, with a p in steroid p k androgens d oiliness of vver, a simila ve activator o sil as its nitra receptor (El ody may acc oplaining rep	ngly as a result of bind ause of sequence hom been demonstrated to n the heart, brown adij - igulation as, co-regulators, and i ignaling pathways. sues that preferentially ERRalpha has been of possible role in fetal ar roduction of post-adrer are responsible for th hair and skin, and mild r protein in mouse play of transcription. There is ted and chlorinated me R). BPA binding to ERI pont for variations in bio ports of high bisphenol /	ting to estrogen receptor-related ology with estrogen receptors but do not control energy homeostasis, oxidative boose tissue, white adipose tissue, target genes with the conventional use fatty acids as energy sources such detected in normal adrenal cortex frenal function, in harche/adult life. DHEA and other e androgenic effects of adrenarche, such d acne. rs an essential role in placental s evidence that bisphenol A functions as tabolites seems to binds strongly to R-gamma preserves its basal constitutive sphenol A effects. For instance, A accumulation there
BISPHENOL A DIGLYCIDYL ETHER	Bispnenol A exhibits hormone-like properties that raise thought to be an endocrine disruptor which can mimic of mimics the structure and function of the hormone oestir hormone. The presence of the p-hydroxy group on the . Early developmental stages appear to be the period of physical and neurological difficulties. Regulatory bodies or are under review. A 2009 study on Chinese workers in bisphenol A factor sexual desire and overall dissatisfaction with their sex i seven times more likely to have eiaculation difficulties	e concern about oestrogen and radiol with the a benzene rings of greatest sens is have determin ries found that life than worker They were also	t its suitability may lead to ability to bind is though to sitivity to its e ned safety le workers werr rs with no he o more likely	y in consumer products negative health effects to and activate the sail be responsible for the ffects and some studie vels for humans, but th e four times more likely ightened bisphenol A et to report reduced sexi-	s and tood containers. Bisphenol A is . More specifically, bisphenol A closely me oestrogen receptor as the natural oestradiol mimicry. as have linked prenatal exposure to later hose safety levels are being questioned r to report erectile dysfunction, reduced exposure. Bisphenol A workers were also ual function within one year of beginning

Page 12 of 21

832HD-A Black 1:1 Epoxy Potting and Encapsulating Compound (Part A)

	employment at the factory, and the higher the exposure, the more likely they were to have sexual difficulties. Bisphenol A in weak concentrations is sufficient to produce a negative reaction on the human testice. The researchers found that a concentration equal to 2 ug/ litre of bisphenol A in the culture medium, a concentration equal to the average concentration generally found in the blood, urine and amniotic fluid of the population, was sufficient to produce the effects. The researchers believe that exposure of pregnant women to bisphenol A may be one of the causes of congenital masculinisation defects of the hypospadia and cryptorchidism types the frequency of which has doubled overall since the 70's. They also suggested that 'it is also possible that bisphenol A exposure, which 'merits concern among scientists and public health officials' One review has concluded that obesity may be increased as a function of bisphenol A exposure, which 'merits concern among scientists and public health officials' One study demonstrated that adverse neurological effects occur in non-human primates regularly exposed to bisphenol A at levels equal to the United States Environmental Protection Agency's (EPA) maximum safe dose of 50 ug/kg/day This research found a connection between bisphenol A and interference with brain cell connections vital to memory, learning, and mood. A further review concluded that bisphenol - A has been shown to bird to thyroid hornone receptor and perhaps have selective effects on its functions. Carcinogenicity studies have shown increases in leukaemia and testicular interstitial cell tumours in male rats. However, 'these studies have not been considered as convincing evidence of a potential cancer risk because of the doubful statistical significance of the small differences in incidences from controls'. Another in vitro study as concluded that bisphenol A is able to induce neeplase to the significante of the small differences in incidences from controls'. Another in vitro studies have suggeste
	mediators of fat metabolism could explain the increase in weight following BPA exposure in rodent models. These results also suggest that, together with other obesogens, low, environmentally relevant levels of BPA may contribute to the human obesity phenomenon. All glycidyl ethers show genotoxic potential due their alkylating properties. Those glycidyl ethers that have been investigated in long term studies exhibit more or less marked carcinogenic potential. Alkylating agents may damage the stem cell which acts as the precursor to components of the blood. Loss of the stem cell may result in pancytopenia (a reduction in the number of red and white blood cells and platelets) with a latency period corresponding to the lifetime of the individual blood cells. Granulocytopenia (a reduction in granular leukocytes) develops within days and thrombocytopenia (a disorder involving platelets), within 1-2 weeks, whilst loss of erythrocytes (red blood cells) need months to become clinically manifest. Aplastic anaemia develops due to complete destruction of the stem cells. Reported adverse effects in laboratory animals include sensitization, and skin and eye irritation, as well as mutagenic and tumorigenic activity. Testicular abnormalities (including testicular atrophy with decreased spermatogenic activity) following exposure to glycidyl ethers have been reported. Haemopoietic abnormalities following exposure to glycidyl ethers may been predisposing factors to pneumonia. While none of the atrophy of lymphoid tissue, and bner marrow cytotoxicity have also been reported. These abnormalities were usually observed along with pneumonia and/or toxemia, and therefore may be secondary effects. Inevever, especially in light of the generalized reduction in leukocytes and the atrophy of lymphoid tissues, the observed haemopoietic abnormalities may have been predisposing factors to pneumonia. While none of the individual research reports are conclusive with respect to the ability of glycidyl ethers to produce permanent changes to the te
NEOPENTYL GLYCOL DIGLYCIDYL ETHER	* Anchor SDS]
APHTHA PETROLEUM, HEAVY ALKYLATE	For Low Boiling Point Naphthas (LBPNs): Acute toxicity: LBPNs generally have low acute toxicity by the oral (median lethal dose [LD50] in rats > 2000 mg/kg-bw), inhalation (LD50 in rats > 5000 mg/m3) and dermal (LD50 in rabbits > 2000 mg/kg-bw) routes of exposure Most LBPNs are mild to moderate eye and skin irritatis in rabbits, with the exception of heavy catalytic cracked and heavy catalytic reformed naphthas, which have higher primary skin irritation indices. Sensitisation: LBPNs do not appear to be skin sensitizers, but a poor response in the positive control was also noted in these studies Repeat dose toxicity: The lowest-observed-adverse-effect concentration (LOAEC) and lowest-observed-adverse-effect level (LOAEL) values identified following short-term (2-89 days) and subchronic (greater than 90 days) exposure to the LBPN substances. These values were determined for a variety of endpoints after considering the toxicity data for all LBPNs in the group. Most of the studies were carried out by the inhalation noute of exposure. Renal effects, including increased kidney weight, renal lesions (renal tubule dilation, necrosis) and hyaline droplet formation, observed in male rats exposed orally or by inhalation to most LBPNs, were considered species- and sex-specific. These effects were determined to be due to a mechanism of action not relevant to humans -specifically, the interaction between hydrocarbon metabolites and alpha-2-microglobulin, an enzyme not produced in substantial amounts in female rats, mice and other species, including humans. The resulting nephrotoxicity and subsequent carcinogenesis in male rats were therefore not considered in deriving LOAEC/LOAEL values. Only a limited number of studies of short-term and subchronic duration were identified for site-restricted LBPNs. The lowest LOAEC identified in these studies, via the inhalation route, is 5475 mg/m3, based on a concentration-related increase in liver weight in both male and female rats following a 13-week exposure to ligh

for 90 days in rats No non-cancer chronic toxicity studies (= 1 year) were identified for site-restricted LBPNs and very few non-cancer chronic toxicity studies were

NAPHTHA

Page 13 of 21

832HD-A Black 1:1 Epoxy Potting and Encapsulating Compound (Part A)

identified for other LBPNs. An LOAEC of 200 mg/m3 was noted in a chronic inhalation study that exposed mice and rats to unleaded gasoline (containing 2% benzene). This inhalation LOAEC was based on ocular discharge and ocular irritation in rats. At the higher concentration of 6170 mg/m3, increased kidney weight was observed in male and female rats (increased kidney weight was also observed in males only at 870 mg/m3). Furthermore, decreased body weight in male and female mice was also observed at 6170 mg/m3

A LOAEL of 714 mg/kg-bw was identified for dermal exposure based on local skin effects (inflammatory and degenerative skin changes) in mice following application of naphtha for 105 weeks. No systemic toxicity was reported.

Genotoxicity:

Although few genotoxicity studies were identified for the site-restricted LBPNs, the genotoxicity of several other LBPN substances has been evaluated using a variety of in vivo and in vitro assays. While in vivo genotoxicity assays were negative overall, the in vitro tests exhibited mixed results.

For in vivo genotoxicity tests, LBPNs exhibited negative results for chromosomal aberrations and micronuclei induction, but exhibited positive results in one sister chromatid exchange assay although this result was not considered definitive for clastogenic activity as no genetic material was unbalanced or lost. Mixtures that were tested, which included a number of light naphthas, displayed mixed results (i.e., both positive and negative for the same assay) for chromosomal aberrations and negative results for the dominant lethal mutation assay. Unleaded gasoline (containing 2% benzene) was tested for its ability to induce unscheduled deoxyribonucleic acid (DNA) synthesis (UDS) and replicative DNA synthesis (RDS) in rodent hepatocytes and kidney cells. UDS and RDS were induced in mouse hepatocytes via oral exposure and RDS was induced in rat kidney cells via oral and inhalation exposure. Unleaded gasoline (benzene content not stated) exhibited negative results for chromosomal aberrations and the dominant lethal mutation assay and mixed results for atypical cell foci in rodent renal and hepatic cells. For in vitro genotoxicity studies, LBPNs were negative for six out of seven Ames tests, and were also negative for UDS and for forward mutations LBPNs exhibited mixed or equivocal results for the mouse lymphoma and sister chromatid exchange assays, as well as for cell transformation and positive results for the Ames and mouse lymphoma assay. Gasoline exhibited negative results for the Ames test battery, the sister chromatid exchange assay.

While the majority of in vivo genotoxicity results for LBPN substances are negative, the potential for genotoxicity of LBPNs as a group cannot be discounted based on the mixed in vitro genotoxicity results.

Carcinogenicity:

Although a number of epidemiological studies have reported increases in the incidence of a variety of cancers, the majority of these studies are considered to contain incomplete or inadequate information. Limited data, however, are available for skin cancer and leukemia incidence, as well as mortality among petroleum refinery workers. It was concluded that there is limited evidence supporting the view that working in petroleum refineries entails a carcinogenic risk (Group 2A carcinogen). IARC (1989a) also classified gasoline as a Group 2B carcinoger; it considered the evidence for carcinogenicity in humans from gasoline to be inadequate and noted that published epidemiological studies had several limitations, including a lack of exposure data and the fact that it was not possible to separate the effects of combustion products from those of gasoline itself. Similar conclusions were drawn from other reviews of epidemiological studies for gasoline (US EPA 1987a, 1987b). Thus, the evidence gathered from these epidemiological studies is considered to be inadequate to conclude on the effect

s of human exposure to LBPN substances.

No inhalation studies assessing the carcinogenicity of the site-restricted LBPNs were identified. Only unleaded gasoline has been examined for its carcinogenic potential, in several inhalation studies. In one study, rats and mice were exposed to 0, 200, 870 or 6170 mg/m3 of a 2% benzene formulation of the test substance, via inhalation, for approximately 2 years. A statistically significant increase in hepatocellular adenomas and carcinomas, as well as a non-statistical increase in renal tumours, were observed at the highest dose in female mice. A dose-dependent increase in the incidence of primary renal neoplasms was also detected in male rats, but this was not considered to be relevant to humans, as discussed previously.Carcinogenicity was also assessed for unleaded gasoline, via inhalation, as part of initiation/promotion studies. In these studies, unleaded gasoline did not appear to initiate tumour formation, but did show renal cell and hepatic tumour promotion ability, when rats and mice were exposed, via inhalation, for durations ranging from 13 weeks to approximately 1 year using an initiation/promotion protocol. However, further examination of data relevant to the composition of unleaded gasoline demonstrated that this is a highly-regulated substance; it is expected to contain a lower percentage of benzene and has a discrete component profile when compared to other substances in the LBPN group. Both the European Commission (2008) as Category 2 (R45: may cause cancer) (benzene content = 0.1% by weight). IARC has classified gasoline, an LBPN, as a Group 2B carcinogen (possibly carcinogenic to humans) and "occupational exposures in performance) and "occupational exposures in performance).

Several studies were conducted on experimental animals to investigate the dermal carcinogenicity of LBPNs. The majority of these studies were conducted through exposure of mice to doses ranging from 694-1351 mg/kg-bw, for durations ranging from 1 year to the animals' lifetime or until a tumour persisted for 2 weeks. Given the route of exposure, the studies specifically examined the formation of skin tumours. Results for carcinogenicity via dermal exposure are mixed. Both malignant and benign skin tumours were induced with heavy catalytic cracked naphtha, light

straight-run naphtha and naphtha Significant increases in squamous cell carcinomas were also observed when mice were dermally treated with Stoddard solvent, but the latter was administered as a mixture (90% test substance), and the details of the study were not available. In contrast, insignificant increases in tumour formation or no tumours were observed when light alkylate naphtha, heavy catalytic reformed naphtha, sweetened naphtha, light catalytically cracked naphtha

or unleaded gasoline was dermally applied to mice. Negative results for skin tumours were also observed in male mice dermally exposed to sweetened naphtha using an initiation/promotion protocol.

Reproductive/ Developmental toxicity:

No reproductive or developmental toxicity was observed for the majority of LBPN substances evaluated. Most of these studies were carried out by inhalation exposure in rodents.

NOAEC values for reproductive toxicity following inhalation exposure ranged from 1701 mg/m3 (CAS RN 8052-41-3) to 27 687 mg/m3 (CAS RN 64741-63-5) for the LBPNs group evaluated, and from 7690 mg/m3 to 27 059 mg/m3 for the site-restricted light catalytic cracked and full-range catalytic reformed naphthas. However, a decreased number of pups per litter and higher frequency of post-implantation loss were observed following inhalation exposure of female rats to hydrotreated heavy naphtha (CAS RN 804742-48-9) at a concentration of 4679 mg/m3, 6 hours per day, from gestational days 7-20. For dermal exposures, NOAEL values of 714 mg/kg-bw (CAS RN 8030-30-6) and 1000 mg/kg-bw per day (CAS RN 8053-02-0) were noted . For oral exposures, no adverse effects on reproductive parameters were reported when rats were given site-restricted light catalytic cracked naphtha at 2000 mg/kg on gestational day 13.

For most LBPNs, no treatment-related developmental effects were observed by the different routes of exposure However, developmental toxicity was observed for a few naphthas. Decreased foetal body weight and an increased incidence of ossification variations were observed when rat dams were exposed to light aromatized solvent naphtha, by gavage, at 1250 mg/kg-bw per day. In addition, pregnant rats exposed by inhalation to hydrotreated heavy naphtha at 4679 mg/m3 delivered pups with higher birth weights. Cognitive and memory impairments were also observed in the offspring.

Low Boiling Point Naphthas [Site-Restricted]

Studies indicate that normal, branched and cyclic paraffins are absorbed from the mammalian gastrointestinal tract and that the absorption of n-paraffins is inversely proportional to the carbon chain length, with little absorption above C30. With respect to the carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent that iso- or cyclo-paraffins.

The major classes of hydrocarbons have been shown to be well absorbed by the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are ingested in association with dietary lipids. The dependence of hydrocarbon absorption on concomitant triglyceride digestion and absorption, is known as the 'hydrocarbon continuum hypothesis', and asserts that a series of solubilising phases in the intestinal lumen, created by dietary triglycerides and their digestion products, afford hydrocarbons a route to the lipid phase of the intestinal absorptive cell (enterocyte) membrane. While some hydrocarbons may traverse the mucosal epithelium unmetabolised and appear as solutes in lipoprotein particles in intestinal lymph, there is evidence that most hydrocarbons partially separate from nutrient lipids and undergo metabolic transformation in the enterocyte. The enterocyte may play a major role in determining the proportion of an absorbed hydrocarbon that, by escaping initial biotransformation, becomes available for deposition in its unchanged form in peripheral tissues such as adipose tissue, or in the liver. for petroleum:

	Altered mental state, drowsiness, peripheral motor neuropathy, irreversible brain damage (so-called Petrol Sniffer's Encephalopathy), delirium, seizures, and sudden death have been reported from repeated overexposure to some hydrocarbon solvents, naphthas, and gasoline This product may contain benzene which is known to cause acute myeloid leukaemia and n-hexane which has been shown to metabolize to compounds which are neuropathic. This product contains toluene. There are indications from animal studies that prolonged exposure to high concentrations of toluene may lead to hearing loss. This product contains ethyl benzene and naphthalene from which there is evidence of tumours in rodents Carcinogenicity : Inhalation exposure to mice causes liver tumours, which are not considered relevant to humans. Inhalation exposure to rats causes kidney tumours which are not considered relevant to humans. Inhalation exposure to rats causes kidney tumours which are not considered relevant to humans. Mutagenicity : There is a large database of mutagenicity studies on gasoline and gasoline blending streams, which use a wide variety of endpoints and give predominantly negative results. All in vivo studies in animals and recent studies in exposed humans (e.g. petrol service station attendants) have shown negative results. All in vivo studies in animals and recent studies in exposed humans (e.g. petrol service study in rats exposed to gasoline vapour condensate, no adverse effects on the foetus were observed. Human Effects : Prolonged/ repeated contact may cause defatting of the skin which can lead to dermatitis and may make the skin more susceptible to irritation and penetration by other materials. Lifetime exposure of ordents to gasoline produces carcinogenicity although the relevance to humans has been questioned. Gasoline induces kidney cancer in male rats as a consequence of accumulation of the alpha2-microglobulin protein in hyaline droplets in the male (but not female) at kidney. Such abnormal accumulation represents lysos
ETHER RESIN, LIQUID	Foetoxicity has been observed in animal studies Oral (rabbit, female) NOEL 180 mg/kg (teratogenicity; NOEL (maternal 60 mg/kg
CARBON BLACK	Innalation (rat) TCLO: 50 mg/m3/6n/90D-1 Nil reported No significant acute toxicological data identified in literature search. WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans.
832HD-A Black 1:1 Epoxy Potting and Encapsulating Compound (Part A) & BISPHENOL A DIGLYCIDYL ETHER & NEOPENTYL GLYCOL DIGLYCIDYL ETHER & BISPHENOL A/ DIGLYCIDYL ETHER RESIN, LIQUID & (C12-14)ALKYLGLYCIDYL ETHER	The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.
832HD-A Black 1:1 Epoxy Potting and Encapsulating Compound (Part A) & BISPHENOL A DIGLYCIDYL ETHER & BISPHENOL A/ DIGLYCIDYL ETHER RESIN, LIQUID	In mice, dermal application of bisphenol A diglycidyl ether (BADGE) (1, 10, or 100 mg/kg) for 13 weeks produced mild to moderate chronic active dermatits. At the high dose, spongiosis and epidermal micro abscess formation were observable effect level (NOEL) for dermal exposure was 100 mg/kg) for 13 weeks resulted in a decrease in body weight at the high dose. The no-observable effect level (NOEL) for dermal exposure was 100 mg/kg for both sexes. In a separate study, application of BADGE (same doses) five times per week for -13 weeks not only caused a decrease in body weight but also produced chronic dermatitis at all dose levels in males and at >100 mg/kg in females (as well as in a satellite group of females given 1000 mg/kg). Reproductive and Developmental Toxicity: BADGE (50, 540, or 750 mg/kg) administered to rats via gavage for 14 weeks (P1) or 12 weeks (P2) produced decreased body weight in all males at the mid dose and in both males and females at the high dose, but had no reproductive effects. The NOEL for reproductive effects was 750 mg/kg. Carcinogenicity: IARC concluded that 'there is limited evidence for the carcinogenicity to humans (Group 3). In a lifetime tumourigenicity study in which 90-day-old C3H mice received three dermal applications per week of BADGE (undiluted dose) for 23 months, only one out of 32 animals developed a apailing mater 40 months. A retext, in which skin paintings were done for 27 months, however, produced no tumours (Weil et al., 1963). In another lifetime skin-painting study, BADGE (dose n.p.) was also reported to be noncarcinogenic to the skin of C3H mice; it was, however, weakly carcinogenic to the skin of C52HL/6 mice (Holland et al., 1979). cited by Canter et al., 1986). In a thro-year bioasay, female Fisher 344 rat dermally exposed to BADGE (1, 100, or 1000 mg/kg) showed no evidence of dermal carcinogenicity but did have low incidences of tumours in the oral cavity (U.S. EPA, 1997). The spot test, BADGE (0.05 or 10.00 mg/kg), negative results were obtained in TA98
832HD-A Black 1:1 Epoxy Potting and Encapsulating Compound (Part A) & BISPHENOL A/ DIGLYCIDYL ETHER RESIN, LIQUID	The chemical structure of hydroxylated diphenylalkanes or bisphenols consists of two phenolic rings joined together through a bridging carbon. This class of endocrine disruptors that mimic oestrogens is widely used in industry, particularly in plastics. Bisphenol A (BPA) and some related compounds exhibit oestrogenic activity in human breast cancer cell line MCF-7, but there were remarkable differences in activity. Several derivatives of BPA exhibited significant thyroid hormonal activity towards rat pituitary cell line GH3, which releases growth hormone in a thyroid hormone-dependent manner. However, BPA and several other derivatives did not show such activity. Results suggest that the 4-hydroxyl group of the A-phenyl ring and the B-phenyl ring of BPA derivatives are required for these hormonal activities, and substituents at the 3,5-positions of the phenyl rings and the bridging alkyl moiety markedly influence the activities. Bisphenols promoted cell proliferation and increased the synthesis and secretion of cell type-specific proteins. When ranked by proliferative potency, the longer the alkyl substituent at the bridging carbon, the lower the concentration needed for maximal cell vield; the most active

compound contained two propyl chains at the bridging carbon. Bisphenols with two hydroxyl groups in the para position and an angular

configuration are suitable for appropriate hydrogen bonding to the acceptor site of the oestrogen receptor.

Continued...

