

Introduction

The AVR16EB14/20/28/32 microcontrollers of the AVR[®] EB Family use the AVR[®] CPU with hardware multiplier running at clock speeds up to 20 MHz, with 16 KB of Flash, 2 KB of SRAM, and 512 bytes of EEPROM in 14-, 20-, 28- or 32-pin packages. The AVR[®] EB Family uses the latest technology from Microchip with a flexible and low-power architecture, including an Event System, accurate analog subsystems, and advanced digital peripherals.

Family Overview

The figure below shows the AVR[®] EB Family of devices, laying out pin count variants and memory sizes:

- Vertical migration is possible without code modification, as these devices are fully pin and feature compatible
- Horizontal migration to the left reduces the pin count and, therefore, the available features

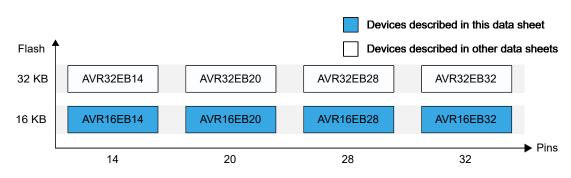
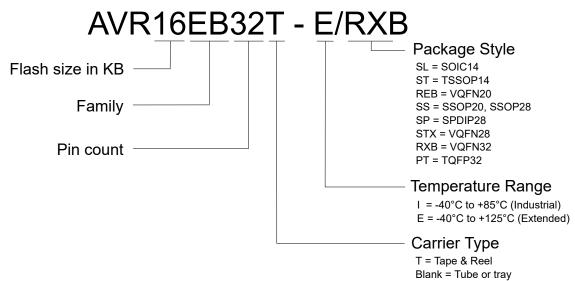



Figure 1. AVR[®] EB Family Overview

Devices with different Flash memory size typically also have different SRAM size.

The name of a device in the AVR[®] EB Family is decoded as follows:

Figure 2. AVR[®] EB Family Device Designations

Memory Overview

Table 1. Memory Overview

	AVR16EB14
	AVR16EB20
Devices	AVR16EB28
	AVR16EB32
Flash memory	16 KB
SRAM	2 KB
EEPROM	512B
User row	64B
Boot row	64B

Peripheral Overview

Table 2. Peripheral Overview

Feature	AVR16EB14	AVR16EB20	AVR16EB28	AVR16EB32
Pins	14	20	28	32
Max. frequency (MHz)	20	20	20	20
16-bit Timer/Counter type B (TCB)	2	2	2	2
16-bit Timer/Counter type E (TCE)	1	1	1	1
Waveform Extension (WEX)	1	1	1	1
16-bit Timer/Counter type F (TCF)	1	1	1	1
Real-Time Counter (RTC)	1	1	1	1
USART/SPI host	1	1	1	1
SPI host/client	1	1	1	1
TWI/I ² C ⁽¹⁾	1	1	1	1
12-bit differential ADC (channels)	1 (8)	1 (14)	1 (20)	1 (24)
Analog Comparator (AC)	2	2	2	2

continued										
Feature	AVR16EB14	AVR16EB20	AVR16EB28	AVR16EB32						
Configurable Custom Logic Look-up Table (CCL LUT)	4	4	4	4						
Watchdog Timer	1	1	1	1						
Event System channels	6	6	6	6						
General Purpose I/O pins (input/output ⁽²⁾)	12/11	18/17	24/23	28/27						
PORT	PA[1:0] PC[3:0] PD[7:4] PF[7:6]	PA[7:0] PC[3:0] PD[7:4] PF[7:6]	PA[7:0] PC[3:0] PD[7:0] PF[7,6,1,0]	PA[7:0] PC[3:0] PD[7:0] PF[7:0]						
External interrupts	12	18	24	28						
CRCSCAN	1	1	1	1						
Unified Program and Debug Interface (UPDI)	1	1	1	1						

Notes:

- 1. The TWI/I²C can operate simultaneously as a host and client on different pins.
- 2. PF6/RESET pin is input only.