Page 15 of 21 832HD-A Black 1:1 Epoxy Potting and Encapsulating Compound (Part A)

832HD-A Black 1:1 Epoxy Potting and Encapsulating Compound (Part A) & BISPHENOL A DIGLYCIDYL ETHER & NEOPENTYL GLYCOL DIGLYCIDYL ETHER & (C12-14)ALKYLGLYCIDYL	In vitro cell models were used to evaluate the ability of 2 Bisphenol AF (BPAF), bisphenol Z (BP2), bisphenol C (I 4,4-bisphenol F (4,4-BPF), bisphenol AP (BPAP), bisphe estrogen receptor (ER)alpha and/or ERbeta-mediated a androgen receptor (AR) antagonists. Only 3 BPs were for activity and 4-(4-phenylmethoxyphenyl)sulfonylphenol (I None of the BPs induced AR-mediated activity.	2 Disprenois (BPS) to induce or inhib BPC), tetramethyl bisphenol A (TMBF enol B (BPB), tetrachlorobisphenol A ctivity. With the exception of BPS, TC bund to be ER antagonists. Bisphenol BPS-MPE) and 2,4-bisphenol S (2,4-E d epoxides) exhibit many common chas be taken as representative.	It estrogenic and androgenic activity. BPA, (A), bisphenol S (BPS), bisphenol E (BPE), (TCBPA), and benzylparaben (PHBB) induced BPA, and PHBB, these same BPs were also IP (BPP) selectively inhibited ERbeta-mediated 3PS) selectively inhibited ERalpha-mediated activity.
ETHER BISPHENOL A DIGLYCIDYL ETHER & NEOPENTYL GLYCOL DIGLYCIDYL ETHER & (C12-14)ALKYLGLYCIDYL ETHER	for 1,2-butylene oxide (ethyloxirane): Ethyloxirane increased the incidence of tumours of the r in nasal papillary adenomas and combined alveolar/bor ethyloxirane via inhalation for 103 weeks. There was als and carcinomas. Nasal papillary adenomas were also ol In mice exposed chronically via inhalation, one male mo tumours were not observed. Tumours were not observe 0.8% ethyloxirane was administered orally to mice for up forestomach occurred in 3/49 males (p=0.029, age-adju these tumours and they were not observed in control an (propylene oxide), which are also direct-acting alkylating	espiratory system in male and female nchiolar adenomas and carcinomas w so a significant positive trend in the ind beserved in 2/50 high-dose female rats use developed a squamous cell papil d in mice exposed chronically via derr o to 35 weeks, followed by 0.4% from sted) and 1/48 females at week 106 imals . Two structurally related substa g agents, have been classified as carc	e rats exposed via inhalation. Significant increases rere observed in male rats exposed to 1200 mg/m3 cidence of combined alveolar/bronchiolar adenomas with none occurring in control or low-dose animals. loma in the nasal cavity (300 mg/m3) but other mal exposure. When trichloroethylene containing weeks 40 to 69, squamous-cell carcinomas of the Trichloroethylene administered alone did not induce ances, oxirane (ethylene oxide) and methyloxirane sinogenic
BISPHENOL A DIGLYCIDYL ETHER & BISPHENOL A/ DIGLYCIDYL ETHER RESIN, LIQUID	The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limite	d in animal testing.	
Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	×	Reproductivity	×
Serious Eye Damage/Irritation	¥	STOT - Single Exposure	×
Respiratory or Skin sensitisation	✓	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×
		Legend: X – Data either not V – Data available	available or does not fill the criteria for classification to make classification

11.2.1. Endocrine Disruption Properties

Many chemicals may mimic or interfere with the body's hormones, known as the endocrine system. Endocrine disruptors are chemicals that can interfere with endocrine (or hormonal) systems. Endocrine disruptors interfere with the synthesis, secretion, transport, binding, action, or elimination of natural hormones in the body. Any system in the body controlled by hormones can be derailed by hormone disruptors. Specifically, endocrine disruptors may be associated with the development of learning disabilities, deformations of the body various cancers and sexual development problems. Endocrine disrupting chemicals cause adverse effects in animals. But limited scientific information exists on potential health problems in humans. Because people are typically exposed to multiple endocrine disruptors at the same time, assessing public health effects is difficult.

SECTION 12 Ecological information

832HD-A Black 1:1 Epoxy	Endpoint	۲	Test Duration (hr)		Species	Value			Source		
Compound (Part A)	Not Available	١	Not Available Not Avail		Not Available	Not Av	ailable		Not Available		
	Endpoint	Tes	t Duration (hr)	Species			Value		Source		
	EC50	72h	72h		ae or other aquatic	plants		9.4m	g/l	2	
bisphenol A diglycidyl ether	LC50	96h		Fis	h			1.2m	g/I	2	
	EC50	48h	I	Crustacea			1.1m	g/l	2		
	NOEC(ECx)	504	504h Crustacea			0.3mç		g/I	2		
neopentyl glycol diglycidyl ether	Not Available	1	Not Available		Not Available	Not Av	ailable		Not Avail	able	
	Endpoint	Tes	t Duration (hr)	Sp	ecies			Value)	Source	
naphtha petroleum, heavy	NOEC(ECx)	72h		Algae or other aquatic plants				0.1mg/l		1	
aikylate	EC50	72h	72h		Algae or other aquatic plants			13mg/l 1		1	
			1				Value		Sau	1700	
	Endpoint		Test Duration (hr)		Specie	5	value		301	2	
isphenol A/ diglycidyl ether	Endpoint EC50		Test Duration (hr) 48h		Crusta	cea	~2mg/l		2	lice	

Page 16 of 21

832HD-A Black 1:1 Epoxy Potting and Encapsulating Compound (Part A)

	Endpoint	Endpoint Test Duration (hr)		Species		Value	Value	
	EC50	72h		Algae or other a	Algae or other aquatic plants		>0.2mg/l	
carbon black	LC50	96h		Fish	Fish		>100mg/l	
	EC50	48h		Crustacea	Crustacea		33.076-41.968mg/l	
	NOEC(ECx)	24h		Crustacea		3200mg/l	1	
	Endpoint		Test Duration (hr)		Species	Value	Sou	rce
	EC50(ECx)	EC50(ECx) 48h		Crustacea		6.07mg/l	2	
(C12-14)alkylglycidyl ether	LC50	96h			Fish	>5000mg/l	2	
	EC50		48h		Crustacea	6.07mg/l	2	

Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Liquid epoxy resins and some reactive diluents are not readily biodegradable, although its epoxy functional groups are hydrolysed in contact with water, they have the potential to bio-accumulate and are moderately toxic to aquatic organisms. They are generally classified as dangerous for the environment according to the European Union classification criteria. Uncured solid resins on the other hand are not readily bio-available, not toxic to aquatic and terrestrial organisms, not readily biodegradable, but hydrolysable. They present no significant hazard for the environment.

For bisphenol A and related bisphenols:

Environmental fate:

Biodegradability (28 d) 89% - Easily biodegradable

Bioconcentration factor (BCF) 7.8 mg/l

Bisphenol A, its derivatives and analogues, can be released from polymers, resins and certain substances by metabolic products

Substance does not meet the criteria for PBT or vPvB according to Regulation (EC) No 1907/2006, Annex XIII

As an environmental contaminant, bisphenol A interferes with nitrogen fixation at the roots of leguminous plants associated with the bacterial symbiont Sinorhizobium meliloti. Despite a half-life in the soil of only 1-10 days, its ubiquity makes it an important pollutant. According to Environment Canada, 'initial assessment shows that at low levels, bisphenol A can harm fish and organisms over time. Studies also indicate that it can currently be found in municipal wastewater.' However, a study conducted in the United States found that 91-98% of bisphenol A may be removed from water during treatment at municipal water treatment plants.

Ecotoxicity:

Fish LC50 (96 h): 4.6 mg/l (freshwater fish); 11 mg/l (saltwater fish): NOEC 0.016 mg/l (freshwater fish- 144 d); 0.064 mg/l (saltwater fish 164 d)

Fresh water invertebrates EC50 (48 h): 10.2 mg/l: NOEC 0.025 mg/l - 328 d)

Marine water invertebrate EC50 (96 h): 1.1 mg/l; NOEC 0.17 mg/l (28 d)

Freshwater algae (96 h): 2.73 mg/l

Marine water algae (96 h): 1.1 mg/l

Fresh water plant EC50 (7 d): 20 mg/l: NOEC 7.8 mg/l

In general, studies have shown that bisphenol A can affect growth, reproduction and development in aquatic organisms.

Among freshwater organisms, fish appear to be the most sensitive species. Evidence of endocrine-related effects in fish, aquatic invertebrates, amphibians and reptiles has been reported at environmentally relevant exposure levels lower than those required for acute toxicity. There is a widespread variation in reported values for endocrine-related effects, but many fall in the range of 1 ug/L to 1 mg/L

A 2009 review of the biological impacts of plasticisers on wildlife published by the Royal Society with a focus on annelids (both aquatic and terrestrial), molluscs, crustaceans, insects, fish and amphibians concluded that bisphenol A has been shown to affect reproduction in all studied animal groups, to impair development in crustaceans and amphibians and to induce genetic aberrations.

A large 2010 study of two rivers in Canada found that areas contaminated with hormone-like chemicals including bisphenol A showed females made up 85 per cent of the population of a certain fish, while females made up only 55 per cent in uncontaminated areas.

Although abundant data are available on the toxicity of bisphenol-A (2,2-bis (4-hydroxydiphenyl)propane;(BPA) A variety of BPs were examined for their acute toxicity against Daphnia magna, mutagenicity, and oestrogenic activity using the Daphtoxkit (Creasel Ltd.), the umu test system, and the yeast two-hybrid system, respectively, in comparison with BPA. BPA was moderately toxic to D. magna (48-h EC50 was 10 mg/l) according to the current U.S. EPA acute toxicity evaluation standard, and it was weakly oestrogenic with 5 orders of magnitude lower activity than that of the natural estrogen 17 beta-oestradiol in the yeast screen, while no mutagenicity was observed. All seven BPs tested here showed moderate to slight acute toxicity, no mutagenicity, and weak oestrogenic activity as well as BPA. Some of the BPs showed considerably higher oestrogenic activity than BPA, and others exhibited much lower activity. Bisphenol S (bis(4-hydroxydiphenyl)sulfone) and bis(4-hydroxyphenyl)sulfide) showed oestrogenic activity.

Biodegradation is a major mechanism for eliminating various environmental pollutants. Studies on the biodegradation of bisphenols have mainly focused on bisphenol A. A number of BPA-degrading bacteria have been isolated from enrichments of sludge from wastewater treatment plants. The first step in the biodegradation of BPA is the hydroxylation of the carbon atom of a methyl group or the quaternary carbon in the BPA molecule. Judging from these features of the biodegradation mechanisms, it is possible that the same mechanism used for BPA is used to biodegrade all bisphenols that have at least one methyl or methylene group bonded at the carbon atom between the two phenol groups. However, bisphenol F ([bis(4-hydroxyphenyl])methane; BPF), which has no substituent at the bridging carbon, is unlikely to be metabolised by such a mechanism. Nevertheless BPF is readily degraded by river water microorganisms under aerobic conditions. From this evidence, it was clear that a specific mechanism for biodegradation of BPF does exist in the natural ecosystem, Algae can enhance the photodegradation of bisphenols. The photodegradation rate of BPF increased with increasing algae concentration. Humic acid and Fe3+ ions also enhanced the photodegradation of BPF photodegradation was also important.

Reactive diluents generally have a low to moderate potential for bioconcentration (tendency to accumulate in the food chain) and a high to very high potential for mobility in soil. Small amounts that escape to the atmosphere will photodegrade.

They would not be expected to persist in the environment.

Most reactive diluents should be considered slightly to moderately toxic to aquatic organisms on an acute basis while some might also be considered harmful to the environment. Environmental toxicity is a function of the n-octanol/water partition coefficient (log Pow, log Kow). Compounds with log Pow >5 act as neutral organics, but at a lower log Pow, the toxicity of epoxide-containing polymers is greater than that predicted for simple narcotics.

Significant environmental findings are limited. Oxiranes (including glycidyl ethers and alkyl oxides, and epoxides) exhibit common characteristics with respect to environmental fate and ecotoxicology. One such oxirane is ethyloxirane and data presented here may be taken as representative.

for 1,2-butylene oxide (ethyloxirane):

Environmental fate: Ethyloxirane is highly soluble in water and has a very low soil-adsorption coefficient, which suggests that if released to water, adsorption of ethyloxirane to sediment and suspended solids is not expected. Volatilisation of ethyloxirane from water surfaces would be expected based on the moderate estimated Henry's Law constant. If ethyloxirane is released to soil, it is expected to have low adsorption and thus very high mobility. Volatilisation from moist soil and dry soil surfaces is expected, based on its vapour pressure. It is expected that ethyloxirane exists solely as a vapour in ambient atmosphere, based on its very high vapour pressure. Ethyloxirane may also be removed from the atmosphere by wet deposition processes, considering its relatively high water solubility.

Persistence: The half-life in air is about 5.6 days from the reaction of ethyloxirane with photochemically produced hydroxyl radicals which indicates that this chemical meets the persistence criterion in air (half-life of = 2 days)*.

Ethyloxirane is hydrolysable, with a half-life of 6.5 days, and biodegradable up to 100% degradation and is not expected to persist in water. A further model-predicted biodegradation

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

Page 17 of 21

832HD-A Black 1:1 Epoxy Potting and Encapsulating Compound (Part A)

half-life of 15 days in water was obtained and used to predict the half-life of this chemical in soil and sediment by applying Boethling's extrapolation factors (t1/2water: t1/2 soil : t1/2sediment = 1: 1: 4) (Boethling 1995). According to these values, it can be concluded that ethyloxirane does not meet the persistence criteria in water and soil (half-lives = 182 days) and sediments (half-life = 365 days).

Experimental and modelled log Kow values of 0.68 and 0.86, respectively, indicate that the potential for bioaccumulation of ethyloxirane in organisms is likely to be low. Modelled bioaccumulation -factor (BAF) and bioconcentration -factor (BCF) values of 1 to 17 L/kg indicate that ethyloxirane does not meet the bioaccumulation criteria (BCF/BAF = 5000)* Ecotoxicity:

Experimental ecotoxicological data for ethyloxirane (OECD 2001) indicate low to moderate toxicity to aquatic organisms. For fish and water flea, acute LC50/EC50 values vary within a narrow range of 70-215 mg/L; for algae, toxicity values exceed 500 mg/L, while for bacteria they are close to 5000 mg/L

* Persistence and Bioaccumulation Regulations (Canada 2000). DO NOT discharge into sewer or waterways.

12.2. Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
bisphenol A diglycidyl ether	HIGH	HIGH
neopentyl glycol diglycidyl ether	HIGH	HIGH
bisphenol A/ diglycidyl ether resin, liquid	HIGH	HIGH

12.3. Bioaccumulative potential

Ingredient	Bioaccumulation
bisphenol A diglycidyl ether	MEDIUM (LogKOW = 3.8446)
neopentyl glycol diglycidyl ether	LOW (LogKOW = 0.2342)
bisphenol A/ diglycidyl ether resin, liquid	LOW (LogKOW = 2.6835)

12.4. Mobility in soil

Ingredient	Mobility
bisphenol A diglycidyl ether	LOW (KOC = 1767)
neopentyl glycol diglycidyl ether	LOW (KOC = 10)
bisphenol A/ diglycidyl ether resin, liquid	LOW (KOC = 51.43)

12.5. Results of PBT and vPvB assessment

	Р	В	т
Relevant available data	Not Available	Not Available	Not Available
PBT	×	×	×
vPvB	×	×	×
PBT Criteria fulfilled? No			
vPvB			No

12.6. Endocrine Disruption Properties

The evidence linking adverse effects to endocrine disruptors is more compelling in the environment than it is in humans. Endocrine distruptors profoundly alter reproductive physiology of ecosystems and ultimately impact entire populations. Some endocrine-disrupting chemicals are slow to break-down in the environment. That characteristic makes them potentially hazardous over long periods of time. Some well established adverse effects of endocrine disruptors in various wildlife species include; eggshell-thinning, displayed of characteristics of the opposite sex and impaired reproductive development. Other adverse changes in wildlife species that have been suggested, but not proven include; reproductive abnormalities, immune dysfunction and skeletal deformaties.

12.7. Other adverse effects

Not Available

SECTION 13 Disposal considerations

13.1. Waste treatment methods

	Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: Reduction Reduction Reuse Recycling Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. DO NOT allow wash water from cleaning or process equipment to enter drains. It may be necessary to collect all wash water for treatment before disposal. In all cases disposal to sever may be subject to local laws and regulations and these should be considered first. Where in doubt contact the responsible authority. Removal of bisphenol A (BPA) from aqueous solutions was accomplished by adsorption of enzymatically generated quinone derivatives on chitosan beads. The use of chitosan in the form of beads was found to be more effective because heterogeneous removal of BPA with chitosan solutions, and the removal efficiency was enhanced by increasing the amount of chitosan beads dispersed in the BPA Solutions and BPA was completely removed by quinone adsorption in the presence of chitosan beads more than 0.10 cm3/cm3. In addition, a variety of bisphenol derivatives were completely or effectively removed by the procedure constructed in this study, although the enzyme dose or the amount of chitosan beads was further increased as necessary for some of the bisphenol derivatives used. M. Suzuki, and E Musashi J Appl Polym Sci, 118(2):721 - 732; October 2010 Recycle wherever possible or consult manufac
Waste treatment options	Not Available
Sewage disposal options	NOT AVAIIADIE

SECTION 14 Transport information

Labels Required

	NOT REGULATED by Ground ADR Special Provision 375 NOT REGULATED by Air IATA Special Provision A197 NOT REGULATED by Sea IMDG per 2.10.2.7 NOT REGULATED by ADN Special Provision 274 (The provision of 3.1.2.8 apply)
--	--

Land transport (ADR-RID)

14.1. UN number	3082		
14.2. UN proper shipping name	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains bisphenol A diglycidyl ether)		
14.3. Transport hazard class(es)	Class 9 Subrisk Not Applicable		
14.4. Packing group	II		
14.5. Environmental hazard	Environmentally hazardous		
14.6. Special precautions for user	Hazard identification (Kemler)90Classification codeM6Hazard Label9Special provisions274 335 375 601Limited quantity5 LTunnel Restriction Code3 (-)		

Air transport (ICAO-IATA / DGR)

14.1. UN number	3082		
14.2. UN proper shipping name	Environmentally hazardous substance, liquid, n.o.s. * (contains bisphenol A diglycidyl ether)		
14.3. Transport hazard class(es)	ICAO/IATA Class ICAO / IATA Subrisk ERG Code	9 Not Applicable 9L	
14.4. Packing group	III		
14.5. Environmental hazard	Environmentally hazardous		
14.6. Special precautions for user	Special provisions Cargo Only Packing Ir Cargo Only Maximum	A97 A158 A197 A215 nstructions 964 Qty / Pack 450 L	

Passenger and Cargo Packing Instructions	964
Passenger and Cargo Maximum Qty / Pack	450 L
Passenger and Cargo Limited Quantity Packing Instructions	Y964
Passenger and Cargo Limited Maximum Qty / Pack	30 kg G

Sea transport (IMDG-Code / GGVSee)

14.1. UN number	3082		
14.2. UN proper shipping name	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains bisphenol A diglycidyl ether)		
14.3. Transport hazard class(es)	IMDG Class 9 IMDG Subrisk N	lot Applicable	
14.4. Packing group	III		
14.5. Environmental hazard	Marine Pollutant		
14.6. Special precautions for user	EMS Number Special provisions Limited Quantities	F-A , S-F 274 335 969 5 L	

Inland waterways transport (ADN)

14.1. UN number	3082		
14.2. UN proper shipping name	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains bisphenol A diglycidyl ether)		
14.3. Transport hazard class(es)	9 Not Applicable		
14.4. Packing group	II		
14.5. Environmental hazard	Environmentally hazardous		
14.6. Special precautions for user	Classification code Special provisions Limited quantity	M6 274; 335; 375; 601 5 L PP	
	Fire cones number	0	

14.7. Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable

14.8. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
bisphenol A diglycidyl ether	Not Available
neopentyl glycol diglycidyl ether	Not Available
naphtha petroleum, heavy alkylate	Not Available
bisphenol A/ diglycidyl ether resin, liquid	Not Available
carbon black	Not Available
(C12-14)alkylglycidyl ether	Not Available

14.9. Transport in bulk in accordance with the ICG Code

Product name	Ship Type
bisphenol A diglycidyl ether	Not Available
neopentyl glycol diglycidyl ether	Not Available
naphtha petroleum, heavy alkylate	Not Available
bisphenol A/ diglycidyl ether resin, liquid	Not Available
carbon black	Not Available
(C12-14)alkylglycidyl ether	Not Available

SECTION 15 Regulatory information

15.1. Safety, health and environmental regulations / legislation specific for the substance or mixture

bisphenol A diglycidyl ether is found on the following regulatory lists

Chemical Footprint Project - Chemicals of High Concern List EU European Chemicals Agency (ECHA) Community Rolling Action Plan (CoRAP) List	European Union - European Inventory of Existing Commercial Chemical Substances (EINECS)
of Substances	European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI
	International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs
neopentyl glycol diglycidyl ether is found on the following regulatory lists	
Chemical Footprint Project - Chemicals of High Concern List	European Union - European Inventory of Existing Commercial Chemical Substances
Europe EC Inventory	(EINECS)
	European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI
naphtha petroleum, heavy alkylate is found on the following regulatory lists	
Chemical Footprint Project - Chemicals of High Concern List	Europe EC Inventory
EU REACH Regulation (EC) No 1907/2006 - Annex XVII - Restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures	European Union - European Inventory of Existing Commercial Chemical Substances (EINECS)
and articles	European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and
EU REACH Regulation (EC) No 1907/2006 - Annex XVII (Appendix 2) Carcinogens: category 1B (Table 3.1)/category 2 (Table 3.2)	Packaging of Substances and Mixtures - Annex VI
EU REACH Regulation (EC) No 1907/2006 - Annex XVII (Appendix 4) Mutagens: category 1B (Table 3.1)/category 2 (Table 3.2)	
bisphenol A/ diglycidyl ether resin, liquid is found on the following regulatory lists	
Chemical Footprint Project - Chemicals of High Concern List	European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and
Europe EC Inventory	Packaging of Substances and Mixtures - Annex VI
carbon black is found on the following regulatory lists	
Chemical Footprint Project - Chemicals of High Concern List	International Agency for Research on Cancer (IARC) - Agents Classified by the IARC
EU European Chemicals Agency (ECHA) Community Rolling Action Plan (CoRAP) List	Monographs
or Substances	International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 2B: Possibly carcinogenic to humans
Europe an Union - European Inventory of Existing Commercial Chemical Substances (EINECS)	International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)
(C12-14)alkylglycidyl ether is found on the following regulatory lists	
Chemical Footprint Project - Chemicals of High Concern List	European Union - European Inventory of Existing Commercial Chemical Substances
EU European Chemicals Agency (ECHA) Community Rolling Action Plan (CoRAP) List	(EINECS)
of Substances	European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and
Europe EC Inventory	Packaging of Substances and Mixtures - Annex VI

This safety data sheet is in compliance with the following EU legislation and its adaptations - as far as applicable - : Directives 98/24/EC, - 92/85/EEC, - 94/33/EC, - 2008/98/EC, - 2010/75/EU; Commission Regulation (EU) 2020/878; Regulation (EC) No 1272/2008 as updated through ATPs.

15.2. Chemical safety assessment

No Chemical Safety Assessment has been carried out for this substance/mixture by the supplier.

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (bisphenol A diglycidyl ether; neopentyl glycol diglycidyl ether; naphtha petroleum, heavy alkylate; bisphenol A/ diglycidyl ether resin, liquid; carbon black; (C12-14)alkylglycidyl ether)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	No (naphtha petroleum, heavy alkylate; (C12-14)alkylglycidyl ether)
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	No (bisphenol A diglycidyl ether; neopentyl glycol diglycidyl ether; (C12-14)alkylglycidyl ether)
Vietnam - NCI	Yes
Russia - FBEPH	No (neopentyl glycol diglycidyl ether; naphtha petroleum, heavy alkylate)
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	04/10/2021
Initial Date	09/05/2019

H226	Flammable liquid and vapour.
H304	May be fatal if swallowed and enters airways.
H336	May cause drowsiness or dizziness.
H351	Suspected of causing cancer.

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. For detailed advice on Personal Protective Equipment, refer to the following EU CEN Standards:

EN 166 Personal eye-protection

EN 340 Protective clothing

EN 374 Protective gloves against chemicals and micro-organisms

EN 13832 Footwear protecting against chemicals

EN 133 Respiratory protective devices

Definitions and abbreviations

- PC-TWA: Permissible Concentration-Time Weighted Average
- PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value

BCF: BioConcentration Factors

BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List

NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory

NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act

TCSI: Taiwan Chemical Substance Inventory

INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

Reason For Change

A-2.00 - Update to ingredients and added UFI number

832HD-B Black 1:1 Epoxy Potting and Encapsulating Compound (Part B) **MG Chemicals UK Limited**

Version No: A-2.00

Safety data sheet according to REACH Regulation (EC) No 1907/2006, as amended by UK REACH Regulations SI 2019/758

Issue Date: 04/10/2021 Revision Date: 04/10/2021 L.REACH.GB.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

1.1. Product Identifier	
Product name	832HD-B
Synonyms	SDS Code: 832HD-Part B; 832HD-25ML, 832HD-50ML, 832HD-400ML, 832HD-1.7L, 832HD-7.4L, 832HD-40L UFI:J3G0-Y041-5006-T70S
Other means of identification	Black 1:1 Epoxy Potting and Encapsulating Compound (Part B)

1.2. Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Epoxy hardener for use with resins
Uses advised against	Not Applicable

1.3. Details of the supplier of the safety data sheet

Registered company name	MG Chemicals UK Limited	MG Chemicals (Head office)
Address	Hearne House, 23 Bilston Street, Sedgely Dudley DY3 1JA United Kingdom	9347 - 193 Street Surrey V4N 4E7 British Columbia Canada
Telephone	+(44) 1663 362888	+(1) 800-201-8822
Fax	Not Available	+(1) 800-708-9888
Website	Not Available	www.mgchemicals.com
Email	sales@mgchemicals.com	Info@mgchemicals.com

1.4. Emergency telephone number

Association / Organisation	Verisk 3E (Access code: 335388)
Emergency telephone numbers	+(44) 20 35147487
Other emergency telephone numbers	+(0) 800 680 0425

SECTION 2 Hazards identification

2.1. Classification of the substance or mixture

Classified according to GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567 [1]	H312 - Acute Toxicity (Dermal) Category 4, H332 - Acute Toxicity (Inhalation) Category 4, H335 - Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, H302 - Acute Toxicity (Oral) Category 4, H361 - Reproductive Toxicity Category 2, H317 - Sensitisation (Skin) Category 1, H341 - Germ Cell Mutagenicity Category 2, H410 - Hazardous to the Aquatic Environment Long-Term Hazard Category 1, H314 - Skin Corrosion/Irritation Category 1A
Legend:	1. Classified by Chernwatch; 2. Classification drawn from GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567

2.2. Label elements

Hazard pictogram(s)	

Signal word Danger

Hazard statement(s)

H312	Harmful in contact with skin.
H332	Harmful if inhaled.
H335	May cause respiratory irritation.
H302	Harmful if swallowed.
H361	Suspected of damaging fertility or the unborn child.
H317	May cause an allergic skin reaction.
H341	Suspected of causing genetic defects.

H410	Very toxic to aquatic life with long lasting effects.
H314	Causes severe skin burns and eye damage.

Supplementary statement(s)

Not Applicable

Precautionary statement(s) Prevention

• • • •	
P201	Obtain special instructions before use.
P260	Do not breathe mist/vapours/spray.
P264	Wash all exposed external body areas thoroughly after handling.
P271	Use only outdoors or in a well-ventilated area.
P280	Wear protective gloves, protective clothing, eye protection and face protection.
P270	Do not eat, drink or smoke when using this product.
P273	Avoid release to the environment.
P272	Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

P301+P330+P331	IF SWALLOWED: Rinse mouth. Do NOT induce vomiting.
P303+P361+P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower].
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P308+P313	IF exposed or concerned: Get medical advice/ attention.
P310	Immediately call a POISON CENTER/doctor/physician/first aider.
P302+P352	IF ON SKIN: Wash with plenty of water.
P363	Wash contaminated clothing before reuse.
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.
P362+P364	Take off contaminated clothing and wash it before reuse.
P391	Collect spillage.
P301+P312	IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider if you feel unwell.
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.

Precautionary statement(s) Storage

	0
P405	Store locked up.
P403+P233	Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

P501

Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

2.3. Other hazards

Cumulative effects may result following exposure*.

Limited evidence of a carcinogenic effect*.

Possible respiratory sensitizer*.

Vapours potentially cause drowsiness and dizziness*.

4-nonylphenol, branched	Listed in the European Chemicals Agency (ECHA) Candidate List of Substances of Very High Concern for Authorisation
4-nonylphenol, branched	Listed in the Europe Regulation (EC) No 1907/2006 - Annex XVII (Restrictions may apply)
4-nonylphenol, branched	Listed in the Europe Regulation (EU) 2018/1881 Specific Requirements for Endocrine Disruptors
naphtha petroleum, heavy alkylate	Listed in the Europe Regulation (EU) 2018/1881 Specific Requirements for Endocrine Disruptors
phenol	Listed in the Europe Regulation (EC) No 1907/2006 - Annex XVII (Restrictions may apply)

SECTION 3 Composition / information on ingredients

3.1.Substances

See 'Composition on ingredients' in Section 3.2

3.2.Mixtures

1.CAS No 2.EC No 3.Index No 4.REACH No	%[weight]	Name	Classified according to GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567	Nanoform Particle Characteristics
1.84852-15-3 2.284-325-5 3.601-053-00-8 4.Not Available	41	<u>4-nonvlphenol, branched</u> [e]	Acute Toxicity (Oral) Category 4, Skin Corrosion/Irritation Category 1B, Reproductive Toxicity Category 2, Hazardous to the Aquatic Environment Acute Hazard Category 1, Hazardous to the Aquatic Environment Long-Term Hazard Category 1; H302, H314, H361fd, H400, H410 ^[2]	Not Available

Page 3 of 29

832HD-B Black 1:1 Epoxy Potting and Encapsulating Compound (Part B)

1.CAS No 2.EC No 3.Index No 4.REACH No	%[weight]	Name	Classified according to GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567	Nanoform Particle Characteristics
1.68953-36-6 2.273-201-6 3.Not Available 4.Not Available	37	tall oil/ tetraethylenepentamine polyamides	Corrosive to Metals Category 1, Acute Toxicity (Oral) Category 4, Skin Corrosion/Irritation Category 1A, Serious Eye Damage/Eye Irritation Category 1, Sensitisation (Skin) Category 1, Reproductive Toxicity Category 1B, Hazardous to the Aquatic Environment Long-Term Hazard Category 1; H290, H302, H314, H318, H317, H360D, H410 ^[1]	Not Available
1.6864-37-5 2.229-962-1 3.612-110-00-1 4.Not Available	16	4.4'-methylenebis(2- methylcyclohexanamine)	Acute Toxicity (Oral) Category 4, Acute Toxicity (Dermal) Category 3, Acute Toxicity (Inhalation) Category 3, Skin Corrosion/Irritation Category 1A, Hazardous to the Aquatic Environment Long-Term Hazard Category 2; H302, H311, H331, H314, H411 ^[2]	Not Available
1.112-57-2 2.203-986-2 3.612-060-00-0 4.Not Available	3	tetraethylenepentamine	Acute Toxicity (Oral) Category 4, Acute Toxicity (Dermal) Category 4, Skin Corrosion/Irritation Category 1B, Sensitisation (Skin) Category 1, Hazardous to the Aquatic Environment Long-Term Hazard Category 2; H302, H312, H314, H317, H411 ^[2]	Not Available
1.64741-65-7. 2.265-067-2 3.649-275-00-4 4.Not Available	2	naphtha petroleum, heavy alkylate [e]	Flammable Liquids Category 3, Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3, Aspiration Hazard Category 1; H226, H336, H304 ^[1]	Not Available
1.108-95-2 2.203-632-7 3.604-001-00-2 4.Not Available	0.2	phenol * -	Acute Toxicity (Oral) Category 3, Acute Toxicity (Dermal) Category 3, Acute Toxicity (Inhalation) Category 3, Skin Corrosion/Irritation Category 1B, Germ Cell Mutagenicity Category 2, Specific Target Organ Toxicity - Repeated Exposure Category 2; H301, H311, H331, H314, H341, H373 [2]	Not Available
Legend:	1. Classified from C&L *	by Chemwatch; 2. Classification EU IOELVs available; [e] Substa	drawn from GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567; 3. Cl nce identified as having endocrine disrupting properties	assification drawn

SECTION 4 First aid measures

4.1. Description of first aid measures

Eye Contact	 If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	 If skin or hair contact occurs: Immediately flush body and clothes with large amounts of water, using safety shower if available. Quickly remove all contaminated clothing, including footwear. Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. Transport to hospital, or doctor.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay.
Ingestion	 For advice, contact a Poisons Information Centre or a doctor at once. Urgent hospital treatment is likely to be needed. If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Transport to hospital or doctor without delay.

4.2 Most important symptoms and effects, both acute and delayed

See Section 11

4.3. Indication of any immediate medical attention and special treatment needed

For amines: Certain amines may cause injury to the respiratory tract and lungs if aspirated. Also, such products may cause tissue destruction leading to stricture. If lavage is performed,

- endotracheal and/or esophagoscopic control is suggested.
- No specific antidote is known.
- + Care should be supportive and treatment based on the judgment of the physician in response to the reaction of the patient.

Laboratory animal studies have shown that a few amines are suspected of causing depletion of certain white blood cells and their precursors in lymphoid tissue. These effects may be due to an immunosuppressive mechanism.

Some persons with hyperreactive airways (e.g., asthmatic persons) may experience wheezing attacks (bronchospasm) when exposed to airway irritants.

Lung injury may result following a single massive overexposure to high vapour concentrations or multiple exposures to lower concentrations of any pulmonary irritant material. Health effects of amines, such as skin irritation and transient corneal edema ("blue haze," "halo effect," "glaucopsia"), are best prevented by means of formal worker education, industrial hygiene monitoring, and exposure control methods. Persons who are highly sensitive to the triggering effect of non-specific irritants should not be assigned to jobs in which such agents are used, handled, or manufactured.

Medical surveillance programs should consist of a pre-placement evaluation to determine if workers or applicants have any impairments (e.g., hyperreactive airways or bronchial asthma) that would limit their fitness for work in jobs with potential for exposure to amines. A clinical baseline can be established at the time of this evaluation.

Page 4 of 29

832HD-B Black 1:1 Epoxy Potting and Encapsulating Compound (Part B)

Periodic medical evaluations can have significant value in the early detection of disease and in providing an opportunity for health counseling.

Medical personnel conducting medical surveillance of individuals potentially exposed to polyurethane amine catalysts should consider the following:

Health history, with emphasis on the respiratory system and history of infections

Physical examination, with emphasis on the respiratory system and the lymphoreticular organs (lymph nodes, spleen, etc.)

- Lung function tests, pre- and post-bronchodilator if indicated
- Total and differential white blood cell count

Serum protein electrophoresis

Persons who are concurrently exposed to isocyanates also should be kept under medical surveillance.

Pre-existing medical conditions generally aggravated by exposure include skin disorders and allergies, chronic respiratory disease (e.g. bronchitis, asthma, emphysema), liver disorders, kidney disease, and eye disease.

Broadly speaking, exposure to amines, as characterised by amine catalysts, may cause effects similar to those caused by exposure to ammonia. As such, amines should be considered potentially injurious to any tissue that is directly contacted.

Inhalation of aerosol mists or vapors, especially of heated product, can result in chemical pneumonitis, pulmonary edema, laryngeal edema, and delayed scarring of the airway or other affected organs. There is no specific treatment.

Clinical management is based upon supportive treatment, similar to that for thermal burns.

Persons with major skin contact should be maintained under medical observation for at least 24 hours due to the possibility of delayed reactions.

Polyurethene Amine Catalysts: Guidelines for Safe Handling and Disposal Technical Bulletin June 2000

Alliance for Polyurethanes Industry

- For acute or short-term repeated exposures to highly alkaline materials:
- Respiratory stress is uncommon but present occasionally because of soft tissue edema.
- Unless endotracheal intubation can be accomplished under direct vision, cricothyroidotomy or tracheotomy may be necessary.
- Oxygen is given as indicated.
- The presence of shock suggests perforation and mandates an intravenous line and fluid administration.

• Damage due to alkaline corrosives occurs by liquefaction necrosis whereby the saponification of fats and solubilisation of proteins allow deep penetration into the tissue. Alkalis continue to cause damage after exposure.

INGESTION:

Milk and water are the preferred diluents

No more than 2 glasses of water should be given to an adult.

Neutralising agents should never be given since exothermic heat reaction may compound injury.

* Catharsis and emesis are absolutely contra-indicated.

* Activated charcoal does not absorb alkali.

* Gastric lavage should not be used.

Supportive care involves the following

- Withhold oral feedings initially.
- If endoscopy confirms transmucosal injury start steroids only within the first 48 hours.
- Carefully evaluate the amount of tissue necrosis before assessing the need for surgical intervention.
- Patients should be instructed to seek medical attention whenever they develop difficulty in swallowing (dysphagia).
- SKIN AND EYE:

Injury should be irrigated for 20-30 minutes.

Eye injuries require saline. [Ellenhorn & Barceloux: Medical Toxicology]

For acute or short term repeated exposures to phenols/ cresols:

- Phenol is absorbed rapidly through lungs and skin. [Massive skin contact may result in collapse and death]*
- [Ingestion may result in ulceration of upper respiratory tract; perforation of oesophagus and/or stomach, with attendant complications, may occur. Oesophageal stricture may occur.]*
- An initial excitatory phase may present. Convulsions may appear as long as 18 hours after ingestion. Hypotension and ventricular tachycardia that require vasopressor and antiarrhythmic therapy, respectively, can occur.
- Respiratory arrest, ventricular dysrhythmias, seizures and metabolic acidosis may complicate severe phenol exposures so the initial attention should be directed towards stabilisation of breathing and circulation with ventilation, intravenous lines, fluids and cardiac monitoring as indicated.
- [Vegetable oils retard absorption; do NOT use paraffin oils or alcohols. Gastric lavage, with endotracheal intubation, should be repeated until phenol odour is no longer detectable; follow with vegetable oil. A saline cathartic should then be given.]* ALTERNATIVELY: Activated charcoal (1g/kg) may be given. A cathartic should be given after oral activated charcoal.
- Severe poisoning may require slow intravenous injection of methylene blue to treat methaemoglobinaemia.
- [Renal failure may require haemodialysis.]*
- Most absorbed phenol is biotransformed by the liver to ethereal and glucuronide sulfates and is eliminated almost completely after 24 hours. [Ellenhorn and Barceloux: Medical Toxicology] *[Union Carbide]

BIOLOGICAL EXPOSURE INDEX - BEI

These represent the determinants observed in specimens collected from a healthy worker who has been exposed to the Exposure Standard (ES or TLV):

Determinant	Index	Sampling Time	Comments
1. Total phenol in blood	250 mg/gm creatinine	End of shift	B, NS

B: Background levels occur in specimens collected from subjects NOT exposed

NS: Non-specific determinant; also seen in exposure to other materials

For exposures to quaternary ammonium compounds;

- For ingestion of concentrated solutions (10% or higher): Swallow promptly a large quantity of milk, egg whites / gelatin solution. If not readily available, a slurry of activated charcoal may be useful. Avoid alcohol. Because of probable mucosal damage omit gastric lavage and emetic drugs.
- + For dilute solutions (2% or less): If little or no emesis appears spontaneously, administer syrup of Ipecac or perform gastric lavage.
- ▶ If hypotension becomes severe, institute measures against circulatory shock.
- If respiration laboured, administer oxygen and support breathing mechanically. Oropharyngeal airway may be inserted in absence of gag reflex. Epiglottic or laryngeal edema may necessitate a tracheotomy.
- Persistent convulsions may be controlled by cautious intravenous injection of diazepam or short-acting barbiturate drugs. [Gosselin et al, Clinical Toxicology of Commercial Products]

SECTION 5 Firefighting measures

5.1. Extinguishing media

- Foam.Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

5.2. Special hazards arising from the substrate or mixture				
Fire Incompatibility	Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result			
5.3. Advice for firefighters				
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Use fire fighting procedures suitable for surrounding area. Do not approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. 			
Fire/Explosion Hazard	 Combustible. Slight fire hazard when exposed to heat or flame. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). May emit acrid smoke. Mists containing combustible materials may be explosive. Combustion products include: carbon dioxide (CO2) nitrogen oxides (NOx) other pyrolysis products typical of burning organic material. May emit poisonous fumes. 			

SECTION 6 Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures See section 8

6.2. Environmental precautions

See section 12

6.3. Methods and material for containment and cleaning up

Minor Spills	Environmental hazard - contain spillage. Small spills should be covered with inorganic absorbents and disposed of property. Organic absorbents have been known to ignite when contaminated with amines in closed containers. Certain cellulosic materials used for spill cleanup such as wood chips or sawdust have shown reactivity with ethyleneamines and should be avoided. Ethyleneamine leaks will frequently be identified by the odor (ammoniacal) or by the formation of a white, solid, waxy substance (amine carbamates). Inorganic absorbents or water may be used to clean up the amine waste. • Remove all ignition sources. • Clean up all spills immediately. • Avoid breathing vapours and contact with skin and eyes. • Control personal contact with the substance, by using protective equipment. • Contain and absorb spill with sand, earth, inert material or vermiculite. • Wipe up. • Place in a suitable. Jabelled container for waste disposal.					
	Environmental hazard - contain spillage. Chemical Class: phenols and cresols For release onto land: recommended sorbents listed in order of priority.					
	TYPE RANK APPLICATIO	DN	COLLE	CTION L	IMITATIONS	
	LAND SPILL - SMALL		I			
	cross-linked polymer - particulate	1	shovel	shovel	R, W, SS	
	cross-linked polymer - pillow	1	throw	pitchfork	R, DGC, RT	
	wood fiber - pillow	1	throw	pitchfork	R, P, DGC, RT	
	foamed glass - pillow		shovel	shovel	R, W, P, DGC	
	sorbent clay - particulate	2	shovel	shovel	R, I, P	
Major Spills	wood fibre - particulate	3	shovel	shovel	R, W, P, DGC	
	LAND SPILL - MEDIUM					_
	cross-linked polymer - particulate	1	blower	skiploader	r R,W, SS	
	cross-linked polymer - pillow	2	throw	skiploader	r R, DGC, RT	
	sorbent clay - particulate	3	blower	skiploader	r R, I, P	
	polypropylene - particulate	3	blower	skiploader	r R, SS, DGC	
	wood fiber - particulate	4	blower	skiploader	r R, W, P, DGC	_
	expanded moneral - particulate	4	blower	skiploader	r R, I, W, P, DGC	
	Legend DGC: Not effective where ground of R; Not reusable I: Not incinerable	over	is dense			
	•					Continued

Page 6 of 29

832HD-B Black 1:1 Epoxy Potting and Encapsulating Compound (Part B)

P: Effectiveness reduced when rainy
RT:Not effective where terrain is rugged
SS: Not for use within environmentally sensitive sites
W: Effectiveness reduced when windy
Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control;
R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988
 Clear area of personnel and move upwind.
Alert Fire Brigade and tell them location and nature of hazard.
Wear full body protective clothing with breathing apparatus.
Prevent, by any means available, spillage from entering drains or water course.
 Stop leak if safe to do so.
Contain spill with sand, earth or vermiculite.
 Collect recoverable product into labelled containers for recycling.
Neutralise/decontaminate residue (see Section 13 for specific agent).
 Collect solid residues and seal in labelled drums for disposal.
 Wash area and prevent runoff into drains.
After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
If contamination of drains or waterways occurs, advise emergency services.

6.4. Reference to other sections

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

7.1. Precautions for safe handling

Safe handling	 Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. DO NOT allow material to contact humans, exposed food or food utensils. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Launder contaminated clothing before re-use. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
Fire and explosion protection	See section 5
Other information	 Store in original containers. Keep containers securely sealed. Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS.

7.2. Conditions for safe storage, including any incompatibilities

Suitable container	 Do NOT use aluminium or galvanised containers Lined metal can, lined metal pail/ can. Plastic pail. Polyliner drum. Packing as recommended by manufacturer. Check all containers are clearly labelled and free from leaks. For low viscosity materials Drums and jerricans must be of the non-removable head type. Where a can is to be used as an inner package, the can must have a screwed enclosure. For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.): Removable head packaging; Cans with friction closures and low pressure tubes and cartridges may be used. Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packagings are glass and contain liquids of packing group I and II there must be sufficient inert absorbent to absorb any spillage *. and dittion, where inner packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.
Storage incompatibility	 Quaternary ammonium cations are unreactive toward even strong electrophiles, oxidants, and acids. They also are stable toward most nucleophiles. The latter is indicated by the stability of the hydroxide salts such as tetramethylammonium hydroxide and tetrabutylammonium hydroxide. Quaternary ammonium compounds are deactivated by anionic detergents (including common soaps). With exceptionally strong bases, quat cations degrade. They undergo Sommelet–Hauser rearrangement and Stevens rearrangement, as well as dealkylation under harsh conditions. Quaternary ammonium cations containing N–C–C–H units can also

undergo the Hotmann elimination and Emde degradation.
Triethylenetetramine (TETA):
aqueous solutions are strong organic bases
reacts with nitrogen containing compounds; may cause violent decomposition
reacts violently with strong oxidisers, nitroparattins, nitrogen tetroxide, permanganates, peroxides, ammonium persultate, bromine dioxide, ovificia acid acida citica acid.
suiture aciu, nune aciu
 Is incompatible with organic anitytines (cg materix anitytine), activates, automots, allengues, automots, automot
initiate, of esois, capitate of a solutions, epicinicion quint, envient a continue, grycols, naions, naiogenated nyulocarbons, isocyanates,
king says the avalative sensitivity of hitmathan
 Increases une explosive sensitivity of information and the state aluminium explosit connect lad nickel to zinc and their allove and some plastics, rubber and coatings
 attacks autominium, cobait, coper, rad, nickel, in zinc, and their alloys, and some plastics, rubber and coatings reacts with balon fine actionucleare
Avoid strong acids, bases.
Imidazole may be regarded as possessing pyrrole and pyridine like properties and therefore its reactivity might resemble that of
the others. In general imidazole, in common with pyrazole, is less reactive than pyrrole and more reactive than benzene.
One peculiarity of imidazole is the impossibility to distinguish the two nitrogen atoms in solution. The hydrogen moves according
to a tautomeric equilibria (that is exactly 50% of each form) from one nitrogen to the other.
 In imidazole C4 and C5 are electron rich, whilst C2 is electron deficient. Imidazole can behave as both an electrophile and a
nucleophile. The nucleophilic reaction leads ot N-substituted imidazoles.
 Imidazole is an amphoteric substance. The acid - base behaviour of imidazole is important in determining its reactivity, because
it is not just an amphoteric substance, thanks to the pyrrole-like and pyridine-like nitrogen but is also consistently more basic than
pyridine (pKa of the conjugated acid 5.3) and more acidic than pyrrole (pKa 17.5). It all depends on the symmetry of the nitrogen
atoms, that can equally stabilize either the positive (a proton) or the negative charge.
Secondary amines form salts with strong acids and can be oxidized to the corresponding nitrone using hydrogen peroxide, catalyzed by selenium
dioxide
Reacts with mild steel, galvanised steel / zinc producing hydrogen gas which may form an explosive mixture with air.
Amines are incompatible with:
 isocyanates, halogenated organics, peroxides, phenols (acidic), epoxides, anhydrides, and acid halides.
 strong reducing agents such as hydrides, due to the liberation of flammable gas.
Aminon popular o characteristic ammonia amelli liquid aminos hava a distinctiva fichul amelli Aminon are formallu derivativas of ammonia
Animes posses a chaladeristic anniholia sineli, ilqui annihes nave a usinci uve rishy sineli. Animes are formatly derivatives of animolia,
wherein one of more hydrogen atoms have been replaced by a substituent such as an arky of any group. Compounds with a hitrogen atoms
autorieu to a calobriyi group, inus naving me studule $R = CO = NR R^2$, ale caled annues alto have dimeterin chemical properties nom animes.
The water solubility of simple animes is emailed by hydrogen bolioning involving unese to be electron pars. Typically sats of animonium approximation of a simple animes is emailed at by hydrogen bolioning involving unese to be electron pars. Typically sats of animonium approximation of a simple animes is emailed at by hydrogen bolioning involving unese to be electron pars.
compounds exhibit the following order of solubility in water, primary annionium (KNRTS) > secondary annionium (K2NTT2) > tertary annionium (KNRTS) > secondary annionium (K2NTT2) > tertary annionium (K2NTT3) > secondary annionium (K2NTT2) > tertary
annonium (CSNTT). Sinal alphatic annes usplay significant solutions in many solvents, whereas more which are usplay significant solutions will be approximate an independent of the solution o
Auditate animes, such as anime, have then one pare recurs conjugates into the benzerie ring, thus their tendency to engage in hydrogen backing is dispisabled. Their holing against a ray birk and their solubility is water is low.
Difficulty is uniministed. Their bound points are inginiand inter solution of investigations in weaks
. The basicity of amines depended on an intera hydroxides, and its are weater.
 The basicity of animites depends on: The alectronic properties of the substituents (alkyl groups enhance the basicity anyl groups diminish it)
The degree of solvation of the protonated amine which includes steric bindrance by the groups on nitrogen
Owing to inductive effects the basicity of an amine minth be expected to increase with the number of alkyl groups on the amine. Correlations are
complicated owing to the effects of solvation which are opposite the trends for inductive effects. Solvation effects also dominate the basicity of
aromatic amines.
Solvation significantly affects the basicity of amines. N-H groups strongly interact with water, especially in ammonium ions. Consequently, the
basicity of ammonia is enhanced by 10 exp 11 by solvation.
Tertiary amines are more basic than secondary amines, which are more basic than primary amines, and finally ammonia is least basic. The order
of pKb's (basicities in water) does not follow this order. Similarly aniline is more basic than ammonia in the gas phase, but ten thousand times
less so in aqueous solution.
In aprotic polar solvents such as DMSO, DMF, and acetonitrile the energy of solvation is not as high as in protic polar solvents like water and
methanol. For this reason, the basicity of amines in these aprotic solvents is almost solely governed by the electronic effect
Phenols are incompatible with strong reducing substances such as hydrides, nitrides, alkali metals, and sulfides.
Avoid use of aluminium, copper and brass alloys in storage and process equipment.
Heat is generated by the acid-base reaction between phenols and bases.
Phenols are sulfonated very readily (for example, by concentrated sulfuric acid at room temperature), these reactions generate heat.
Phenols are nitrated very rapidly, even by dilute nitric acid.
Nitrated phenols often explode when heated. Many of them form metal salts that tend toward detonation by rather mild shock.
Avoid contact with copper, aluminium and their alloys.
Avoid reaction with oxidising agents