Features

- AVR[®] CPU
 - Running at up to 20 MHz
 - Single-cycle I/O register access
 - Two-level interrupt controller
 - Two-cycle hardware multiplier
 - Supply voltage range: 1.8-5.5V
- Memories
 - 16 KB In-system-programmable Flash memory with a true read-while-write operation
 - 2 KB SRAM
 - 512B EEPROM
 - 64B of user row in nonvolatile memory that can keep data during chip-erase and be programmed while the device is locked
 - Write/erase endurance
 - Flash: 1,000 cycles
 - EEPROM: 100,000 cycles
 - Data retention: 40 Years at 55°C
- System
 - Power-on Reset (POR) circuit
 - Brown-out Detector (BOD) with user-programmable levels
 - Voltage Level Monitor (VLM) with interrupt at a programmable level above the BOD level
 - Clock options:
 - High-precision internal oscillator with selectable frequency up to 20 MHz (OSCHF)
 - Auto-tuning for improved internal oscillator accuracy
 - Internal PLL up to 80 MHz for high-frequency operation of Timer/Counter type E/F
 - Internal ultra-low power 32.768 kHz oscillator (OSC32K)
 - External 32.768 kHz crystal oscillator (XOSC32K)
 - External clock input
 - Single-pin Unified Program and Debug Interface (UPDI)
 - Three sleep modes
 - · Idle with all peripherals running for immediate wake-up
 - Standby with a configurable operation of selected peripherals
 - Power-Down with full data retention
- Peripherals
 - Two 16-bit Timer/Counters type B (TCB) with input capture for capture and signal measurements
 - One 16-bit Timer/Counter type E (TCE) with four compare channels for PWM generation and Waveform Extension (WEX)
 - One 24-bit Timer/Counter type F (TCF) for frequency generation
 - One 16-bit Real-Time Counter (RTC) that can run from an external crystal or internal oscillator
 - One USART with fractional baud rate generator, auto-baud, and start-of-frame detection
 - One host/client Serial Peripheral Interface (SPI)

- One Two-Wire Interface (TWI) with dual address match
 - Independent host and client operation (Dual mode)
 - Phillips I²C compatible
 - Standard mode (Sm, 100 kHz)
 - Fast mode (Fm, 400 kHz)
 - Fast mode plus (Fm+, 1 MHz)
- Event System for CPU-independent and predictable inter-peripheral signaling
- Configurable Custom Logic (CCL) with up to four programmable Look-up Tables (LUTs)
- One 12-bit, 300 ksps, differential Analog-to-Digital Converter (ADC) with a programmable gain amplifier (PGA)
- Two Analog Comparators (ACs) with window compare functions
- Multiple voltage references (VREF)
 - 1.024V
 - 2.048V
 - 2.500V
 - 4.096V
 - VREFA
 - V_{DD}
- Automated Cyclic Redundancy Check (CRC) Flash program memory scan
- Watchdog Timer (WDT) with Window mode and separate on-chip oscillator
- External interrupt on all general purpose pins
- I/O and Packages:
 - Up to 28/27 programmable I/O pins
 - 14-pin SOIC and TSSOP
 - 20-pin SSOP and VQFN
 - 28-pin SPDIP, SSOP and VQFN
 - 32-pin VQFN and TQFP
- Temperature Ranges
 - Industrial: -40°C to 85°C ambient
 - Extended: -40°C to 125°C ambient