7.3. Specific end use(s)

See section 1.2

SECTION 8 Exposure controls / personal protection

1

8.1. Control parameters

Ingredient	DNELs Exposure Pattern Worker	PNECs Compartment
4-nonylphenol, branched	Dermal 7.5 mg/kg bw/day (Systemic, Chronic) Inhalation 0.5 mg/m ³ (Systemic, Chronic) Dermal 15 mg/kg bw/day (Systemic, Acute) Inhalation 1 mg/m ³ (Systemic, Acute) Dermal 3.8 mg/kg bw/day (Systemic, Chronic) * Inhalation 0.4 mg/m ³ (Systemic, Chronic) * Oral 0.08 mg/kg bw/day (Systemic, Acute) * Inhalation 0.8 mg/m ³ (Systemic, Acute) * Oral 0.4 mg/kg bw/day (Systemic, Acute) *	0.001 mg/L (Water (Fresh)) 0.001 mg/L (Water - Intermittent release) 0 mg/L (Water (Marine)) 4.62 mg/kg sediment dw (Sediment (Fresh Water)) 1.23 mg/kg sediment dw (Sediment (Marine)) 2.3 mg/kg soil dw (Soil) 9.5 mg/L (STP) 2.36 mg/kg food (Oral)
tall oil/ tetraethylenepentamine polyamides	Dermal 1.4 mg/kg bw/day (Systemic, Chronic) Inhalation 9.87 mg/m ³ (Systemic, Chronic) Dermal 0.5 mg/kg bw/day (Systemic, Chronic) * Inhalation 1.74 mg/m ³ (Systemic, Chronic) *	30.7 μg/L (Water (Fresh)) 3.07 μg/L (Water - Intermittent release) 6.12 μg/L (Water (Marine)) 119.8 mg/kg sediment dw (Sediment (Fresh Water))

Page 8 of 29

832HD-B Black 1:1 Epoxy Potting and Encapsulating Compound (Part B)

Ingredient	DNELs Exposure Pattern Worker	PNECs Compartment
	Oral 0.5 mg/kg bw/day (Systemic, Chronic) *	11.98 mg/kg sediment dw (Sediment (Marine)) 9.44 mg/kg soil dw (Soil) 2.3 mg/L (STP) 20 mg/kg food (Oral)
4,4'-methylenebis(2- methylcyclohexanamine)	Dermal 0.06 mg/kg bw/day (Systemic, Chronic) Inhalation 0.6 mg/m³ (Systemic, Chronic) Inhalation 0.96 mg/m³ (Local, Chronic)	0.4 mg/L (Water (Fresh)) 0.04 mg/L (Water - Intermittent release) 0.046 mg/L (Water (Marine)) 17.4 mg/kg sediment dw (Sediment (Fresh Water)) 1.74 mg/kg sediment dw (Sediment (Marine)) 4.56 mg/kg soil dw (Soil) 1.6 mg/L (STP) 0.556 mg/kg food (Oral)
phenol	Dermal 1.23 mg/kg bw/day (Systemic, Chronic) Inhalation 8 mg/m ³ (Systemic, Chronic) Inhalation 16 mg/m ³ (Local, Acute) Dermal 0.4 mg/kg bw/day (Systemic, Chronic) * Inhalation 1.32 mg/m ³ (Systemic, Chronic) * Oral 0.4 mg/kg bw/day (Systemic, Chronic) *	0.008 mg/L (Water (Fresh)) 0.001 mg/L (Water - Intermittent release) 0.031 mg/L (Water (Marine)) 0.091 mg/kg sediment dw (Sediment (Fresh Water)) 0.009 mg/kg sediment dw (Sediment (Marine)) 0.136 mg/kg soil dw (Soil) 2.1 mg/L (STP)

* Values for General Population

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs)	phenol	Phenol	2 ppm / 8 mg/m3	16 mg/m3 / 4 ppm	Not Available	skin
UK Workplace Exposure Limits (WELs)	phenol	Phenol	2 ppm / 7.8 mg/m3	16 mg/m3 / 4 ppm	Not Available	Sk

Emergency Limits

Ingredient	TEEL-1 TEEL-2			TEEL-3
4-nonylphenol, branched	3.9 mg/m3 43 mg/m3			260 mg/m3
4,4'-methylenebis(2- methylcyclohexanamine)	0.28 mg/m3	3.1 mg/m3		19 mg/m3
tetraethylenepentamine	15 mg/m3	130 mg/m3		790 mg/m3
phenol	Not Available	Not Available		Not Available
Ingredient	Original IDLH		Revised IDLH	
4-nonylphenol, branched	Not Available		Not Available	
tall oil/ tetraethylenepentamine polyamides	Not Available		Not Available	
4,4'-methylenebis(2- methylcyclohexanamine)	Not Available		Not Available	
tetraethylenepentamine	Not Available		Not Available	
naphtha petroleum, heavy alkylate	Not Available		Not Available	
phenol	250 ppm		Not Available	

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit
4-nonylphenol, branched	E	≤ 0.1 ppm
tall oil/ tetraethylenepentamine polyamides	E	≤ 0.1 ppm
4,4'-methylenebis(2- methylcyclohexanamine)	E	≤ 0.1 ppm
tetraethylenepentamine	D	> 0.1 to ≤ 1 ppm
Notes:	Occupational exposure banding is a process of assigning chemicals into s	specific categories or bands based on a chemical's potency and the

adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.

MATERIAL DATA

Amine adducts have much reduced volatility and are less irritating to the skin and eyes than amine hardeners. However commercial amine adducts may contain a percentage of unreacted amine and all unnecessary contact should be avoided.

Amine adducts are prepared by reacting excess primary amines with epoxy resin.

Polyamide hardeners have much reduced volatility, toxicity and are much less irritating to the skin and eyes than amine hardeners. However commercial polyamides may contain a percentage of residual unreacted amine and all unnecessary contact should be avoided.

Odour Threshold Value for phenol: 0.060 ppm (detection)

NOTE: Detector tubes for phenol, measuring in excess of 1 ppm, are commercially available.

Systemic absorption by all routes may induce convulsions with damage to the lungs and central nervous system.

Exposure at or below the recommended TLV-TWA is thought to protect the worker from respiratory, cardiovascular, hepatic, renal and neurological toxicity. Workers or volunteers exposed at or below 5.2 ppm phenol have experienced no ill-effects. Because phenol as a vapour, liquid or solid can penetrate the skin causing systemic effects, a skin notation is considered necessary. Although ACGIH has not recommended a STEL it is felt that ACGIH excursion limits (15 ppm limited to a total duration of 30

minutes with brief excursions limited to no more than 25 ppm) and NIOSH Ceiling values are sufficiently similar so as to provide the same margin of safety.

Odour Safety Factor(OSF) OSF=25 (PHENOL) NOTE P: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 0.01% w/w benzene (EINECS No 200-753-7). Note E shall also apply when the substance is classified as a carcinogen. This note applies only to certain complex oil-derived substances in Annex VI. European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP

8.2. Exposure controls				
8.2.1. Appropriate engineering controls	Engineering controls are used to remove a hazard or place be highly effective in protecting workers and will typically be The basic types of engineering controls are: Process controls which involve changing the way a job acti Enclosure and/or isolation of emission source which keeps 'adds' and 'removes' air in the work environment. Ventilatio ventilation system must match the particular process and c Employers may need to use multiple types of controls to pr Local exhaust ventilation usually required. If risk of overexp protection. Supplied-air type respirator may be required in s An approved self contained breathing apparatus (SCBA) m Provide adequate ventilation in warehouse or closed storag velocities which, in turn, determine the 'capture velocities' of Type of Contaminant: solvent, vapours, degreasing etc., evaporating from tank (aerosols, fumes from pouring operations, intermittent cont drift, plating acid fumes, pickling (released at low velocity) direct spray, spray painting in shallow booths, drum filling, generation into zone of rapid air motion) grinding, abrasive blasting, tumbling, high speed wheel ge very high rapid air motion). Within each range the appropriate value depends on: Lower end of the range 1: Room air currents minimal or favourable to capture 2: Contaminants of low toxicity or of nuisance value only. 3: Intermittent, low production. 4: Large hood or large air mass in motion Simple theory shows that air velocity falls rapidly with distat with the square of distance from the extraction point (in sim accordingly, after reference to distance from the contamina 1-2 m/s (200-400 f/min) for extraction of solvents generated producing performance deficits within the extraction appara	eering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can hily effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. asic types of engineering controls are: so controls which involve changing the way a job activity or process is done to reduce the risk. sure and/or isolation of emission source which keeps a selected hazard 'physically' away from the worker and ventilation that strategically and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed property. The design of a stion system must match the particular process and chemical or contaminant in use. yers may need to use multiple types of controls to prevent employee overexposure. exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate tion. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. proved self contained breathing apparatus (SCBA) may be required in some situations. Ise adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying 'escape' ties which, in turn, determine the 'capture velocities' of fresh circulating air required to effectively remove the contaminant. and, vapours, degreasing etc., evaporating from tank (in still air). sols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray plating aid fumes, pickling (released at low velocity into zone of active generation) trans, stray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active finh,) and, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of action and currents minimal or favourable to capture if er		
8.2.2. Personal protection				
Eye and face protection	 Safety glasses with unperforated side shields may be used where continuous eye protection is desirable, as in laboratories; spectacles are not sufficient where complete eye protection is needed such as when handling bulk-quantities, where there is a danger of splashing, or if the material may be under pressure. Chemical goggles.whenever there is a danger of the material coming in contact with the eyes; goggles must be properly fitted. Full face shield (20 cm, 8 in minimum) may be required for supplementary but never for primary protection of eyes; these afford face protection. Alternatively a gas mask may replace splash goggles and face shields. Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] 			
Skin protection	See Hand protection below			
Hands/feet protection	 Elbow length PVC gloves When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots. NOTE: The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. When handling liquid-grade epoxy resins wear chemically protective gloves , boots and aprons. The performance, based on breakthrough times , of: Ethyl Vinyl Alcohol (EVAL laminate) is generally excellent Butyl Rubber ranges from excellent to good Nitrile Butyl Rubber (NBR) from excellent to fair. Neoprene from excellent to fair 			

Page 10 of 29

832HD-B Black 1:1 Epoxy Potting and Encapsulating Compound (Part B)

	Polyvinyl (PVC) from excellent to poor As defined in ASTM F-739-96 Excellent breakthrough time > 480 min Good breakthrough time > 20 min
	 Fair breakthrough time < 20 min
	Poor glove material degradation
	Gloves should be tested against each resin system prior to making a selection of the most suitable type. Systems include both the resin and any hardener, individually and collectively)
	• DO NOT use cotton or leather (which absorb and concentrate the resin), natural rubber (latex), medical or polyethylene gloves (which absorb the resin).
	DO NOT use barrier creams containing emulsified fats and oils as these may absorb the resin; silicone-based barrier creams should be reviewed prior to use.
	Replacement time should be considered when selecting the most appropriate glove. It may be more effective to select a glove with lower
	chemical resistance but which is replaced nequency than to select a more resistant glove which is reused many times
Body protection	See Other protection below
Other protection	 Overalls. Eyewash unit. Barrier cream. Stire cleaneding group

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

'Forsberg Clothing Performance Index'.

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

832HD-B Black 1:1 Epoxy Potting and Encapsulating Compound (Part B)

Material	CPI
BUTYL	А
NEOPRENE	А
VITON	A
BUTYL/NEOPRENE	С
NAT+NEOPR+NITRILE	С
NATURAL RUBBER	С
NATURAL+NEOPRENE	С
NEOPRENE/NATURAL	С
NITRILE	С
PE/EVAL/PE	С
PVA	С
PVC	С
TEFLON	С
VITON/NEOPRENE	С

* CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as 'feel' or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

8.2.3. Environmental exposure controls

See section 12

SECTION 9 Physical and chemical properties

9.1. Information on basic physical and chemical properties

Appearance Clear, amber Physical state Liquid Relative density (Water = 1) 0.95 Partition coefficient n-octanol Odour Not Available Not Available / water Odour threshold Not Available Auto-ignition temperature (°C) 321 pH (as supplied) Not Available Decomposition temperature Not Available Melting point / freezing point Not Available Viscosity (cSt) 2300 (°C)

Respiratory protection

Type AK-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the 'Exposure Standard' (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	AK-AUS P2	-	AK-PAPR-AUS / Class 1 P2
up to 50 x ES	-	AK-AUS / Class 1 P2	-
up to 100 x ES	-	AK-2 P2	AK-PAPR-2 P2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

76ak-p()

Continued...

Initial boiling point and boiling range (°C)	>93	Molecular weight (g/mol)	Not Available
Flash point (°C)	150	Taste	Not Available
Evaporation rate	Not Available BuAC = 1	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Partly miscible	pH as a solution (%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available
Nanoform Solubility	Not Available	Nanoform Particle Characteristics	Not Available
Particle Size	Not Available		

9.2. Other information

Not Available

SECTION 10 Stability and reactivity

10.1.Reactivity	See section 7.2
10.2. Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
10.3. Possibility of hazardous reactions	See section 7.2
10.4. Conditions to avoid	See section 7.2
10.5. Incompatible materials	See section 7.2
10.6. Hazardous decomposition products	See section 5.3

SECTION 11 Toxicological information

11.1. Information on toxicological effects

٦

	Inhalation of vapous of aerosols (initis), fulles), generated by the material during the course of normal handing, may produce severely toxic effects; these may be fatal. Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Inhalation of alkaline corrosives may produce irritation of the respiratory tract with coughing, choking, pain and mucous membrane damage. Pulmonary oedema may develop in more severe cases; this may be immediate or in most cases following a latent period of 5-72 hours. Symptoms may include a tightness in the chest, dyspnoea, frothy sputum, cyanosis and dizziness. Findings may include hypotension, a weak and rapid pulse and moist rales. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.
Inhaled	Inhalation of amine vapours may cause irritation of the mucous membranes of the nose and throat and lung irritation with respiratory distress and cough. Single exposures to near lethal concentrations and repeated exposures to sublethal concentrations produces tracheitis, bronchitis, pneumonitis and pulmonary oedema. Aliphatic and alicyclic amines are generally well absorbed from the respiratory tract. Systemic effects include headache, nausea, faintness and anxiety. These effects are thought to be transient and are probably related to the pharmacodynamic action of the amines. Histamine release by aliphatic amines may produce bronchoconstriction and wheezing. Inhalation of epoxy resin amine hardener vapours (including polyamines and amine adducts) may produce bronchospasm and coughing episodes lasting days after cessation of the exposure. Even faint traces of these vapours may trigger an intense reaction in individuals showing 'amine asthma'. The literature records several instances of systemic intoxications following the use of amines in epoxy resin systems. Excessive exposure to the vapours of epoxy amine curing agents may cause both respiratory irritation and central nervous system depression. Signs and symptoms of central nervous system depression, in order of increasing exposure, are headache, dizziness, drowsiness, and incoordination. In short, a single prolonged (measured in hours) or excessive inhalation exposure may cause serious adverse effects, including death.
	Inhalation of quantities of liquid mist may be extremely hazardous, even lethal due to spasm, extreme irritation of larynx and bronchi, chemical pneumonitis and pulmonary oedema.

	Pulmonary absorption may lead to systemic toxicity affecting the cardiovascular and central nervous system. Inhalation of phenol and some of its derivatives may produce profuse perspiration, intense thirst, nausea, vomiting, diarrhoea, cyanosis, hyperactivity, stupor, falling blood pressure, hyperpneea, abdominal pain, haemolysis, convulsions, coma and pulmonary oedema with pneumonia. Respiratory failure and kidney damage may follow. Phenols may exhibit local anaesthetic properties and, in general, are central nervous system depressants at high concentrations. The dihydroxy derivatives act as simple phenols but their effects are largely limited to local irritation. Trihydroxy derivatives may reduce the oxygen content of blood at sufficient exposure levels. Methyl phenols (cresols) typically do not pose significant inhalation hazards due to relatively low vapour pressures and objectionable odours. Substituted phenols produce similar effects to phenol although such effects may only be evident at high levels of exposure. Alkyl substitution tends to increase toxicity.
Ingestion	Ingestion of alkaline corrosives may produce immediate pain, and circumoral burns. Mucous membrane corrosive damage is characterised by a white appearance and soapy feel; this may then become brown, oedematous and ulcerated. Profuse salivation with an inability to swallow or speak may also result. Even where there is limited or no evidence of chemical burns, both the oesophagus and stomach may experience a burning pain; vomiting and diarrhoea may follow. The vomitus may be thick and may be slimy (mucous) and may eventually contain blood and shreds of mucosa. Epiglottal oederna may result in respiratory distress and asphysia. Marked hypotension is symptomatic of shock; a weak and rapid pulse, shallow respiration and clammy skin may also be evident. Circulatory collapse may occur and, if uncorrected, may produce renal failure. Severe exposures may result in oesophageal or gastric perforation accompanied by mediastinitis, substernal pain, peritonitis, abdominal rigidity and fever. Although oesophageal, gastric or pyloric stricture may be evident initially, these may occur and reveks or even months and years. Death may be quick and results from asphysia, circulatory collapse or aspiration of even minute amounts. Death may also be delayed as a result of perforation, pneumonia or the effects of stricture formation. The material is not though to produce adverse health effects following ingestion (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum. Ingestion of amine epoxy-curing agents (hardeners) may cause severe abdominal pain, nausea, vomiting or diarrhoea. The vomitus may contain blood and mucous. If death does not occur within 24 hours there may be an improvement in the patients condition for 2-4 days only to be followed by the sudden onset of abdominal pain, hoard-like abdominal rigidity or hypo-tension; this indicates that del
Skin Contact	Skin contact with the material may be harmful; systemic effects may result following absorption. Volatile amine vapours produce primary skin irritation and dermatitis. Direct local contact, with the lower molecular weight liquids, may produce skin burns. Percutaneous absorption of simple aliphatic amines is known to produce lethal effects often the same as that for oral administration. Cutaneous sensitisation has been recorded chiefly due to ethyleneamines. Histamine release following exposure to many aliphatic amines may result in triple response' (white vasconstriction, red flare and wheal) in human skin. 1% solutions of mary cationic surfactants produce dermal irritation and 10% solutions may be corrosive producing chemical burns. One of the mechanisms of skin irritation caused by surfactants is considered to be denaturation of the proteins of skin. It has also been established that there is a connection between the potential of surfactants to denature protein in vitro and their effect on the skin. Nonionic surfactants do not carry any net charge and, therefore, they can only form hydrophobic bonds with proteins. For this reason, proteins are not deactivated by nonionic surfactants, and proteins with poor solubility are not solubilized by nonionic surfactants. Amine epoxy-curing agents (hardeners) may produce primary skin irritation and sensitisation dermatitis in predisposed individuals. Cutaneous reactions include erythema, intolerable itching and severe facial swelling. Blistering, with weeping of serious fluid, and crusting and scaling may also occur. Virtually all of the liquid amine curing agents can cause sensitisation or allergic skin reactions. Individuals exhibiting 'amine dermatitis' may experience a dramatic reaction upon re-exposure to minute quantities. Highly sensitive persons may even react to cured resins containing trace amounts of unreacted amine hardener. Minute quantities of air-borne amine may precipitate intense dermatological symptoms in sensitisation has occurred, exposure of the s
Eye	When applied to the eye(s) of animals, the material produces severe ocular lesions which are present twenty-four hours or more after instillation. Direct contact with alkaline corrosives may produce pain and burns. Oedema, destruction of the epithelium, corneal opacification and iritis may occur. In less severe cases these symptoms tend to resolve. In severe injuries the full extent of the damage may not be immediately apparent with late complications comprising a persistent oedema, vascularisation and corneal scarring, permanent opacity, staphyloma, cataract, symblepharon and loss of sight. Vapours of volatile amines cause eye irritation with lachrymation, conjunctivitis and minor transient corneal oedema which results in 'halos' around lights (glaucopsia, 'blue haze', or 'blue-grey haze'). Vision may become misty and halos may appear several hours after workers are exposed to the substance This effect generally disappears spontaneously within a few hours of the end of exposure, and does not produce physiological after-effects. However oedema of the corneal epithelium, which is primarily responsible for vision disturbances, may take more than one or more days to clear, depending on the severity of exposure. Photophobia and discomfort from the roughness of the corneal surface also may occur after greater exposures. Although no detriment to the eye occurs as such, glaucopsia predisposes an affected individual to physical accidents and reduces the ability to undertake skilled tasks such as driving a vehicle.

Direct local contact with the liquid may produce eye damage which may be permanent in the case of the lower molecular weight species. Solutions of many cationic surfactants (as low as 0.1% strength) produce significant irritation of the eyes. Concentrations exceeding 10% may produce severe burns with permanent opacity and vascularisation.