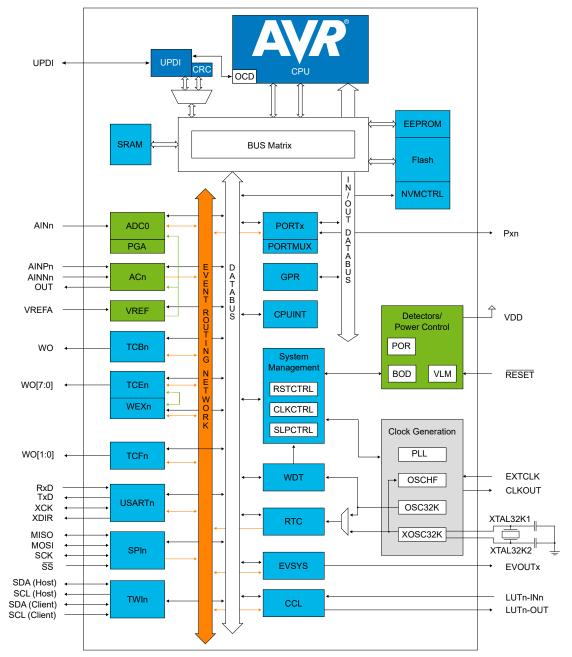
Table of Contents

Intr	oducti	on	1
Fan	nily Ov	erview	1
	Memo	ory Overview	2
		neral Overview	
-			
⊦ea	tures		4
1.	Block	Diagram	.12
2.	Pinou	t	13
	2.1.	14-Pin SOIC and TSSOP	13
	2.2.	20-Pin SSOP	13
	2.3.	20-Pin VQFN	.14
	2.4.	28-Pin SPDIP and SSOP	15
	2.5.	28-Pin VQFN	.16
	2.6.	32-Pin VQFN and TQFP	.17
3.	I/O M	ultiplexing and Considerations	18
	3.1.	I/O Multiplexing	.18
4.	Hardy	vare Guidelines	20
	4.1.	General Guidelines	
	4.2.	Connection for Power Supply	
	4.3.	Connection for RESET	
	4.4.	Connection for UPDI Programming	
	4.5.	Connecting External Crystal Oscillators	
	4.6.	Connection for External Voltage Reference	
5.	Powe	r Domains	26
6.	Conv	entions	77
0.	6.1.	Numerical Notation	
	6.1. 6.2.	Memory Size and Type	
	6.2. 6.3.	Frequency and Time	
	6.4.	Registers and Bits	
	6.5.	ADC Parameter Definitions	
7.	AVR®	CPU	31
7.	7.1.	Features	
	7.2.	Overview	-
	7.3.	Architecture	
	7.3. 7.4.	Functional Description	
	7. 4 . 7.5.	Register Summary	
	7.6.	Register Description	
0			
8.		pries	
	8.1.	Overview	
	8.2.	Memory Map	42

	8.3.	In-System Reprogrammable Flash Program Memory	
	8.4.	Program and Debug Interface Disable (PDID)	43
	8.5.	SRAM Data Memory	44
	8.6.	EEPROM Data Memory	44
	8.7.	SIGROW - Signature Row	45
	8.8.	USERROW - User Row	
	8.9.	BOOTROW - Boot Row	
	8.10.	FUSE - Configuration and User Fuses	
		LOCK - Memory Sections Access Protection	
	8.12.	I/O Memory	61
9.	GPR ·	- General Purpose Registers	
	9.1.	Register Summary	65
	9.2.	Register Description	65
10.	. Perip	pherals and Architecture	67
	10.1.	Peripheral Address Map	67
	10.2.	Interrupt Vector Mapping	
	10.3.	SYSCFG - System Configuration	69
11.		CTRL - Nonvolatile Memory Controller	
		Features	
		Overview	
		Functional Description	
		Register Summary	
	11.5.	Register Description	
12.		TRL - Clock Controller	
		Features	
		Overview	
		Functional Description	
		Register Summary	
	12.5.	Register Description	
13.	SLPC	TRL - Sleep Controller	113
		Features	
		Overview	
		Functional Description	
		Register Summary	
	13.5.	Register Description	
14.		TRL - Reset Controller	
		Features	
	14.2.	Overview	119
	14.3.	Functional Description	
		Register Summary	
	14.5.	Register Description	
15.	. CPUI	NT - CPU Interrupt Controller	127
	15.1.	Features	
	15.2.	Overview	