Some nonionic surfactants may produce a localised anaesthetic effect on the cornea; this may effectively eliminate the warning discomfort produced by other substances and lead to corneal injury. Irritant effects range from minimal to severe dependent on the nature of the surfactant, its concentration and the duration of contact. Pain and corneal damage represent the most severe manifestation of irritation. Irritation of the eyes may produce a heavy secretion of tears (lachrymation).

Some phenol derivatives may produce mild to severe eye irritation with redness, pain and blurred vision. Permanent eye injury may occur; recovery may also be complete or partial.

Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals.

Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyper-responsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance who are likely to become hyper-responsive.

Substances than can cuase occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or respiratory sensitisers Wherever it is reasonably practicable, exposure to substances that can cuase occupational asthma should be prevented. Where this is not

possible the primary aim is to apply adequate standards of control to prevent workers from becoming hyper-responsive. Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health

surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance. Toxic: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed.

Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following sub-acute (28 day) or chronic (two-year) toxicity tests.

Imidazole is structurally related to histamine and has been used as an antagonist to counteract the effects of excess histamine found in certain induced physiological conditions (it therefore acts as an antihistamine).

Imidazoles have been reported to disrupt male fertility through disruption of testicular function.

Certain imidazole fungicides provoke histamine release by a non-immunological mechanism, induce airway constriction in guinea-pigs and hence may be harmful to spray operators who might inhale fungicide aerosols used for plant protection.

Imidazole fungicides inhibit the cytochrome P450 (CYP) complex, including the 14alpha-demethylase (CYP51) enzyme required for ergosterol biosynthesis, in fungal cell membranes. In addition, intracellular accumulation of toxic methylated sterols occurs and the synthesis of triglycerides and phospholipids is altered. Disturbances in oxidative and peroxidative enzyme activities lead to an intracellular toxic concentration of hydrogen peroxide. As a result, intracellular organelle destruction then leads to cell necrosis.

2-Methylimidazole decreased luteinising hormone secretion and tissue interstitial fluid testosterone concentration two hours after injection into Sprague Dawley rats.

Inidazoles bind to cytochrome P450 haeme, resulting in inhibition of catalysis. However, 2-substituted imidazoles are considered to be poor inhibitors. Imidazole is probably an inducer of cytochrome P4502E1. In general, inducers of this isozyme stabilise the enzyme by preventing phosporylation of a serine which leads to haeme loss.

Several drugs containing an imidazole moiety were retained and bound in connective tissue when administered to laboratory animals. The bound material was primarily recovered from elastin (70%) and the collagen. It is postulated that reaction with aldehydes gives an aldol condensation pro

Chronic

The alkyl phenolics (which may occur as breakdown products of some polyethoxylated surfactants) have been implicated in a phenomenon which has apparently occurred since the mid 1960s, namely lower sperm counts and reduced fertility in males. Nonyl phenol acts like an oestrogen hormone which stimulates breast cells to divide in vitro. When pregnant rats are fed nonylphenols at doses comparable to that at which humans might be exposed, male offspring had significantly smaller testicles and lower sperm counts. Although the human foetus is 'bathed' in naturally occurring oestrogens during pregnancy it is suggested that it has developed a protective mechanism against natural oestrogens but is not safe from synthetic variants. These tend to accumulate in body fats which sets them apart from the natural product. During early pregnancy, fats are broken down and may flood the body with concentrated pollutants. Drinking water may be one source of exposure to alkyl phenols as many polyethoxylated surfactants are discharged to water treatment systems where they undergo degradation. Secondary amines may react in the acid conditions of the stomach with oxidants or preservatives) to form potentially carcinogenic

N-nitrosamines. The formation of nitrosamines from such amines has not only been observed in animals models but, at least for certain compounds, in the workplace. The amine-containing substances and end products handled at work can themselves be contaminated to a degree with corresponding nitrosamines. Under conditions encountered in practice nitrosation is to be expected with secondary amines and to a limited extent with primary and tertiary amines. Nitrogen oxides are the most probable nitrosating agents. Nitrosyl chloride, nitrite esters, metal nitrites and nitroso compounds may also be involved. Several factors such as pH, temperature, catalysts and inhibitors influence the extent of nitrosation. Two precautionary measures are therefore necessary when handling amines at the workplace.

Simultaneous exposure to nitrosating agents should be reduced to minimum. This can be out into practice by eliminating nitrosating agents or, if they play a role in the actual process, replacing them with substances that do not lead to the formation of carcinogenic nitrosamines. In particular the level of nitrogen oxides at the workplace should be monitored and reduced when necessary.

• The levels of nitrosamines in the workplace and in substances containing amines should be monitored.

Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area, Report No. 31, DFG, 1995

In animal experiments the oesophagus is shown to be the most important target organ for nitrosamines, independent of the route of application. The mechanism of this organotrophy cannot be explained sufficiently. The high oesophageal epithelium metabolic activation of nitrosamines, together with a comparatively low DNA repair, probably plays the most important role. In addition chronic stress factors, which lead to high stimulation of epithelial turnover, are a pacemaker for malignant progression. In some countries, the traditional consumption of extremely hot drinks leads to constant burns of the oesophagus, which increases the risk. Mate, a non-alcoholic brew, frequently consumed as tea in Uruguay, appears to be a high risk factor for oesophageal cancer

Prolonged or repeated skin contact may cause degreasing with drying, cracking and dermatitis following.

Prolonged exposure to some derivatives of phenol may produce dermatitis, anorexia, weight loss, weakness, muscle aches and pain, liver damage, dark urine, ochronosis, skin eruptions, diarrhoea, nervous disorders with headache, salivation, fainting, increased skin and scleral pigmentation, vertigo and mental disorders. Liver and kidney damage may also ensue. Chronic phenol toxicity was first noted in medical personnel in the late 1800s when 5 and 10% phenol was used as a skin disinfectant. The term carbolic (phenol) marasmus was given to this syndrome.

Addition of structurally related phenolic compounds to the diet of Syrian golden hamsters induced forestomach hyperplasia and tumours. These compounds included 2(3)-tert-butyl-4-methoxphenol (BHA) (CAS RN: 25013-16-5), 2-tert-butyl-4-methylphenol (TBMP) (29759-28-2) and p-tert-butylphenol (PTBP) (98-54-4); less active were catechol (154-23-4), p-methylphenol (331-39-5), methylhydroquinone (MHQ) (95-71-6) and pyrogallol (87-66-1), whilst no activity was seen with resorcinol (108-46-3), hydroquinone (123-31-9), propylparaben (94-13-3) and tert-butylhydroquinone (TBHQ) (1948-33-0).

In autoradiographic studies, intake of BHA, TBMP, catechol, PMOP, PTBP and MHQ resulted in a significant increase in the labelling index of the forestomach epithelium, whilst PMOP induced epithelial damage and pyloric regenerative hyperplasia. Catechol, CA and PYMP induced similar

	Inisto-particiogical resions, but propriparatione, catechnolog term administration of PTBP and TBMP may be c may play a role in the induction of forestomach tumour Hiros, M., et al: Carcinogenesis, Vol 7, pp 1285-1289; On the basis, primarily, of animal experiments, concerr carcinogenic or mutagenic effects; in respect of the av- satisfactory assessment. Repeated or prolonged exposure to acids may result in (rarely) of the jaw. Bronchial irritation, with cough, and also occur. Chronic exposures may result in dermatitis The impact of inhaled acidic agents on the respiratory characteristics, e.g., gas versus aerosol; particle size (are more likely to be removed in the nose and mouth), occupational exposures to acids, it is difficult to identify with a diameter of up to a few micrometers will be depi- cause dental erosion, and they produce acute effects i particular risk for pulmonary effects. Repeated or long-term occupational exposure is likely	 b) I BHQ and MHQ Inclarcing arcinogenic for hamstes. 1986 1 has been expressed bailable information, how 1 the erosion of teeth, ir frequent attacks of brown and/or conjunctivitis. tract depends upon a nismall particles can pen Given the general lack (their principal depositiosited in both the upper nithe lungs (symptoms to produce cumulative 	reased the labelling index. r forestomach and that both oy at least one classification rever, there presently exist inflammatory and ulcerative inchial pneumonia may ensign umber of interrelated factor etrate deeper into the lung of information on the parti on site within the respirator r and lower airways. They and changes in pulmonary	The authors of this study concluded that h 1-hydroxy and tert-butyl substituents n body that the material may produce s inadequate data for making a changes in the mouth and necrosis sue. Gastrointestinal disturbances may the changes in the mouth and necrosis sue. Gastrointestinal disturbances may the changes in the mouth and necrosis sue. Gastrointestinal disturbances may the changes in the mouth and necrosis sue. Gastrointestinal disturbances may the changes in the mouth and necrosis sue. Gastrointestinal disturbances may the changes in the mouth and necrosis sue. Gastrointestinal disturbances may the changes in the mouth and necrosis the changes in the mouth and necr		
020UD D Diesk 4:4 Frame						
Potting and Encapsulating	TOXICITY	IRR	RITATION			
Compound (Part B)	Not Available	Not	Available			
	ΤΟΧΙΟΙΤΥ	IRRITAT	TION			
	Dermal (rabbit) LD50: >2000 mg/kg ^[2]	Eye (rat	obit): 100 mg - SEVERE			
4-nonviphenol, branched	Oral(Rat) LD50; 1000-2500 mg/kg ^[2]	Eye: ad	verse effect observed (irrita	ating) ^[1]		
		Skin (ra	bbit): 500 ma/24h-SEVERI	5,		
		Skin: ad	verse effect observed (cor	rosive)[1]		
		Okin. ad				
tall oil/	ΤΟΧΙΟΙΤΥ		IRRITATION	IRRITATION		
tetraethylenepentamine	Oral(Rat) LD50; >5000 mg/kg ^[2]		Eyes (rabbit) (-) moder	ate		
poryanides			Skin (rabbit) (-) modera	ate		
	TOXICITY					
1.41 methodenetic()	Dermal (rabbit) LD50: 200-400 mg/kg ^[2]	Eve: a	dverse effect observed (irr	itating) ^[1]		
4,4°-methylenebis(2- methylcyclohexanamine)	Inhalation(Pat) C50: 0.4 mg/(4h ^[1]]	Skin: /	dverse effect observed (a			
		SKIII. c				
	ΤΟΧΙΟΙΤΥ		RRITATION			
	Dermal (rabbit) LD50: 658.68 mg/kg ^[2]		Eye (rabbit): 100 mg/24h moderate			
tetraethylenepentamine	Oral(Rat) LD50; 2100 mg/kg ^[2]		Eye (rabbit): 5 mg moderate			
		:	Skin (rabbit): 495 mg SEVERE			
		:	Skin (rabbit): 5 mg/24h SE	n (rabbit): 5 mg/24h SEVERE		
	ΤΟΧΙCITY			IRRITATION		
	Dermal (rabbit) D50: $>2000 \text{ mg/kg}^{2}$			Not Available		
naphtha petroleum, heavy alkylate						
	Oral(Rat) LD50; >7000 mg/kgl ²					
	ΤΟΧΙCΙΤΥ		IRRITATION			
	dermal (rat) LD50: 525 mg/kg ^[1]		Eye(rabbit): 100 mg rinse	- mild		
	Inhalation(Mouse) LC50: 0.177 mg/L4h ^[2]		Eye(rabbit): 5 mg - SEVE	RE		
phenol	Oral/Mausa) D50: 270 ma//a[2]		Skin/rabbit): 500 mg oppo -SEV/EPE			
phenol	Oral(Mouse) D50: 270 mg/kg ^[2]		Skin(rabbit): SUU mg Open -SEVERE			
phenol	Oral(Mouse) LD50; 270 mg/kg ^[2]		Skin(rabbit): 500 mg/24br	- SEVERE		
phenol	Oral(Mouse) LD50; 270 mg/kg ^[2]		Skin(rabbit): 500 mg/24hr Skin(rabbit): 500 mg/24hr	- SEVERE		
phenol Legend:	Oral(Mouse) LD50; 270 mg/kg ^[2]	stances - Acute toxicity	Skin(rabbit): 500 mg oper Skin(rabbit): 500 mg/24hr 2.* Value obtained from m	- SEVERE anufacturer's SDS. Unless otherwise		
phenol Legend:	Oral(Mouse) LD50; 270 mg/kg ^[2] 1. Value obtained from Europe ECHA Registered Subs specified data extracted from RTECS - Register of Tox	stances - Acute toxicity ic Effect of chemical St	Skin(rabbit): 500 mg/24hr Skin(rabbit): 500 mg/24hr 2.* Value obtained from m ubstances	- SEVERE anufacturer's SDS. Unless otherwise		
phenol Legend:	Oral(Mouse) LD50; 270 mg/kg ^[2] 1. Value obtained from Europe ECHA Registered Subs specified data extracted from RTECS - Register of Tox	stances - Acute toxicity ic Effect of chemical St	Skin(rabbit): 500 mg/24hr Skin(rabbit): 500 mg/24hr 2.* Value obtained from m ubstances	- SEVERE anufacturer's SDS. Unless otherwise		
phenol Legend:	Oral(Mouse) LD50; 270 mg/kg ^[2] 1. Value obtained from Europe ECHA Registered Subs specified data extracted from RTECS - Register of Tox For nonylphenol and its compounds:	stances - Acute toxicity ic Effect of chemical St	Skin(rabbit): 500 mg/24hr Skin(rabbit): 500 mg/24hr 2.* Value obtained from m ubstances	- SEVERE anufacturer's SDS. Unless otherwise		
phenol <i>Legend:</i> 4-NONYLPHENOL,	Oral(Mouse) LD50; 270 mg/kg ^[2] 1. Value obtained from Europe ECHA Registered Subs specified data extracted from RTECS - Register of Tox For nonylphenol and its compounds: Alkylphenols like nonylphenol and bisphenol A have est and other endocrine disruttors are compounds that has	stances - Acute toxicity ic Effect of chemical St strogenic effects in the	Skin(rabbit): 500 mg oper Skin(rabbit): 500 mg/24hr 2.* Value obtained from m ubstances	- SEVERE anufacturer's SDS. Unless otherwise enoestrogens. Estrogenic substances ps. Xenoestrogens usually function by		

Continued...

protein-coupled estrogen receptor). Nonylphenol has been shown to mimic the natural hormone 17beta-estradiol, and it competes with the endogeous hormone for binding with the estrogen receptors ERalpha and ERbeta.

Effects in pregnant women.

Subcutaneous injections of nonylphenol in late pregnancy causes the expression of certain placental and uterine proteins, namely CaBP-9k, which suggest it can be transferred through the placenta to the fetus. It has also been shown to have a higher potency on the first trimester placenta than the endogenous estrogen 17beta-estradiol. In addition, early prenatal exposure to low doses of nonylphenol cause an increase in apoptosis (programmed cell death) in placental cells. These "low doses" ranged from 10-13-10-9 M, which is lower than what is generally found in the environment.

Nonylphenol has also been shown to affect cytokine signaling molecule secretions in the human placenta. In vitro cell cultures of human placenta during the first trimester were treated with nonylphenol, which increase the secretion of cytokines including interferon gamma, interleukin 4, and interleukin 10, and reduced the secretion of tumor necrosis factor alpha. This unbalanced cytokine profile at this part of pregnancy has been documented to result in implantation failure, pregnancy loss, and other complications. Effects on metabolism

Nonylphenol has been shown to act as an obesity enhancing chemical or obesogen, though it has paradoxically been shown to have anti-obesity properties. Growing embryos and newborns are particularly vulnerable when exposed to nonylphenol because low-doses can disrupt sensitive processes that occur during these important developmental periods. Prenatal and perinatal exposure to nonylphenol has been linked with developmental abnormalities in adipose tissue and therefore in metabolic hormone synthesis and release. Specifically, by acting as an estrogen mimic, nonylphenol has generally been shown to interfere with hypothalamic appetite control. The hypothalamus responds to the hormone leptin, which signals the feeling of fullness after eating, and nonylphenol has been shown to both increase and decrease eating behavior by interfering with leptin signaling in the midbrain. Nonylphenol has been shown mimic the action of leptin on neuropeptide Y and anorectic POMC neurons, which has an anti-obesity effect by decreasing eating behavior. This was seen when estrogen or estrogen mimics were injected into the ventromedial hypothalamus. On the other hand, nonylphenol has been shown to increase food intake and have obesity enhancing properties by lowering the expression of these anorexigenic neurons in the brain. Additionally, nonylphenol affects the expression of ghrelin: an enzyme produced by the stomach that stimulates appetite. Ghrelin expression is positively regulated by estrogen signaling in the stomach, and it is also important in guiding the differentiation of stem cells into adipocytes (fat cells). Thus, acting as an estrogen mimic, prenatal and perinatal exposure to nonylphenol has been shown to increase appetite and encourage the body to store fat later in life. Finally, long-term exposure to nonylphenol has been shown to affect insulin signaling in the liver of adult male rats.

Cancer

Nonylphenol exposure has also been associated with breast cancer. It has been shown to promote the proliferation of breast cancer cells, due to its agonistic activity on ERalpha (estrogen receptor alpha) in estrogen-dependent and estrogen-independent breast cancer cells. Some argue that nonylphenol's suggested estrogenic effect coupled with its widespread human exposure could potentially influence hormone-dependent breast cancer disease

for alkylphenolics category:

The alkylphenolics may be divided into three groups.

Group I: ortho-substituted mono-alkylphenols:

Group II para-substituted mono-alkylphenols

Group III: di- and tri-substituted mixed alkyl phenols

The subdivision of the category alkylphenols into *ortho*, *para* and the di/tri-substituted mixed members is supported by several published investigations. In assessing antimicrobial and antifouling activity of twenty-three alkylphenols, a significant difference was noted between *para* and *ortho*-substituted materials. In particular, biological activity was found to vary parabolically with increasing hydrophobicity of the *para*-substituted materials. In particular, biological activity was found to vary parabolically with increasing hydrophobicity of the *para*-substituted materials. In particular, biological activity was found to vary parabolically with increasing hydrophobicity of the *para*-substituent while introduction of a bulky substituent at the *ortho*-position resulted in a very significant decrease in antimicrobial, antifouling, and membrane-perturbation potency. Several alkylphenolic analogs of butylated hydroxytoluene (BHT) were examined for hepatotoxicity in mice depleted of hepatic glutathione. The structural requirement of both hepatic and pulmonary toxicity was a phenol ring having benzylic hydrogen atoms at the para position and an ortho-alkyl group(s) that moderately hinders the phenolic hydroxyl group. It is noteworthy that in this model, neither of the Group III members TTBP (2,4,6-tri-tert-butylphenol) nor 2,6-DTBP (2,6-di-tert-butylphenol) showed either hepatic or pulmonary toxicity. Lastly, important differences were observed in gene activation (recombinant yeast cell assay – Lac-Z reporter gene) between *ortho*-substituted alkylphenol

Acute toxicity: The acute (single-dose) toxicity of alkylphenols examined to date shows consistency, with LD50 values ranging from approximately 1000 mg/kg to over 2000 mg/kg. These data demonstrate a very low level of acute systemic toxicity and do not suggest any unique structural specificity, despite the general tendency for the chemicals to be, at least, irritants to skin

Repeat dose toxicity: The available studies for members drawn from the three groups range from 28-day and 90-day general toxicity studies, through developmental toxicity and reproductive/developmental screening, to multigeneration reproductive studies are available for some category members

For the overall category of alkylphenols, the dosage at which the relatively mild general toxicity appears tends only to fall below 100 mg/kg/day with extended treatment, with an overall NOAEL for the category of approximately 20 mg/kg/day. No unusual and no apparent structurally unique toxicity is evident

Repeat dose studies on OTBP (o-tert-butylphenol; Group I) and PTBP (p-tert-butylphenol; Group II) suggest the forestomach to be the main organ affected. OTBP also appears to have a mild (though statistically significant) protective effect against benzo[a]pyrene induced forestomach tumors. Long-term treatment with high dietary dose levels of PTBP caused hyperplastic changes in the forestomach epithelium of rats and hamsters, a likely consequence of the irritancy of the material. The relevance of this for human hazard is doubtful, particularly since there is no analogous structure in humans to the forestomach of rodents.

There was no evidence of an effect on reproductive function at dosages up to 150 mg/kg. One reproductive screening study reported increased breeding loss' and also reduced pup weight gain and survival in early lactation at 750 mg/kg/day. It is reasonable to assume that these effects were secondary to "severe toxic symptoms" reported in the dams at this dosage. Other than an indication of a very mildly oestrogenic effect of PNP (p-nonylphenol; Group II) at a high dose levels (200-300 mg/kg/day) no effect on development was seen in a multigeneration study. By means of the classification method of Verhaar * all the alkylphenols would be classified as Type 2 compounds (polar narcotics). Narcosis, a non-specific mode of toxicity is caused by disruption (perturbation) of the cell membrane. The ability to induce narcosis is dependent on the hydrophobicity of the substance with biochemical activation or reaction involved. Such narcotic effects are also referred to as minimum or base-line toxicity. Polar narcotics such as the category phenols are usually characterised by having hydrogen bond donor activity and are thought to act by a similar mechanism to the inert, narcotic compounds but exhibit above base-line toxicity. In fact, a large number of alkylphenols have been evaluated as intravenous anesthetic agents. While the structure-activity relationships were found to be complex, the anesthetic potency and kinetics appeared to be a function of both the lipophilic character and the degree of steric hindrance exerted by ortho substituents. Less steric hindrance resulted in lower potency, while greater crowding led to complete loss of anesthetic activity and greater lipophilicity resulted in slower kinetics. These data support the notion that the alkylphenols behave as polar narcotics. In addition, the anaesthetic activity/potency differences seen with varying structure and placement of substituents strongly supports the division of alkylphenols category into the ortho, para, and di/trisubstituted groups (i

Genotoxicity: It reasonable to consider the mutagenic potential of all the alkylphenols together because only functional group is the phenolic, which is not a structural alert for mutagenicity. The data support this, since the results of genotoxicity testing are uniformly negative for all category substances examined

* Verhaar, H.J.M. van Leeuwen, C.J. and Hermens, J.L.M., Classifying Environmental Pollutants. 1: Structure-Activity Relationships for Prediction of Aquatic Toxicity, Chemosphere (25), pp 471 – 491 (1992). for nonvlphenol:

Nonylphenol was studied for oral toxicity in rats in a 28-day repeat dose toxicity test at doses of 0, 4, 15, 60 and 250 mg/kg/day. Changes suggesting renal dysfunction were mainly noted in both sexes given 250 mg/kg. Liver weights were increased in males given 60 mg/kg and in both sexes given 250 mg/kg group. Histopathologically, hypertrophy of the centrilobular hepatocytes was noted in both sexes given 250 mg/kg. Kidney weights were increased in males given 250 mg/kg and macroscopically, disseminated white spots, enlargement and pelvic dilatation were noted in females given 250 mg/kg. Histopathologically, the following lesions were noted in the 250 mg/kg group: basophilic change of the proximal tubules in both sexes, single cell necrosis of the proximal tubules.

Page 16 of 29

832HD-B Black 1:1 Epoxy Potting and Encapsulating Compound (Part B)

basophilic change and dilatation of the collecting tubules in both sexes, simple hyperplasia of the pelvic mucosa and pelvic dilatation in females. In the urinary bladder, simple hyperplasia was noted in both sexes given 250 mg/kg. In the caecum, macroscopic dilatation was noted in both sexes given 250 mg/kg. Almost all changes except those in the kidney disappeared after a 14-day recovery period. The NOELs for males and females are considered to be 15 mg/kg/day and 60 mg/kg/day, respectively, under the conditions of the present study. Nonylphenol was not mutagenic to Salmonella typhimurium, TA100, TA1535, TA98, TA1537 and Escherichia coli WP2 uvrA, with or without an exogeneous metabolic activation system Nonylphenol induced neither structural chromosomal aberrations nor polyploidy in CHL/IU cells, in the absence or presence of an exogenous metabolic activation system. Gastrointestinal changes, liver changes, effects on newborn recorded. Fatty acid amides (FAA) are ubiquitous in household and commercial environments. The most common of these are based on coconut oil fatty acids alkanolamides. These are the most widely studied in terms of human exposure. Fatty acid diethanolamides (C8-C18) are classified by Comite Europeen des Agents de Surface et de leurs Intermediaires Organiques (CESIO) as Irritating (Xi) with the risk phrases R38 (Irritating to skin) and R41 (Risk of serious damage to eyes). Fatty acid monoethanolamides are classified as Irritant (Xi) with the risk phrases R41 Several studies of the sensitization potential of cocoamide diethanolamide (DEA) indicate that this FAA induces occupational allergic contact dermatitis and a number of reports on skin allergy patch testing of cocoamide DEA have been published. These tests indicate that allergy to cocoamide DEA is becoming more common. Alkanolamides are manufactured by condensation of diethanolamine and the methylester of long chain fatty acids. Several alkanolamides (especially secondary alkanolamides) are susceptible to nitrosamine formation which constitutes a potential health problem. Nitrosamine contamination is possible either from pre-existing contamination of the diethanolamine used to manufacture cocoamide DEA, or from nitrosamine formation by nitrosating agents in formulations containing cocoamide DEA. According to the Cosmetic Directive (2000) cocoamide DEA must not be used in products with nitrosating agents because of the risk of formation of N-nitrosamines. The maximum content allowed in cosmetics is 5% fatty acid dialkanolamides, and the maximum content of N-nitrosodialkanolamines is 50 mg/kg. The preservative 2-bromo-2-nitropropane-1,3-diol is a known nitrosating agent for secondary and tertiary amines or amides. Model assays have indicated that 2-bromo-2-nitropropane-1,3-diol may lead to the N-nitrosation of diethanolamine forming the carcinogenic compound, N-nitrosodiethanolamine which is a potent liver carcinogen in rats (IARC 1978). Several FAAs have been tested in short-term genotoxicity assays. No indication of any potential to cause genetic damage was seen Lauramide DEA was tested in mutagenicity assays and did not show mutagenic activity in Salmonella typhimurium strains or in hamster embryo cells. Cocoamide DEA was not mutagenic in strains of Salmonella typhimurium when tested with or without metabolic activation Environmental and Health Assessment of Substances in Household Detergents and Cosmetic Detergent Products, Environment Project, 615, 2001. Miljoministeriet (Danish Environmental Protection Agency) While it is difficult to generalise about the full range of potential health effects posed by exposure to the many different amine compounds, characterised by those used in the manufacture of polyurethane and polyisocyanurate foams, it is agreed that overexposure to the majority of these materials may cause adverse health effects. Many amine-based compounds can induce histamine liberation, which, in turn, can trigger allergic and other physiological effects, including bronchoconstriction or bronchial asthma and rhinitis. Systemic symptoms include headache, nausea, faintness, anxiety, a decrease in blood pressure, tachycardia (rapid heartbeat), itching, erythema (reddening of the skin), urticaria (hives), and facial edema (swelling). Systemic effects (those affecting the body) that are related to the pharmacological action of amines are usually transient. TALL OIL/ Typically, there are four routes of possible or potential exposure: inhalation, skin contact, eye contact, and ingestion. **TETRAETHYLENEPENTAMINE** Inhalation: POLYAMIDES Inhalation of vapors may, depending upon the physical and chemical properties of the specific product and the degree and length of exposure, result in moderate to severe irritation of the tissues of the nose and throat and can irritate the lungs. Products with higher vapour pressures have a greater potential for higher airborne concentrations. This increases the probability of worker exposure Higher concentrations of certain amines can produce severe respiratory irritation, characterised by nasal discharge, coughing, difficulty in breathing, and chest pains. Chronic exposure via inhalation may cause headache, nausea, vomiting, drowsiness, sore throat, bronchopneumonia, and possible lung damage. Also, repeated and/or prolonged exposure to some amines may result in liver disorders, jaundice, and liver enlargement. Some amines have been shown to cause kidney, blood, and central nervous system disorders in laboratory animal studies. While most polyurethane amine catalysts are not sensitisers, some certain individuals may also become sensitized to amines and may experience respiratory distress, including asthma-like attacks, whenever they are subsequently exposed to even very small amounts of vapor. Once sensitised, these individuals must avoid any further exposure to amines. Although chronic or repeated inhalation of vapor concentrations below hazardous or recommended exposure limits should not ordinarily affect healthy individuals, chronic overexposure may lead to permanent pulmonary injury, including a reduction in lung function, breathlessness, chronic bronchitis, and immunologic lung disease. Inhalation hazards are increased when exposure to amine catalysts occurs in situations that produce aerosols, mists, or heated vapors. Such situations include leaks in fitting or transfer lines. Medical conditions generally aggravated by inhalation exposure include asthma, bronchitis, and emphysema Skin Contact: Skin contact with amine catalysts poses a number of concerns. Direct skin contact can cause moderate to severe irritation and injury-i.e., from simple redness and swelling to painful blistering, ulceration, and chemical burns. Repeated or prolonged exposure may also result in severe cumulative dermatitis Skin contact with some amines may result in allergic sensitisation. Sensitised persons should avoid all contact with amine catalysts. Systemic effects resulting from the absorption of the amines through skin exposure may include headaches, nausea, faintness, anxiety, decrease in blood pressure, reddening of the skin, hives, and facial swelling. These symptoms may be related to the pharmacological action of the amines, and they are usually transient. Eye Contact: Amine catalysts are alkaline in nature and their vapours are irritating to the eyes, even at low concentrations. Direct contact with the liquid amine may cause severe irritation and tissue injury, and the "burning" may lead to blindness. (Contact with solid products may result in mechanical irritation, pain, and corneal injury.) Exposed persons may experience excessive tearing, burning, conjunctivitis, and corneal swelling. The corneal swelling may manifest itself in visual disturbances such as blurred or "foggy" vision with a blue tint ("blue haze") and sometimes a halo phenomenon around lights. These symptoms are transient and usually disappear when exposure ceases Some individuals may experience this effect even when exposed to concentrations below doses that ordinarily cause respiratory irritation. Ingestion: The oral toxicity of amine catalysts varies from moderately to very toxic. Some amines can cause severe irritation, ulceration, or burns of the mouth, throat, esophagus, and gastrointestinal tract. Material aspirated (due to vomiting) can damage the bronchial tubes and the lungs

Affected persons also may experience pain in the chest or abdomen, nausea, bleeding of the throat and the gastrointestinal tract, diarrhea,

Page 17 of 29

832HD-B Black 1:1 Epoxy Potting and Encapsulating Compound (Part B)

	dizziness, drowsiness, thirst, circulatory collapse, coma, and even death. Polyurethane Amine Catalysts: Guidelines for Safe Handling and Disposal: Technical Bulletin June 2000
	Alliance for Polyurethanes Industry Next undilited extensis surfactores exting the extensis for elegative and learning (Xa) with P22 and as instant (Xi) for all a use with P22
	and R41.
4,4'-METHYLENEBIS(2- METHYLCYCLOHEXANAMINE)	 * [BASF] For 4,4-methylenebis(2-methylcyclohexanamine) (DMD): Acute toxicity: In humans (epoxy resins production workers) scleroderma-like skin changes have been described revealing 4,4-methylenebis(2-methylcyclohexanamine) as most probable causative agent. In DMD production workers unspecific skin changes, but no scleroderma-like symptoms were seen. DMD is harmful via the oral route and toxic via the dermal and inhalation route: LD50 rat (oral): > 320 < 460 mg/kg bw, symptoms: unspecific; LC50 rat (inhalation, liquid aerosol): 420 mg/m3/4h, symptoms: irritation of the airways; LD50 rabbit (dermal): > 200 < 400 mg/kg bw, symptoms: cyanosis, necrotic changes at the test site. The substance is highly corrosive to skin (full thichress necrosis after 3 minutes of exposure) and may cause severe damage to eyes. In the guinea pig maximization test the substance showed no sensitising effect. In a well conducted rat 90-day inhalation study (OECD TG 413) body weight development was impaired, local irritative effects observed for the skin and upper airways (nasal muccsa) and target organ toxicity indicative of a mild anaemic effect as well as effects on the liver, testes and kidneys were seen at 48 mg/m3. No histopathological correlate was found with respect to increased absolute lung weights. At 12 mg/m3 the only effect seen was an increase in GPT levels in males. The NOAEC was 2 mg/m3. Subchronic toxicity: The substance may cause local damage as well as systemic toxicity including histopathological changes in several target organs (damage to haematological system, liver, kidney, adrenal gland and heart) after repeated oral uptake and to a lesser extent after inhalative exposure as shown in animal studies. In a subchronic toxicity study with rats (OECD TG 408), the animals were exposed to 0, 2.5, 12 and 60 mg/kg bw/day by gavage over 3 months. Liver, white and red blood cells, kidneys, adrenal glands and heart were
	Reproductive toxicity: In rat 90-day oral and inhalation studies the substance showed no direct adverse effects to the male and female reproductive organs (testes, ovaries and uterus examined). The observed effects on testes being a secondary nonspecific consequence of the severe systemic toxicity (e.g. decrease in body weight) seen at the same dose level. Developmental toxicity: In a developmental toxicity study (OECD TG 414) the DMD (0, 5, 15 or 45 mg/kg bw/day) was administered from day 6 to 19 post-coitum orally by gavage to rats. The NOAEL for maternal toxicity was 5 mg/kg bw/day. Slight foetotoxicity (retardation of ossification of skull bones) without teratogenicity was observed at 45 mg/kg bw/day, together with severely reduced body weight of the dams. The NOAEL for developmental toxicity was 15 mg/kg bw/day. The material may produce respiratory tract irritation. Symptoms of pulmonary irritation may include coughing, wheezing, laryngitis, shortness of breath, headache, nausea, and a burning sensation. Unlike most organs, the lung can respond to a chemical insult or a chemical agent, by first removing or neutralising the irritant and then repairing the damage (inflammation of the lungs may be a consequence).
	spongy layer (spongiosis) and intracellular oedema of the epidermis. Triethylenetetramine (TETA) is a severe irritant to skin and eyes and induces skin sensitisation. TETA is of moderate acute toxicity: LD50(oral, rat) > 2000 mg/kg bw, LD50(dermal, rabbit) = 550 - 805 mg/kg bw, Acute exposure to saturated
TETRAETHYLENEPENTAMINE	 vapour via inhalation was tolerated without impairment. Exposure to to aerosol leads to reversible irritations of the mucous membranes in the respiratory tract. Following repeated oral dosing via drinking water only in mice but not in rats at concentration of 3000 ppm there were signs of impairment. The NOAEL is 600 ppm [92 mg/kg bw (oral, 90 days)]. Lifelong dermal application to mice (1.2 mg/mouse) did not result in tumour formation. There are differing results of the genetic toxicity for TETA. The positive results of the in vitro tests may be the result of a direct genetic action as well as a result of an interference with essential metal ions. Due to this uncertainty of the in vitro tests, the genetic toxicity of TETA has to be assessed on the basis of in vivo tests. There are no human data on reproductive toxicity (fertility assessment). The analogue diethylenetriamine had no effects on reproduction. TETA shows developmental toxicity in animal studies if the chelating property of the substance is effective. The NOEL is 830 mg/kg bw (oral). Experience with female patients suffering from Wilson's disease demonstrated that no miscarriages and no foetal abnormalities occur during treatment with TETA In rats, there are several studies concerning developmental toxicity. The oral treatment of rats with 830 or 1670 mg/kg bw only in the highest dose group increased foetal abnormalities in 27/44 fetus (69,2 %) were recorded, when simultaneously the copper content of the feed was reduced. Copper supplementation in the feed reduced significant the fetal abnormalities of the highest dose group to 3/51 (6,5 % foetus. These findings suggest that the developmental toxicity is produced as a secondary consequence of the chelating properties of TETA.
NAPHTHA PETROLEUM, HEAVY ALKYLATE	For Low Boiling Point Naphthas (LBPNs): Acute toxicity: LBPNs generally have low acute toxicity by the oral (median lethal dose [LD50] in rats > 2000 mg/kg-bw), inhalation (LD50 in rats > 5000 mg/m3) and dermal (LD50 in rabbits > 2000 mg/kg-bw) routes of exposure Most LBPNs are mild to moderate eye and skin irritants in rabbits, with the exception of heavy catalytic cracked and heavy catalytic reformed naphthas, which have higher primary skin irritation indices. Sensitisation: LBPNs do not appear to be skin sensitizers, but a poor response in the positive control was also noted in these studies Repeat dose toxicity: The lowest-observed-adverse-effect concentration (LOAEC) and lowest-observed-adverse-effect level (LOAEL) values identified following short-term (2-89 days) and subchronic (greater than 90 days) exposure to the LBPN substances. These values were determined for a variety of endpoints after considering the toxicity data for all LBPNs in the group. Most of the studies were carried out by the inhalation route of exposure. Renal effects, including increased kidney weight, renal lesions (renal tubule dilation, necrosis) and hyaline droplet formation, observed in male rats exposed orally or by inhalation to most LBPNs, were considered species- and sex-specific These effects were determined to be due to a mechanism of action not relevant to humans -specifically, the interaction between hydrocarbon metabolites and alpha-2-microglobulin, an enzyme not produced in substantial amounts in female rats, mice and other species, including humans. The resulting nephrotoxicity and subsequent carcinogenesis in male rats were therefore not considered in deriving LOAEC/LOAEL values. Only a limited number of studies of short-term and subchronic duration were identified for site-restricted LBPNs. The lowest LOAEC identified in these studies, via the inhalation route, is 5475 mg/m3, based on a concentration-related increase in liver weight in both male and female rats

following a 13-week exposure to light catalytic cracked naphtha. Shorter exposures of rats to this test substance resulted in nasal irritation at 9041 mg/m3

No systemic toxicity was reported following dermal exposure to light catalytic cracked naphtha, but skin irritation and accompanying histopathological changes were increased, in a dose-dependent manner, at doses as low as 30 mg/kg-bw per day when applied 5 days per week for 90 days in rats

No non-cancer chronic toxicity studies (= 1 year) were identified for site-restricted LBPNs and very few non-cancer chronic toxicity studies were identified for other LBPNs. An LOAEC of 200 mg/m3 was noted in a chronic inhalation study that exposed mice and rats to unleaded gasoline (containing 2% benzene). This inhalation LOAEC was based on ocular discharge and ocular irritation in rats. At the higher concentration of 6170 mg/m3, increased kidney weight was observed in male and female rats (increased kidney weight was also observed in males only at 870 mg/m3). Furthermore, decreased body weight in male and female mice was also observed at 6170 mg/m3

A LOAEL of 714 mg/kg-bw was identified for dermal exposure based on local skin effects (inflammatory and degenerative skin changes) in mice following application of naphtha for 105 weeks. No systemic toxicity was reported.

Genotoxicity:

Although few genotoxicity studies were identified for the site-restricted LBPNs, the genotoxicity of several other LBPN substances has been evaluated using a variety of in vivo and in vitro assays. While in vivo genotoxicity assays were negative overall, the in vitro tests exhibited mixed results.

For in vivo genotoxicity tests, LBPNs exhibited negative results for chromosomal aberrations and micronuclei induction, but exhibited positive results in one sister chromatid exchange assay although this result was not considered definitive for clastogenic activity as no genetic material was unbalanced or lost. Mixtures that were tested, which included a number of light naphthas, displayed mixed results (i.e., both positive and negative for the same assay) for chromosomal aberrations and negative results for the dominant lethal mutation assay. Unleaded gasoline (containing 2% benzene) was tested for its ability to induce unscheduled deoxyribonucleic acid (DNA) synthesis (UDS) and replicative DNA synthesis (RDS) in rodent hepatocytes and kidney cells. UDS and RDS were induced in mouse hepatocytes via oral exposure and RDS was induced in rat kidney cells via oral and inhalation exposure. Unleaded gasoline (benzene content not stated) exhibited negative results for chromosomal aberrations and the dominant lethal mutation assay and mixed results for atypical cell foci in rodent renal and hepatic cells. For in vitro genotoxicity studies, LBPNs were negative for six out of seven Ames tests, and were also negative for UDS and for forward mutations LBPNs exhibited mixed or equivocal results for the mouse lymphoma and sister chromatid exchange assays, as well as for cell transformation

and positive results for one bacterial DNA repair assay. Mixtures that were tested, which included a number of light naphthas, displayed negative results for the Ames and mouse lymphoma assays Gasoline exhibited negative results for the Ames test battery, the sister chromatid exchange assay and for one mutagenicity assay. Mixed results were observed for UDS and the mouse lymphoma assay. While the majority of in vivo genotoxicity results for LBPN substances are negative, the potential for genotoxicity of LBPNs as a group cannot be

while the majority of in vivo genotoxicity results for LBPN substances are negative, the potential for genotoxicity of LBPNs as a group cannot be discounted based on the mixed in vitro genotoxicity results.

Carcinogenicity:

Although a number of epidemiological studies have reported increases in the incidence of a variety of cancers, the majority of these studies are considered to contain incomplete or inadequate information. Limited data, however, are available for skin cancer and leukemia incidence, as well as mortality among petroleum refinery workers. It was concluded that there is limited evidence supporting the view that working in petroleum refineries entails a carcinogenic risk (Group 2A carcinogen). IARC (1989a) also classified gasoline as a Group 2B carcinogen; it considered the evidence for carcinogenicity in humans from gasoline to be inadequate and noted that published epidemiological studies had several limitations, including a lack of exposure data and the fact that it was not possible to separate the effects of combustion products from those of gasoline itself. Similar conclusions were drawn from other reviews of epidemiological studies for gasoline (US EPA 1987a, 1987b). Thus, the evidence gathered from these epidemiological studies is considered to be inadequate to conclude on the effect s of the set of LBPN substances.

No inhalation studies assessing the carcinogenicity of the site-restricted LBPNs were identified. Only unleaded gasoline has been examined for its carcinogenic potential, in several inhalation studies. In one study, rats and mice were exposed to 0, 200, 870 or 6170 mg/m3 of a 2% benzene formulation of the test substance, via inhalation, for approximately 2 years. A statistically significant increase in hepatocellular adenomas and carcinomas, as well as a non-statistical increase in renal tumours, were observed at the highest dose in female mice. A dose-dependent increase in the incidence of primary renal neoplasms was also detected in male rats, but this was not considered to be relevant to humans, as discussed previously.Carcinogenicity was also assessed for unleaded gasoline, via inhalation, as part of initiation/promotion studies. In these studies, unleaded gasoline did not appear to initiate tumour formation, but did show renal cell and hepatic tumour promotion ability, when rats and mice were exposed, via inhalation, for durations ranging from 13 weeks to approximately 1 year using an initiation/promotion protocol However, further examination of data relevant to the composition of unleaded gasoline demonstrated that this is a highly-regulated substance; it is expected to contain a lower percentage of benzene and has a discrete component profile when compared to other substances in the LBPN group.

Both the European Commission and the International Agency for Research on Cancer (IARC) have classified LBPN substances as carcinogenic. All of these substances were classified by the European Commission (2008) as Category 2 (R45: may cause cancer) (benzene content = 0.1% by weight). IARC has classified gasoline, an LBPN, as a Group 2B carcinogen (possibly carcinogenic to humans) and "occupational exposures in petroleum refining" as Group 2A carcinogens (probably carcinogenic to humans).

Several studies were conducted on experimental animals to investigate the dermal carcinogenicity of LBPNs. The majority of these studies were conducted through exposure of mice to doses ranging from 694-1351 mg/kg-bw, for durations ranging from 1 year to the animals' lifetime or until a tumour persisted for 2 weeks. Given the route of exposure, the studies specifically examined the formation of skin tumours. Results for carcinogenicity via dermal exposure are mixed. Both malignant and benign skin tumours were induced with heavy catalytic cracked naphtha, light

straight-run naphtha and naphtha Significant increases in squamous cell carcinomas were also observed when mice were dermally treated with Stoddard solvent, but the latter was administered as a mixture (90% test substance), and the details of the study were not available. In contrast, insignificant increases in tumour formation or no tumours were observed when light alkylate naphtha, heavy catalytic reformed naphtha, sweetened naphtha, light catalytically cracked naphtha

or unleaded gasoline was dermally applied to mice. Negative results for skin tumours were also observed in male mice dermally exposed to sweetened naphtha using an initiation/promotion protocol.

Reproductive/ Developmental toxicity:

No reproductive or developmental toxicity was observed for the majority of LBPN substances evaluated. Most of these studies were carried out by inhalation exposure in rodents.

NOAEC values for reproductive toxicity following inhalation exposure ranged from 1701 mg/m3 (CAS RN 8052-41-3) to 27 687 mg/m3 (CAS RN 64741-63-5) for the LBPNs group evaluated, and from 7690 mg/m3 to 27 059 mg/m3 for the site-restricted light catalytic cracked and full-range catalytic reformed naphthas. However, a decreased number of pups per litter and higher frequency of post-implantation loss were observed following inhalation exposure of female rats to hydrotreated heavy naphtha (CAS RN 804742-48-9) at a concentration of 4679 mg/m3, 6 hours per day, from gestational days 7-20. For dermal exposures, NOAEL values of 714 mg/kg-bw (CAS RN 8030-30-6) and 1000 mg/kg-bw per day (CAS RN 80313-02-0) were noted. For oral exposures, no adverse effects on reproductive parameters were reported when rats were given site-restricted light catalytic cracked naphtha at 2000 mg/kg on gestational day 13.

For most LBPNs, no treatment-related developmental effects were observed by the different routes of exposure However, developmental toxicity was observed for a few naphthas. Decreased foetal body weight and an increased incidence of ossification variations were observed when rat dams were exposed to light aromatized solvent naphtha, by gavage, at 1250 mg/kg-bw per day. In addition, pregnant rats exposed by inhalation to hydrotreated heavy naphtha at 4679 mg/m3 delivered pups with higher birth weights. Cognitive and memory impairments were also observed in the offspring.

Low Boiling Point Naphthas [Site-Restricted]

Studies indicate that normal, branched and cyclic paraffins are absorbed from the mammalian gastrointestinal tract and that the absorption of n-paraffins is inversely proportional to the carbon chain length, with little absorption above C30. With respect to the carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent that iso- or cyclo-paraffins.