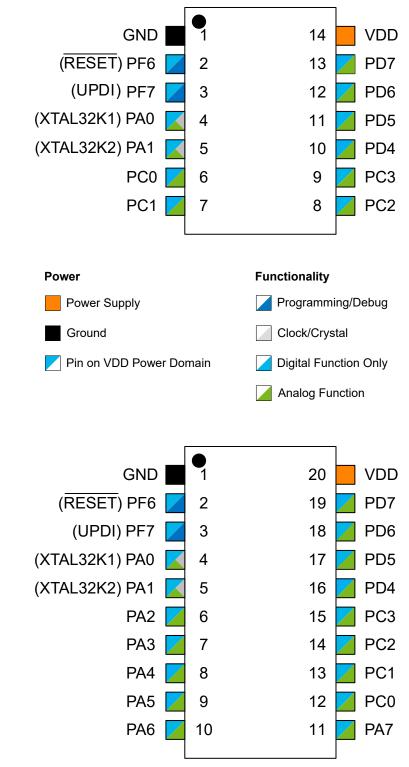
	15.3. Functional Description	
	15.4. Register Summary	
	15.5. Register Description	134
16.	EVSYS - Event System	
	16.1. Features	
	16.2. Overview	
	16.3. Functional Description	
	16.4. Register Summary	
	16.5. Register Description	
17.	PORTMUX - Port Multiplexer	151
	17.1. Overview	
	17.2. Register Summary	
	17.3. Register Description	
18. I	PORT - I/O Pin Configuration	
	18.1. Features	
	18.2. Overview	
	18.3. Functional Description	
	18.4. Register Summary - PORTx	167
	18.5. Register Description - PORTx	167
	18.6. Register Summary - VPORTx	
	18.7. Register Description - VPORTx	
19. I	BOD - Brown-out Detector	191
	19.1. Features	
	19.2. Overview	
	19.3. Functional Description	192
	19.4. Register Summary	
	19.5. Register Description	
20. \	VREF - Voltage Reference	201
	20.1. Features	
	20.2. Overview	
	20.3. Functional Description	
	20.4. Register Summary	202
	20.5. Register Description	
21. \	WDT - Watchdog Timer	204
	21.1. Features	
	21.2. Overview	
	21.3. Functional Description	
	21.4. Register Summary	
2	21.5. Register Description	
22	TCB - 16-Bit Timer/Counter Type B	212
2	22.1. Features	
	22.2. Overview	
	22.3. Functional Description	
	22.4. Register Summary	225

	22.5. Register Description	225
23.	TCE - 16-Bit Timer/Counter Type E	237
	23.1. Features	
	23.2. Overview	
	23.3. Functional Description	
	23.4. Register Summary	
	23.5. Register Description	
24	WEX - Waveform Extension for the 16-Bit Timer/Counter Type E	
24.	24.1. Feature Description	
	24.1. Peature Description	
	24.2. Overview	
	24.5. Punctional Description	
	24.4. Register Summary	
25.	TCF - 24-bit Timer/Counter Type F	
	25.1. Features	
	25.2. Overview	
	25.3. Functional Description	
	25.4. Register Summary	323
	25.5. Register Description	323
26		225
26.	RTC - Real-Time Counter	
	26.1. Features	
	26.2. Overview	
	26.3. Clocks	
	26.4. RTC Functional Description	
	26.5. PIT Functional Description	
	26.6. Crystal Error Correction	
	26.7. Events	
	26.8. Interrupts	
	26.9. Sleep Mode Operation	
	26.10. Synchronization	
	26.11. Debug Operation	
	26.12. Register Summary	
	26.13. Register Description	
27.	USART - Universal Synchronous and Asynchronous Receiver and Transmitter	359
	27.1. Features	359
	27.2. Overview	359
	27.3. Functional Description	
	27.4. Register Summary	376
	27.5. Register Description	
28.	SPI - Serial Peripheral Interface	
	28.1. Features	
	28.2. Overview	
	28.3. Functional Description	
	28.4. Register Summary	