The major classes of hydrocarbons have been shown to be well absorbed by the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are ingested in association with dietary lipids. The dependence of hydrocarbon absorption on concomitant triglyceride

		digestion and absorption, is known as the 'hydrocarbon continuum hypothesis', and asserts that a series of solubilising phases in the intestinal lumen, created by dietary triglycerides and their digestion products, afford hydrocarbons a route to the lipid phase of the intestinal absorptive cell (entercoyte) membrane. While some hydrocarbons may traverse the mucosal epithelium unmetabolised and appear as solutes in lipoprotein particles in intestinal lymph, there is evidence that most hydrocarbons partially separate from nutrient lipids and undergo metabolic transformation in the entercoyte. The entercoyte may play a major role in determining the proportion of an absorbed hydrocarbon that, by escaping initial biotransformation, becomes available for deposition in its unchanged form in peripheral tissues such as adipose tissue, or in the liver. for perioleum: Altered mental state, drowsiness, peripheral motor neuropathy, irreversible brain damage (so-called Petrol Sniffer's Encephalopathy), delirium, seizures, and sudden death have been reported from repeated overexposure to some hydrocarbon solvents, naphthas, and gasoline This product may contains benzene which his known to cause acute myeloid leukaemia and n-hexane which has been shown to metabolize to compounds which are neuropathic. This product contains toluene. There are indications from animal studies that prolonged exposure to high concentrations of toluene may lead to hearing loss. This product contains thyl benzene and naphthalene from which there is evidence of tumours in rodents Carcinogenicity : Inhalation exposure to mitagenicity studies on gasoline and gasoline blending streams, which use a wide variety of endpoints and give predominantly negative results. All in vivo studies in animals and recent studies in exposed humans (e.g. petrol service station attendants) have shown negative results. All in vivo studies in animals and recent studies in exposed humans (e.g. petrol service station attendants) have shown negative results. All in vivo studies
	PHENOL	but not in temales and, more importantly, not in humans. The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing.
832HD Potting Co BRAN TETRAETH' 4,4'- METHYLCYO TETRAETH'	-B Black 1:1 Epoxy and Encapsulating impound (Part B) & 4-NONYLPHENOL, ICHED & TALL OIL/ YLENEPENTAMINE POLYAMIDES & METHYLENEBIS(2- CLOHEXANAMINE) & YLENEPENTAMINE & PHENOL	Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.
832HD Potting Compou TETRAETH TETRAETH	-B Black 1:1 Epoxy and Encapsulating ind (Part B) & TALL OIL/ YLENEPENTAMINE POLYAMIDES & YLENEPENTAMINE	The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. Handling ethyleneamine products is complicated by their tendency to react with other chemicals, such as carbon dioxide in the air, which results in the formation of solid carbamates. Because of their ability to produce chemical burns, skin rashes, and asthma-like symptoms, ethyleneamines also require substantial care in handling. Higher molecular weight ethyleneamine may cause irreparable damage, even blindness. A single, short exposure to ethyleneamines, may cause severe skin burns, while a single, prolonged exposure may result in the material being absorbed through the skin in harmful amounts. Exposures have caused allergic skin reactions in some individuals. Single dose oral toxicity of ethyleneamines is low. The oral LD50 for rats is in the range of 1000 to 4500 mg/kg for the ethyleneamines. In general, the low-molecular weight polyamines have been positive in the Ames assay, increase sister chromatid exchange in Chinese hamster ovary (CHO) cells, and are positive for unscheduled DNA synthesis although they are negative in the mouse micronucleus assay. It is believed that the po
832HD Potting Compou TETRAETH	-B Black 1:1 Epoxy and Encapsulating Ind (Part B) & TALL OIL/ YLENEPENTAMINE POLYAMIDES	For imidazoline surfactants (amidoamine/ imidazoline - AAIs) All substances within the AAI group show the same reactive groups, show similar composition of amide, imidazoline, and some dimer structures of both, with the length of original EA amines used for production as biggest difference. Inherent reactivity and toxicity is not expected to differ much between these substances. All in vivo skin irritation/corrosion studies performed on AAI substances all indicate them to be corrosive following 4 hour exposure. There do not seem to be big differences in response with the variation on EA length used for the production of the AAI. The available for AAI substances indicate that for AAI based on shorter polyethyleneamines (EA), higher toxicity is observed compared to AAI based on longer EA. The forming of imidazoline itself does not seem to play a significant role. For cross-reading in general Fatty acid reaction product with diethylenetriamine (AAI-DETA) therefore represents the worst case. In series of 28-day and combined repeated dose/reproduction screening toxicity studies (OECD 422) AAI-DETA has shown the highest level of toxicity Acute oral exposure of tall oil + triethylenepentamine (TEPA) show limited acute toxicity, with a LD50 above 2000 mg/kg bw. Hence no classification is required. Acute dermal testing with corrosive materials is not justified. As a consequence no classification can be made for acute dermal toxicity. Effects will be characterised by local tissue damage. Systemic uptake via skin is likely to be very limited. The low acute oral toxicity indicate a low systemic toxicity. For dermal exposure no good overall NOAEL can be established as effects are rather characterized by local corrosive effects that are related to duration, quantity and concentration, than by systemic toxicity due to dermal uptake. The mode of action for AAI follows from its structure, consisting of an apolar fatty acid chain and a polar end of a primary amine from the polyethyleneamine. The structure can disrupt the cytopla

Page 20 of 29

832HD-B Black 1:1 Epoxy Potting and Encapsulating Compound (Part B)

No classification for acute dermal toxicity is therefore indicated.

Also for acute inhalation toxicity information for classification is lacking, and is testing not justified. Due to very low vapour pressure is the likelihood of exposure low.

AAI do not contain containing aliphatic, alicyclic and aromatic hydrocarbons and have a relatively high viscosity and so do not indicate an immediate concern for aspiration hazard.

Various studies with different AAI indicate that these substances can cause dermal sensitisation.

All substances within the AAI group show the same reactive groups, show similar composition of amide, imidazoline, and some dimer structures of both, with the length of original EA amines used for production as biggest difference. Inherent reactivity and toxicity is not expected to differ much between these substances, aspects which determine sensitization.

The actual risk of sensitisation is probably low, as AAI are corrosive to skin and consequently exposure will be low due to necessary protective measures to limit dermal exposure.

The likelihood for exposure via inhalation and thus experience respiratory irritation or becoming sensitised to AAI, is very low considering the high boiling point (> 300 deg C) and very low vapour pressure (0.00017 mPa at 25 deg C for diethylenetriamine (DETA) based AAI). In case of high exposure by inhalation, local effects will be more prominent then possible systemic effects considering the low systemic toxicity seen in acute oral toxicity testing

However, some calculations can be made for systemic effects following short-term inhalation exposure by extrapolating information from an OECD 422 study on 'tall oil reaction products with tetraethylenepentamine showing a NOAEL of 300 mg/kg/day. This would certainly be protective for levels of acute inhalation expected to lead to similar systemic exposure levels.

The corrected 8 hr inhalation NOAEC for workers is NOAEL (300 mg/kg) * 1.76 mg/m3 = 529 mg/m3 (assuming no difference in absorption following oral and inhalation exposure). Assessment factors further applied: No interspecies factor is needed due to allometric scaling applied in calculation of corrected NOAEC. Further combined inter-/intra-species for workers AF = 3 (ECETOC concept). As this involves acute exposures, no extrapolation for duration is needed.

This results in a DNEL of 529/3 = 176 mg/m3. A short term/acute exposure at this level can be assumed not to lead to systemic toxicity. Repeat dose toxicity:

A combined repeated dose/reproduction screening toxicity study according to OECD 422 with Fatty acid reaction products with tetraethylenepentamine resulted to a NOAEL of 300 mg/kg bw/day, the highest dose tested. Also available data from the group of Amidoamine/Imidazoline (AAI) substances, including 90-day studies in rat and dogs on a similar substance, indicate very low toxicity.

Consequently, serious toxicity is not observed at levels requiring consideration classification for STOTS-RE Genotoxicity:

Tall oil, reaction products with tetraethylenepentamine is not mutagenic in the Salmonella typhimurium reverse mutation assay (based on test with Fatty acids C16-18, C18 unsaturated reaction products with tetraethylenepentamine), is not clastogenic in human lymphocytes, and not mutagenic in the TK mutation test with L5178Y mouse lymphoma cells.

It can therefore be concluded that tall oil, reaction products with tetraethylenepentamine not genotoxic.

Toxicity to reproduction:

The database of relevant studies available for the group of amidoamine/ imidazolines (AAI) include various OECD 422 studies and an OECD 414 study, that all show no concerns regarding reproduction or developmental toxicity. Also all already available data from the group of AAI substances, including a 90-day study in dogs on a similar substance, indicate low toxicity and no adverse effects on reproductive organs. REACh Dossier

For quaternary ammonium compounds (QACs):

Quaternary ammonium compounds (QACs) are cationic surfactants. They are synthetic organically tetra-substituted ammonium compounds, where the R substituents are alkyl or heterocyclic radicals (where hydrogen atoms remain unsubstituted, the term 'secondary- or 'tertiaryammonium compounds' is preferred).

A common characteristic of these synthetic compounds is that one of the R's is a long-chain hydrophobic aliphatic residue The cationic surface active compounds are in general more toxic than the anionic and non-ionic surfactants. The positively-charged cationic portion is the functional part of the molecule and the local irritation effects of QACs appear to result from the quaternary ammonium cation. Due to their relative ability to solubilise phospholipids and cholesterol in lipid membranes, QACs affect cell permeability which may lead to cell death. Further QACs denature proteins as cationic materials precipitate protein and are accompanied by generalised tissue irritation. It has been suggested that the experimentally determined decrease in acute toxicity of QACs with chain lengths above C16 is due to decreased water solubility.

In general it appears that QACs with a single long-chain alkyl groups are more toxic and irritating than those with two such substitutions, The straight chain aliphatic QACs have been shown to release histamine from minced guinea pig lung tissue. However, studies with benzalkonium chloride have shown that the effect on histamine release depends on the concentration of the solution. When cell suspensions (11% mast cells) from rats were exposed to low concentrations, a decrease in histamine release was seen. When exposed to high concentrations the opposite result was obtained.

In addition, QACs may show curare-like properties (specifically benzalkonium and cetylpyridinium derivatives, a muscular paralysis with no involvement of the central nervous system. This is most often associated with lethal doses Parenteral injections in rats, rabbits and dogs have resulted in prompt but transient limb paralysis and sometimes fatal paresis of the respiratory muscles. This effect seems to be transient. From human testing of different QACs the generalised conclusion is obtained that all the compounds investigated to date exhibit similar toxicological properties.

Acute toxicity: Studies in rats have indicated poor intestinal absorption of QACs. Acute toxicity of QACs varies with the compound and, especially, the route of administration. For some substances the LD50 value is several hundreds times lower by the i.p. or i.v. than the oral route, whereas toxicities between the congeners only differ in the range of two to five times.

At least some QACs are significantly more toxic in 50% dimethyl sulfoxide than in plain water when given orally

Probably all common QAC derivatives produce similar toxic reactions, but as tested in laboratory animals the oral mean lethal dose varies with the compound .

Oral toxicity: LD50 values for QACs have been reported within the range of 250-1000 mg/kg for rats, 150-1000 mg/kg for mice, 150-300 mg/kg for guinea pigs and about 500 mg/kg b.w. for rabbits and dogs. The ranges observed reflect differences in the study designs of these rather old experiments as well as differences between the various QACs.

The oral route of administration was characterised by delayed deaths, gastrointestinal lesions and respiratory and central nervous system depression. It was also found that given into a full stomach, the QACs lead to lower mortality and fewer gastrointestinal symptoms. This support the suggestion of an irritating effect

Dermal toxicity: It has been concluded that the maximum concentration that did not produce irritating effect on intact skin is 0.1%. Irritation became manifest in the 1-10% range. Concentrations below 0.1% have caused irritation in persons with contact dermatitis or broken skin. Although the absorption of QACs through normal skin probably is of less importance than by other routes , studies with excised guinea pig skin have shown that the permeability constants strongly depends on the exposure time and type of skin

Sensitisation: Topical mucosal application of QACs may produce sensitisation. Reports on case stories and patch test have shown that compounds such as benzalkonium chloride, cetalkonium chloride and cetrimide may possibly act as sensitisers. However, in general it is suggested that QACs have a low potential for sensitising man. It is difficult to distinguish between an allergic and an irritative skin reaction due to the inherent skin irritating effect of QACs.

Long term/repeated exposure:

Inhalation: A group of 196 farmers (with or without respiratory symptoms) were evaluated for the relationship between exposure to QACs (unspecified, exposure levels not given) and respiratory disorders by testing for lung function and bronchial responsiveness to histamine. After histamine provocation statistically significant associations were found between the prevalence of mild bronchial responsiveness (including asthma-like symptoms) and the use of QACs as disinfectant. The association seems even stronger in people without respiratory symptoms. Genetic toxicity: QACs have been investigated for mutagenicity in microbial test systems. In Ames tests using Salmonella typhimurium with and without metabolic activation no signs of mutagenicity has been observed. Negative results were also obtained in E. coli reversion and B. subtilis rec assays. However, for benzalkonium chloride also positive and equivocal results were seen in the B. subtilis rec assays. For Fatty Nitrogen Derived (FND) Amides (including several high molecular weight alkyl amino acid amides)

	The chemicals in the Fatty Nitrogen Derived (FND) Amides of surfactants are similar to the class in general as to physical/chemical properties, environmental fate and toxicity. Human exposure to these chemicals is substantially documented. The Fatty nitrogen-derived amides (FND amides) comprise four categories: Subcategory II: Substituted Amides Subcategory II: Substituted Amides Subcategory II: Indiazole Derivatives Subcategory II: Indiazole Derivatives Subcategory IV: FND Amphoterics Acute Toxicity: The low acute oral toxicity of the FND Amides is well established across all Subcategories by the available data. The limited acute toxicity of these chemicals is also confirmed by four acute dermal and two acute inhalation studies. Repeated Dose and Reproductive Toxicity: Two subcritoric toxicity studies demonstrating jour toxicity are available for Subcategory I chemicals. In addition, a 5-day repeated dose study for a third chemical confirmed the minimal toxicity of these chemicals. Since the Subcategory I chemicals are major components of many Subcategory II chemicals, and based on the low repeat-dose toxicity studies adequately support Subcategory II. Two subchronic toxicity studies in Subcategory II chemicals indicated a low order of repeat dose toxicity for the FND Amides Imidazole derivatives. For Subcategory IV, two subchronic toxicity studies for one of the chemicals indicated a low order of repeat-dose toxicity for the FND amphoteric salts similar to that seen in the other categories. Genetic Toxicity in vitro: Based on the lack of effect of one or more chemicals in each subcategory I and third study for a chemical in Subcategory III are available. The studies indicate these chemicals are not developmental toxicants, a expected based on their structures, molecular weights, hyvical properties and knowledge of similar chemicals. As above for repeat-dose toxicity studies (approximately 35 studies for the subcategory II. In evailable. The studies indicate these chemicals, it is also useful review the availa
	The differences in chain length, degree of saturation of the carbon chains, source of the natural oils, or addition of an amino group in the chain would not be expected to have an impact on the toxicity profile. This conclusion is supported by a number of studies in the FND family of chemicals (amines, cationics, and amides as separate categories) that show no differences in the length or degree of saturation of the alkyl substituents and is also supported by the limited toxicity of these long-chain substituted chemicals.
4-NONYLPHENOL, BRANCHED & PHENOL	The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.
4-NONYLPHENOL, BRANCHED & TETRAETHYLENEPENTAMINE & PHENOL	The material may produce severe skin irritation after prolonged or repeated exposure, and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) thickening of the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Prolonged contact is unlikely, given the severity of response, but repeated exposures may produce severe ulceration.
TALL OIL/ TETRAETHYLENEPENTAMINE POLYAMIDES & 4,4'-METHYLENEBIS(2- METHYLCYCLOHEXANAMINE) & TETRAETHYLENEDENTAMINE	The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.
TALL OIL/ TETRAETHYLENEPENTAMINE POLYAMIDES & TETRAETHYLENEPENTAMINE	For alkyl polyamines: The alkyl polyamines cluster consists of organic compounds containing two terminal primary amine groups and at least one secondary amine group. Typically these substances are derivatives of ethylenediamine, propylenediamine or hexanediamine. The molecular weight range for the entire cluster is relatively narrow, ranging from 103 to 232 Acute toxicity of the alkyl polyamines cluster is low to moderate via oral exposure and a moderate to high via dermal exposure. Cluster members have been shown to be eye irritants, skin irritants, and skin sensitisers in experimental animals. Repeated exposure in rats via the oral route indicates a range of toxicity from low to high hazard. Most cluster members gave positive results in tests for potential genotoxicity. Limited carcinogenicity studies on several members of the cluster showed no evidence of carcinogenicity. Unlike aromatic amines, aliphatic amines are not expected to be potential carcinogens because they are not expected to undergo metabolic activation, nor would activated intermediates be stable enough to reach target macromolecules. Polyamines potentiate NMDA induced whole-cell currents in cultured striatal neurons Tetraethylenepentamine (TEPA) has a low acute toxicity when administered orally to rats (LD50 =3250 mg/kg). In an acute inhalation toxicity study with saturated vapor and whole body exposure, the LC50 was calculated to be >9.9 ppm (highest dose tested). TEPA is corrosive to the skin and eyes of rabbits. TEPA is a skin sensitiser in the guinea pig. Dermal acute toxicity LD50 values in the rabbit range from 660 - 1260 mg/kg. The higher toxicity via the dermal route is most likely due to the corrosive nature of TEPA to the skin whereas TEPA would be neutralized by stomach acid. The results of a 28-day repeated dose dermal toxicity study of TEPA indicated a systemic toxicity NOEL of 200 mg/kg/day and a dermal toxicity NOEL (local) of 50 mg/kg/day. The dermal LOAEL was 276 mg/kg/day. In addition, in a repeat dose study

Continued...

Subsequent studies where the diet was supplemented with copper resulted in a decrease of foetal abnormalities. There were no standard fertility studies available. However, there were no effects on the gonads observed in a 90-day drinking water study in rats and mice as described above. In the Ames Salmonella assay, TEPA was found to be positive both with and without metabolic activation. TEPA was found to increase sister chromatid exchange in CHO cells and was considered positive in a UDS assay using rat hepatocytes. TEPA was not considered genotoxic in the mouse micronucleus assay and had equivocal results in the two dominant lethal assays in Drosophila melanogaster. Again, it is believed that the positive results are based upon TEPA's ability to chelate copper.

👽 – Data available to make classification

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	✓	Reproductivity	✓
Serious Eye Damage/Irritation	×	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	*	STOT - Repeated Exposure	×
Mutagenicity	✓	Aspiration Hazard	×
		Legend: 🗙 – Data either n	not available or does not fill the criteria for classification

11.2.1. Endocrine Disruption Properties

Many chemicals may mimic or interfere with the body's hormones, known as the endocrine system. Endocrine disruptors are chemicals that can interfere with endocrine (or hormonal) systems. Endocrine disruptors interfere with the synthesis, secretion, transport, binding, action, or elimination of natural hormones in the body. Any system in the body controlled by hormones can be derailed by hormone disruptors. Specifically, endocrine disruptors may be associated with the development of learning disabilities, deformations of the body various cancers and sexual development problems. Endocrine disrupting chemicals cause adverse effects in animals. But limited scientific information exists on potential health problems in humans. Because people are typically exposed to multiple endocrine disruptors at the same time, assessing public health effects is difficult.

SECTION 12 Ecological information

12.1. Toxicity

832HD-B Black 1:1 Epoxy	Endpoint Test Duration (hr)			Species Value		ue Source		e	
Compound (Part B)	Not Available Not Available Not Available Not Available		lable	ble Not Available					
	Endpoint	Tes	Test Duration (hr)		Species		Value		Source
	NOEC(ECx)	96h		Crusta	cea		0.018mg/l		1
4-nonylphenol, branched	EC50	72h		Algae o	Algae or other aquatic plants		0.027-0.03	3mg/l	4
	LC50	96h		Fish	Fish		0.05mg/l		2
	EC50	48h		Crusta	cea		0.13mg/l		2
	EC50	96h		Algae o	or other aquatic plants		0.027mg/l		1
	Endpoint	Тог	et Duration (br)	Sno	cios		Val	10	Source
	EC50	72		Alge	e or other aquatic plant	e	0.6	38ma/l	2
tall oil/ tetraethylenepentamine	1,050	96		Fish			0.0	9ma/l	2
polyamides	EC50	48	1	Crus	stacea		0.14	3ma/l	2
	EC50(ECx)	48]	Crus	stacea		0.18	3ma/l	2
		1.0	• 						
	En du sint	т	Test Duration (br) Species				C		
	BCE	1			sh		V.		- Source
		7	2h		nae or other aquatic pla	nte	0	13ma/l	2
4,4'-methylenebis(2-	FC50	7	2h		gae or other aquatic pla	nts	2	1ma/l	1
methylcyclohexanamine)	1,050	90	Sh	Fis	sh		2	1.5mg/l	1
	EC50	48	3h	Cr	ustacea		4	57ma/l	2
	EC50	96	96h		ae or other aquatic pla	nts	1.	6ma/l	1
			-						
	Endpoint	Т	Test Duration (hr)		Species		V	alue	Source
4 - 4 4 4	EC50	72	72h		Algae or other aquatic plants		2.	1mg/l	1
tetraetnylenepentamine	EC50	48	3h	Cr	ustacea		24	1.1mg/l	1
	NOEC(ECx)	72	2h	Al	Algae or other aquatic plants		0.	5mg/l	1
	Endpoint	т	Test Duration (br)		Species			Value	Source
naphtha petroleum, heavy	NOEC(ECx)	7	72h					0.1ma/l	1
alkylate	EC50	7	2h	A	Igae or other aquatic pla	ants		13mg/l	1
	Endneint	Teat	Duration (br)	Species		14			Paura
	Enapoint	lest	st Duration (hr) Spe		cies		value		Source

	LC50	96h	Fish	2.809-5.554mg/L	4
	EC50	48h	Crustacea	3.1mg/l	1
	EC10(ECx)	504h	Crustacea	0.05mg/l	2
	EC50	96h	Algae or other aquatic plants	10.6mg/L	4
Legend:	Extracted from 1. IL	ICLID Toxicity Data 2. Europe E	CHA Registered Substances - Ecotoxicologica	al Information - Aquatic Toxicity 3	. EPIWIN Suite

3	V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment
	Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

On the basis of available evidence concerning either toxicity, persistence, potential to accumulate and or observed environmental fate and behaviour, the material may present a danger, immediate or long-term and /or delayed, to the structure and/ or functioning of natural ecosystems.

Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

Surfactants are in general toxic to aquatic organisms due to their surface-active properties. Historically, synthetic surfactants were often composed of branched alkyl chains resulting in poor biodegradability which led to concerns about their environmental effects. Today however, many of them, for example those used in large amounts, globally, as detergents, are linear and therefore readily biodegradable and considered to be of rather low risk to the environment. A linear structure of the hydrophobic chain facilitates the approach of microorganism while branching, in particular at the terminal position, inhibits biodegradabil. Also, the bioaccumulation potential of surfactants is usually low due to the hydrophilic units. Linear surfactants are not always preferred however, as some branching (that ideally does not hinder ready biodegradability) is often preferable from a performance point of view. The reduction in waste water of organic contaminants such as surfactants can either be a consequence of adsorption onto sludge or aerobic biodegradation in the biological step. Similar sorption and degradation processes occur in the environment as a consequence of direct release of surfactants in waste water will be efficiently eliminated discharge from sewage treatment plants in surface waters or the application of sewage sludge on land. However, a major part of surfactants in waste water will be efficiently eliminated in the sewage treatment plant. Although toxic to various organisms, surfactants in general only have a limited effect on the bacteria in the biological step. There are occasions however, where adverse effects have been noticed due to e.g. large accidental releases of softeners from laundry companies.

Ecotoxicity

Due to intrinsic properties of amine containing cationic surfactants river water ecotoxicity tests deliver more reproducible test results with limited uncertainty. As river water has a mitigating effect on ecotoxicity due to sorption of the amines to DOC and suspended matter a factor of 10 should be applied to the L(E)C50 to correct for the lower ecotoxicity observed.

for amides, fatty acids C18 unsat, reaction products with tetraethylenepentamine (CAS RN: 1225197-81-8)

Fish LC50 (96 h): 190 ug/l Algae ErC50 (72 h): 612 ug/l; ErC10/ NOEC: 379 ug/l

Daphnia EC50 (48 h): 240, 490 ug/l; (21 d) 75 ug/l

Biodegradability

For amidoamines/imidazolines no ready biodegradability results have been obtained.