	28.5. Register Description	403
29.	TWI - Two-Wire Interface	410
	29.1. Features	410
	29.2. Overview	410
	29.3. Functional Description	
	29.4. Register Summary	424
	29.5. Register Description	424
30.	CRCSCAN - Cyclic Redundancy Check Memory Scan	
	30.1. Features	442
	30.2. Overview	
	30.3. Functional Description	
	30.4. Register Summary	446
	30.5. Register Description	446
31.	CCL - Configurable Custom Logic	450
	31.1. Features	450
	31.2. Overview	
	31.3. Functional Description	
	31.4. Register Summary	460
	31.5. Register Description	460
32.	AC - Analog Comparator	471
	32.1. Features	471
	32.2. Overview	471
	32.3. Functional Description	
	32.4. Register Summary	476
	32.5. Register Description	
33.	ADC - Analog-to-Digital Converter	483
	33.1. Features	483
	33.2. Overview	
	33.3. Functional Description	
	33.4. Register Summary	500
	33.5. Register Description	500
34.	UPDI - Unified Program and Debug Interface	522
	34.1. Features	522
	34.2. Overview	522
	34.3. Functional Description	
	34.4. Register Summary	547
	34.5. Register Description	547
35.	Instruction Set Summary	558
36.	Electrical Characteristics	559
	36.1. Disclaimer	559
	36.2. Absolute Maximum Ratings	559
	36.3. Standard Operating Conditions	559
	36.4. Supply Voltage	560

	36.5. Power Consumption	561
	36.6. Peripherals Power Consumption	561
	36.7. I/O Pins	563
	36.8. Memory Programming Specifications	564
	36.9. Thermal Specifications	565
	36.10. CLKCTRL	565
	36.11. RSTCTRL and BOD	. 568
	36.12. VREF	. 568
	36.13. USART	. 569
	36.14. SPI	
	36.15. TWI	
	36.16. ADC	
	36.17. AC	. 574
	36.18. UPDI	. 575
27	Characteristics Graphs	577
57.		. 577
38.	Ordering Information	. 578
39.	Packaging Information	. 580
	39.1. Online Package Drawings	. 580
	39.2. Package Marking Information	580
	39.3. Package Drawings	586
40.	Data Sheet Revision History	611
	40.1. Revision History	. 611
Mic	rochip Information	. 612
	The Microchip Website	
	Product Change Notification Service	
	Customer Support	
	Product Identification System	
	Microchip Devices Code Protection Feature	
	Legal Notice	
	Trademarks	
	Quality Management System	
	Worldwide Sales and Service	
	workawide Sales and Service	.015