This leads to the following environmental classification according for amidoaamines/imidazolines

Acute aquatic hazard H400 : Very toxic to aquatic life

M factor acute 10

Chronic(long-term) aquatic hazard Chronic Category 1 H410: Very toxic to aquatic life with longterm effects

M factor chronic 1

For 4,4'-methylenebis(2-methylcyclohexanamine) (DMD):

Environmental fate:

DMD has a water solubility of 3.6 g/l, a vapour pressure of 0.08 Pa and a measured log Kow of 2.51. However, due to the Lewis base character of the substance the experimental determination of the log Kow is inaccurate.

From the physico-chemical properties the hydrosphere is identified as target compartment for the substance.

Biodegradability: <10% DOC Reduction (OECD 302B/Iso 9888/EEC 88/302,C)

According to OECD criteria the substance is not biodegradable even with adapted inoculum (OECD TG 302B <1 % after 28 days) and can only be poorly eliminated in sewage water treatment plants. Due to the chemical structure of DMD hydrolysis is not likely to occur under environmental conditions.

In the atmosphere the substance is quickly degraded by photochemical attack (half life =3.1 hours). The log Koc was calculated to 3.26. It has to be considered however, that as a basic compound cyclohexylamine can additionally be bound to the soil by ion exchange.

Ecotoxicity:

DMD is considered as toxic to aquatic organisms

Fish LC50 (96 h): Leusiscus idus >22<46 mg/l

Daphnia magna EC50 (48 h): 15.2 mg/l

Green alga ErC50 (72 h): Scenedesmus subspicatus > 5 mg/l; EbC50 2.1 mg/l

For quaternary ammonium compounds (QACs):

QACs are generally white crystalline powders. Low molecular weight QACs are very soluble in water, but slightly or not at all soluble in solvents such as ether, petrol and benzene. As the molecular weight and chain lengths increases, the solubility in polar solvents (e.g. water) decreases and the solubility in non-polar solvents increases.

Environmental fate

A major part of the QACs is discharged into wastewater and removed in the biological processes of sewage treatment plant. A 90% reduction of the QACs in the water phase of sludge has been reported and alkyl di-/ trimethyl ammonium and alkyl dimethyl benzyl ammonium compounds seem almost completely degraded in sewage sludge. However, the aerobic and anaerobic biodegradability of QACs is not well investigated. Only sparse data are available concerning stability, solubility and biodegradability. In general, it seems that the biodegradability decreases with increasing numbers of alkyl chains: R(CH3)3N+ > R2(CH3)2N+ > R3(CH3)N+ . Within each category the biodegradability seems inversely proportional to the alkyl chain length. Heterocyclic QACs are less degradable than the non-cyclic.

Investigations have shown that bioaccumulation of considerable dimensions will probably not take place.

Ecotoxicity:

Quaternary ammonium compounds and their polymers may be highly toxic to fish and other aquatic organisms. The toxicity of the quaternary ammoniums is known to be greatly reduced in the environment because of preferential binding to dissolved organics in surface water.

Environmental toxicity is a function of the n-octanol/ water partition coefficient (log Pow, log Kow). Phenols with log Pow >7.4 are expected to exhibit low toxicity to aquatic organisms. However the toxicity of phenols with a lower log Pow is variable, ranging from low toxicity (LC50 values >100 mg/l) to highly toxic (LC50 values <1 mg/l) dependent on log Pow, molecular weight and substitutions on the aromatic ring. Dinitrophenols are more toxic than predicted from QSAR estimates. Hazard information for these groups is not generally available.

For surfactants

Environmental fate:

Octanol/water partition coefficients cannot easily be determined for surfactants because one part of the molecule is hydrophilic and the other part is hydrophobic. Consequently they tend to accumulate at the interface and are not extracted into one or other of the liquid phases. As a result surfactants are expected to transfer slowly, for example, from water into the flesh of fish. During this process, readily biodegradable surfactants are expected to be metabolised rapidly during the process of bioaccumulation. This was emphasised by the OECD Expert Group stating that chemicals are not to be considered to show bioaccumulation potential if they are readily biodegradable.

Surfactants show a complex solubility behaviour due to aggregation. The monomer concentration, and hence the thermodynamic activity, reaches a limiting value at the critical micelle concentration (CMC). It remains approximately constant as the total concentration is further increased. For ecotoxicological models requiring a solubility value, the critical micelle concentration is therefore the appropriate parameter describing water solubility of surface active materials.

Surfactants can form dispersions or emulsions in which the bioavailability for aquatic toxicity studies is difficult to ascertain, even with careful solution preparation. Micelle formation can result in an overestimation of the bioavailable fraction even when "solutions" are apparently formed. This presents significant problems of interpretation of aquatic toxicity test results for surface active materials. The so-called the critical micelle concentration (CMC) is is related to surface tension produced by the substance and is the key value for actual water

solubility of the substance .

Several anionic and nonionic surfactants have been investigated to evaluate their potential to bioconcentrate in fish. BCF values (BCF - bioconcentration factor) ranging from 1 to 350 were found. These are absolute maximum values, resulting from the radiolabelling technique used. In all these studies, substantial oxidative metabolism was found resulting in the highest radioactivity in the gall bladder. This indicates liver transformation of the parent compound and biliary excretion of the metabolised compounds, so that 'real' bioconcentration is overstated. After correction it can be expected that 'real' parent BCF values are one order of magnitude less than those indicated above, i.e. 'real' BCF is <100. Therefore the usual data used for classification by EU directives to determine whether a substance is 'Dangerous to the 'Environment' has little bearing on whether the use of the surfactant is environmentally acceptable.

Ecotoxicity:

Surfactant should be considered to be toxic (EC50 and LC50 values of < 10 mg/L) to aquatic species under conditions that allow contact of the chemicals with the organisms. The water solubility of the chemicals does not impact the toxicity except as it relates to the ability to conduct tests appropriately to obtain exposure of the test species. The acute aquatic toxicity generally is considered to be related to the effects of the surfactant properties on the organism and not to direct chemical toxicity. for alkylphenols and their ethoxylates, or propoxylates:

Environmental fate: Alkylphenols are ubiquitous in the environmental after the introduction, generally as wastes, of their alkoxylated forms (ethoxylates and propoxylates, for example); these are extensively used throughout industry and in the home.

Alkylphenol ethoxylates are widely used surfactants in domestic and industrial products, which are commonly found in wastewater discharges and in sewage treatment plant (STP) effluent's. Degradation of APEs in wastewater treatment plants or in the environment generates more persistent shorter-chain APEs and alkylphenols (APs) such as nonylphenol (NP), octylphenol (OP) and AP mono- to triethoxylates (NPE1, NPE2 and NPE3). There is concern that APE metabolites (NP, OP, NPE1-3) can mimic natural hormones and that the levels present in the environment may be sufficient to disrupt endocrine function in wildlife and humans. The physicochemical properties of the APE metabolites (NP, NPE1-4, OP, OPE1-4), in particular the high Kow values, indicate that they will partition effectively into sediments following discharge from STPs. The aqueous solubility data for the APE metabolites (conducted in many regions across the world have shown significant levels in samples of every environmental compartment examined. In the US, levels of NP in air ranged from 0.01 to 81 ng/m3, with seasonal trends observed. Concentrations of APE metabolites in treated wastewater effluents in the US ranged from < 0.1 to 369 ug/l, in Spain they were between 6 and 343 ug/l and concentrations up to 330 ug/l were found in the UK. Levels in sediments reflected the high partition coefficients with concentrations reported ranging from < 0.1 to 13,700 ug/kg for sediments in the US. Fish in the UK were found to contain up to 0.8 ug/kg NP in muscle tissue. APEs degraded faster in the water column than in sediment. Aerobic conditions, facilitate easier further biotransformation of APE metabolites than anaerobic conditions.

Nonylphenols are susceptible to photochemical degradation. Using natural, filtered, lake water it was found that nonylphenol had a half-life of approximately 10-15 h under continuous, noon, summer sun in the surface water layer, with a rate approximately 1.5 times slower at depths 20-25 cm. Photolysis was much slower with ethoxylated nonylphenol, and so it is unlikely to be a significant event in removal of the ethoxylates.

Air: Alkylphenols released to the atmosphere will exist in the vapour phase and is thought to be degraded by reaction with photochemically produced hydroxyl radicals, with a calculated half-life, for nonylphenol, of 0.3 days.

Water: Abiotic degradation of alkylphenol is negligible. Biodegradation does not readily take place. The half-life in surface water may be around 30 days.

Degradation: Alkylphenol ethoxylates (APES) may abiotically degrade into the equivalent alkylphenol. During degradation ethylene oxide units are cleaved off the ethylene oxide chain until only short-chain alkylphenol ethoxylates remain, typically mono- and diethylene oxides. Oxidation of these oligomers creates the corresponding carboxylic acids. This leaves several degradation products: short-chain ethoxylates, their carboxylic acids, and alkylphenols.

Biodegradation: Alkylphenols are not readily biodegradable. Several mechanisms of microbial aromatic ring degradation have been reported, the most common being formation of catechol from phenol, followed by ring scission between or adjacent to the two hydroxyl groups.

The full breakdown pathway for APES has not yet been determined, and all studies have so far focused on identification of intermediates in bacterial culture media, rather than studying cell-free systems or purified enzymes. It is, however, likely that microbial metabolism usually starts by an attack on the ethoxylate chain, rather than on the ring or the hydrophobic chain. The ethoxylate groups are progressively removed, either by ether cleavage, or by terminal alcohol oxidation followed by cleavage of the resulting carboxylic acid. Biodegradation of APEs produces less biodegradable products: alkylphenol mono- and di-ethoxylates, alkylphenoxy acetic and alkylphenoxypolyethoxy acetic acids, and alkylphenols. These metabolites frequently persist through sewage treatment and in rivers. Anaerobic conditions generally lead to the accumulation of alkylphenols. The rate of biodegradation seems to decrease with increasing length of the ethylene oxide chain.

Bioaccumulation: Metabolites of APES accumulate in organisms, with bioconcentration factors varying from ten to several thousand, depending on species, metabolite and organ. The metabolites of APES are generally more toxic than the original compounds. APES have LC50s above about 1.5 mg/l, whereas alkylphenols, such as nonylphenol, have LC50s are generally around 0.1 mg/l.

Oestrogenic activity: The role of alkyl chain length and branching, substituent position, number of alkylated groups, and the requirement of a phenolic ring structure was assessed in fish. The results showed that most alkylphenols were oestrogenic, although with 3-300 thousand times lower potency than the endogenous estrogen 17beta-estradiol. Mono-substituted tertiary alkylphenols with moderate (C4-C5) and long alkyl chain length (C8-C9) in the para position exhibited the highest oestrogenic potency. Substitution with

multiple alkyl groups, presence of substituents in the ortho- and meta-position and lack of a hydroxyl group on the benzene ring reduced the oestrogenic activity, although several oestrogenic alkylated non-phenolics were identified.

Human exposure: Alkylphenols were first found to be oestrogenic (oestrogen-mimicking) in the 1930s, but more recent research has highlighted the implications of these effects. The growth of cultured human breast cancer cells is affected by nonylphenol at concentrations as low as 1 uM (220 ug/l) or concentrations of octylphenol as low as 0.1 uM (20 ug/l). Oestrogenic effects have also been shown on rainbow trout hepatocytes, chicken embryo fibroblasts and a mouse oestrogen receptor.

The insecticide chlordecone (Kepone) shows similar behaviour to alkylphenols, accumulating in liver and adipose tissue, and eliciting oestrogenic activity. Workers exposed to this insecticide can suffer reproductive effects such as low sperm counts and sterility. In addition, the oestrogenic effects of chlordecone on MCF7 cells occur at similar concentrations to those of alkylphenols, suggesting that alkylphenols will be a similar health hazard if target cells are exposed to uM levels of these compounds.

By comparing environmental concentrations, bioconcentration factors and *in vitro* oestrogenic effect levels, current environmental levels of alkylphenolic compounds are probably high enough to affect the hormonal control systems of some organisms. It is also possible that human health could be being affected.

DO NOT discharge into sewer or waterways

12.2. Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
4-nonylphenol, branched	HIGH	HIGH
4,4'-methylenebis(2- methylcyclohexanamine)	HIGH	HIGH
tetraethylenepentamine	LOW	LOW
phenol	LOW (Half-life = 10 days)	LOW (Half-life = 0.95 days)

12.3. Bioaccumulative potential

Ingredient	Bioaccumulation
4-nonylphenol, branched	LOW (BCF = 271)
4,4'-methylenebis(2- methylcyclohexanamine)	LOW (BCF = 60)
tetraethylenepentamine	LOW (LogKOW = -3.1604)
phenol	LOW (BCF = 17.5)

12.4. Mobility in soil

Ingredient	Mobility
4-nonylphenol, branched	LOW (KOC = 56010)

Page 25 of 29

832HD-B Black 1:1 Epoxy Potting and Encapsulating Compound (Part B)

Ingredient	Mobility
4,4'-methylenebis(2- methylcyclohexanamine)	LOW (KOC = 1838)
tetraethylenepentamine	LOW (KOC = 1098)
phenol	LOW (KOC = 268)

12.5. Results of PBT and vPvB assessment

	Ρ	В	т	
Relevant available data	Not Available	Not Available	Not Av	vailable
PBT	×	×	×	
vPvB	×	×	×	
PBT Criteria fulfilled?				
vPvB No				

12.6. Endocrine Disruption Properties

The evidence linking adverse effects to endocrine disruptors is more compelling in the environment than it is in humans. Endocrine distruptors profoundly alter reproductive physiology of ecosystems and ultimately impact entire populations. Some endocrine-disrupting chemicals are slow to break-down in the environment. That characteristic makes them potentially hazardous over long periods of time. Some well established adverse effects of endocrine disruptors in various wildlife species include; eggshell-thinning, displayed of characteristics of the opposite sex and impaired reproductive development. Other adverse changes in wildlife species that have been suggested, but not proven include; reproductive abnormalities, immune dysfunction and skeletal deformaties.

12.7. Other adverse effects

Not Available

SECTION 13 Disposal considerations

13.1. Waste treatment methods	8
Product / Packaging disposal	 Containers may still present a chemical hazard/ danger when empty. Return to supplier for reuse/ recycling if possible. Otherwise: If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. Where possible retain label warnings and SDS and observe all notices pertaining to the product. DO NOT allow wash water from cleaning or process equipment to enter drains. It may be necessary to collect all wash water for treatment before disposal. In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. Where in doubt contact the responsible authority. Recycle wherever possible. Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. Treat and neutralise at an approved treatment plant. Treatment should involve: Neutralisation followed by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus. Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.
Waste treatment options	Not Available
Sewage disposal options	Not Available

SECTION 14 Transport information

Labels Required

Land transport (ADR-RID)

14.1. UN number	1760			
14.2. UN proper shipping name	CORROSIVE LIQUID, N.O.S. (contains tetraethylenepentamine and 4-nonylphenol, branched)			
14.3. Transport hazard class(es)	Class 8 Subrisk Not Applicable			
14.4. Packing group	П			
14.5. Environmental hazard	Environmentally hazardous			
14.6. Special precautions for user	Hazard identification (Kemler)80Classification codeC9Hazard Label8			

Special provisions	274
Limited quantity	1 L
Tunnel Restriction Code	2 (E)

Air transport (ICAO-IATA / DGR)

14.1. UN number	1760		
14.2. UN proper shipping name	Corrosive liquid, n.o.s. * (contains tetraethylenepentamine and 4-nonylphenol, branched)		
14.3. Transport hazard class(es)	ICAO/IATA Class ICAO / IATA Subrisk ERG Code	ICAO/IATA Class8ICAO / IATA SubriskNot ApplicableERG Code8L	
14.4. Packing group	П		
14.5. Environmental hazard	Environmentally hazardous		
14.6. Special precautions for user	Special provisions Cargo Only Packing Instructions Cargo Only Maximum Qty / Pack Passenger and Cargo Packing Instructions Passenger and Cargo Maximum Qty / Pack Passenger and Cargo Limited Quantity Packing Instructions Passenger and Cargo Limited Maximum Qty / Pack		A3 A803 855 30 L 851 1 L Y840 0.5 L

Sea transport (IMDG-Code / GGVSee)

14.1. UN number	1760		
14.2. UN proper shipping name	CORROSIVE LIQUID, N.O.S. (contains tetraethylenepentamine and 4-nonylphenol, branched)		
14.3. Transport hazard class(es)	IMDG Class 8 IMDG Subrisk N	lot Applicable	
14.4. Packing group	П		
14.5. Environmental hazard	Marine Pollutant		
14.6. Special precautions for user	EMS Number Special provisions Limited Quantities	F-A , S-B 274 1 L	

Inland waterways transport (ADN)

14.1. UN number	1760		
14.2. UN proper shipping name	CORROSIVE LIQUID, N.O.S. (contains tetraethylenepentamine and 4-nonylphenol, branched)		
14.3. Transport hazard class(es)	8 Not Applicable		
14.4. Packing group	11		
14.5. Environmental hazard	Environmentally hazardous		
14.6. Special precautions for user	Classification code Special provisions Limited quantity Equipment required Fire cones number	C9 274 1 L PP, EP 0	

14.7. Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

14.8. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
4-nonylphenol, branched	Not Available
tall oil/ tetraethylenepentamine polyamides	Not Available
4,4'-methylenebis(2- methylcyclohexanamine)	Not Available
tetraethylenepentamine	Not Available

Product name	Group
naphtha petroleum, heavy alkylate	Not Available
phenol	Not Available

14.9. Transport in bulk in accordance with the ICG Code

Product name	Ship Type
4-nonylphenol, branched	Not Available
tall oil/ tetraethylenepentamine polyamides	Not Available
4,4'-methylenebis(2- methylcyclohexanamine)	Not Available
tetraethylenepentamine	Not Available
naphtha petroleum, heavy alkylate	Not Available
phenol	Not Available

SECTION 15 Regulatory information

15.1. Safety, health and environmental regulations / legislation specific for the substance or mixture 4-nonylphenol, branched is found on the following regulatory lists Chemical Footprint Project - Chemicals of High Concern List Europe EC Inventory EU European Chemicals Agency (ECHA) Community Rolling Action Plan (CoRAP) List Europe European Chemicals Agency (ECHA) Candidate List of Substances of Very of Substances High Concern for Authorisation EU REACH Regulation (EC) No 1907/2006 - Annex XVII - Restrictions on the European Union - European Inventory of Existing Commercial Chemical Substances manufacture, placing on the market and use of certain dangerous substances, mixtures (EINECS) and articles European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and EU REACH Regulation (EC) No 1907/2006 - Proposals to identify Substances of Very Packaging of Substances and Mixtures - Annex VI High Concern: Annex XV reports for commenting by Interested Parties previous consultation tall oil/ tetraethylenepentamine polyamides is found on the following regulatory lists Europe EC Inventory European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) 4.4'-methylenebis(2-methylcyclohexanamine) is found on the following regulatory lists EU European Chemicals Agency (ECHA) Community Rolling Action Plan (CoRAP) List European Union - European Inventory of Existing Commercial Chemical Substances of Substances (EINECS) Europe EC Inventory European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI tetraethylenepentamine is found on the following regulatory lists Europe EC Inventory European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) naphtha petroleum, heavy alkylate is found on the following regulatory lists Chemical Footprint Project - Chemicals of High Concern List Europe EC Inventory European Union - European Inventory of Existing Commercial Chemical Substances EU REACH Regulation (EC) No 1907/2006 - Annex XVII - Restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures (EINECS) and articles European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and EU REACH Regulation (EC) No 1907/2006 - Annex XVII (Appendix 2) Carcinogens: Packaging of Substances and Mixtures - Annex VI category 1B (Table 3.1)/category 2 (Table 3.2) EU REACH Regulation (EC) No 1907/2006 - Annex XVII (Appendix 4) Mutagens: category 1B (Table 3.1)/category 2 (Table 3.2) phenol is found on the following regulatory lists European Union - European Inventory of Existing Commercial Chemical Substances EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs) (EINECS) EU European Chemicals Agency (ECHA) Community Rolling Action Plan (CoRAP) List European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and of Substances Packaging of Substances and Mixtures - Annex VI EU REACH Regulation (EC) No 1907/2006 - Annex XVII - Restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures International Agency for Research on Cancer (IARC) - Agents Classified by the IARC and articles Monographs Europe EC Inventory

This safety data sheet is in compliance with the following EU legislation and its adaptations - as far as applicable - : Directives 98/24/EC, - 92/85/EEC, - 94/33/EC, - 2008/98/EC, - 2010/75/EU; Commission Regulation (EU) 2020/878; Regulation (EC) No 1272/2008 as updated through ATPs.

15.2. Chemical safety assessment

No Chemical Safety Assessment has been carried out for this substance/mixture by the supplier.

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes

National Inventory	Status
Canada - NDSL	No (4,4'-methylenebis(2-methylcyclohexanamine); tetraethylenepentamine; naphtha petroleum, heavy alkylate; phenol)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	No (tall oil/ tetraethylenepentamine polyamides; naphtha petroleum, heavy alkylate)
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	No (tall oil/ tetraethylenepentamine polyamides; 4,4'-methylenebis(2-methylcyclohexanamine))
Vietnam - NCI	Yes
Russia - FBEPH	No (naphtha petroleum, heavy alkylate)
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	04/10/2021
Initial Date	08/02/2018

Full text Risk and Hazard codes

H226	Flammable liquid and vapour.
H290	May be corrosive to metals.
H301	Toxic if swallowed.
H304	May be fatal if swallowed and enters airways.
H311	Toxic in contact with skin.
H318	Causes serious eye damage.
H331	Toxic if inhaled.
H336	May cause drowsiness or dizziness.
H360D	May damage the unborn child.
H361fd	Suspected of damaging fertility. Suspected of damaging the unborn child.
H373	May cause damage to organs through prolonged or repeated exposure.
H400	Very toxic to aquatic life.
H411	Toxic to aquatic life with long lasting effects.

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. For detailed advice on Personal Protective Equipment, refer to the following EU CEN Standards:

- EN 166 Personal eye-protection
- EN 340 Protective clothing
- EN 374 Protective gloves against chemicals and micro-organisms
- EN 13832 Footwear protecting against chemicals
- EN 133 Respiratory protective devices

Definitions and abbreviations

- PC-TWA: Permissible Concentration-Time Weighted Average
- PC-STEL: Permissible Concentration-Short Term Exposure Limit
- IARC: International Agency for Research on Cancer
- ACGIH: American Conference of Governmental Industrial Hygienists
- STEL: Short Term Exposure Limit
- TEEL: Temporary Emergency Exposure Limit。
- IDLH: Immediately Dangerous to Life or Health Concentrations
- ES: Exposure Standard
- OSF: Odour Safety Factor
- NOAEL :No Observed Adverse Effect Level
- LOAEL: Lowest Observed Adverse Effect Level
- TLV: Threshold Limit Value
- LOD: Limit Of Detection
- OTV: Odour Threshold Value
- BCF: BioConcentration Factors
- BEI: Biological Exposure Index
- AIIC: Australian Inventory of Industrial Chemicals
- DSL: Domestic Substances List
- NDSL: Non-Domestic Substances List
- IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

Page 29 of 29

832HD-B Black 1:1 Epoxy Potting and Encapsulating Compound (Part B)

NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIOC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

Reason For Change

A-2.00 - Update to ingredients and added UFI number