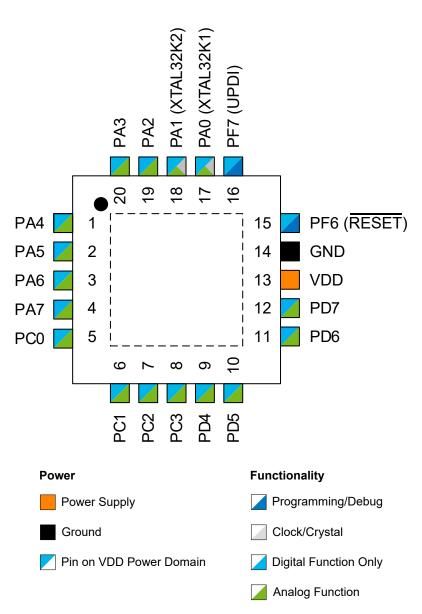
1. Block Diagram

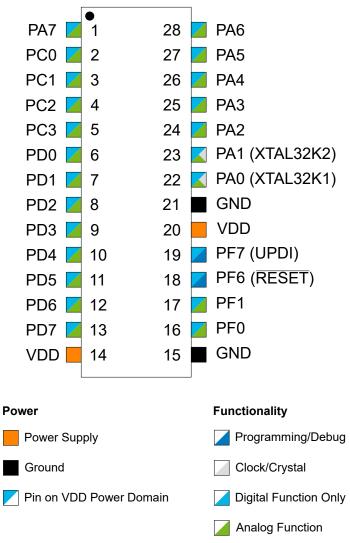


2. Pinout

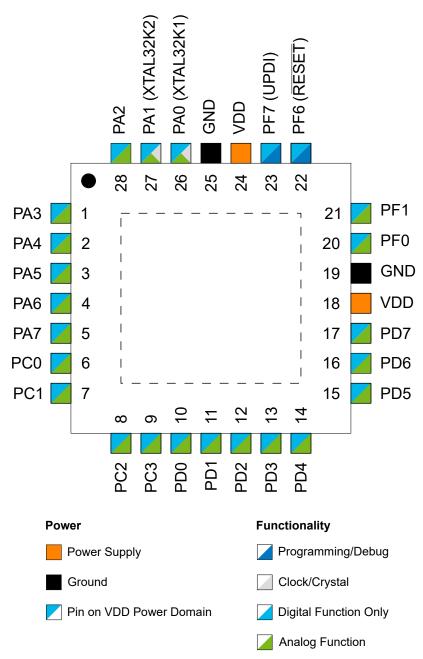
2.2

20-Pin SSOP

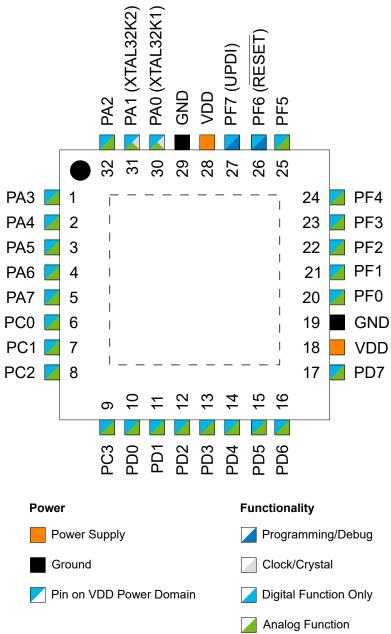

2.1 14-Pin SOIC and TSSOP



2.3 20-Pin VQFN



2.4 28-Pin SPDIP and SSOP



2.5 28-Pin VQFN

2.6 32-Pin VQFN and TQFP

3. I/O Multiplexing and Considerations

3.1 I/O Multiplexing

VQFN32 TQFP32	VQFN28	SPDIP28 SOIC28 SSOP28	V QFN 20	SSOP20	SOIC14 SSOP14	Pin name	Special	ADC0	ACn	USARTO	SPIO	TWI0.	TCE0+WEX0	TCBn	TCF0	EVSYS	CCL-LUTh
30	26	22	17	4	4	PA0	XTAL32K1 EXTCLK			TxD	MOSI	SDA(H)	WO0 WO0ª		WO0		0,IN0 0,IN0®
31	27	23	18	5	5	PA1	XTAL32K2			RxD	MISO	SCL(H) [∞]	WO1 WO1®		WO1		0,IN1 0,IN1®
32	28	24	19	6	-	PA2	TWI Fm+	AIN22		XCK TxD®		SDA(H)	WO2 WO0ª	0,WO		EVOUTA	0,IN2 0,IN2®
1	1	25	20	7		PA3	TWI Fm+	AIN23		XDIR RxD∞		SCL(H)	WO3 WO1ª	1,WO			0,OUT
2	2	26	1	8	-	PA4		AIN24		TxD∞	MOSI		WO4 WO2®				
3	3	27	2	9	-	PA5		AIN25		RxD∞	MISO		WO5 WO3 [∞]				
4	4	28	3	10	-	PA6		AIN26	1,AINP5	XCK [®]	SCK		WO6 WO4ª		WO0 [®]		0,OUT∾
5	5	1	4	11		PA7	CLKOUT	AIN27	0,OUT 1,AINP6 1,OUT	XDIR®	55		WO7 WO5∞		WO1⇔	EVOUTA®	
6	6	2	5	12	6	PC0		AIN28			SCK® MOSI		WO0 ²¹ WO2 ²²				1,IN0
7	7	3	6	13	7	PC1		AIN29		TxD®	SS® MISO® MOSI®		WO1 ¹⁰ WO3 ¹⁰				1,IN1
8	8	4	7	14	8	PC2	TWI Fm+	AIN30	0,AINN3 1,AINN3	RxD®	SCK® MISO®	SDA(C) SDA(H)ª SDA(C)®	WO2ª WO4ª			EVOUTC	1,IN2
9	9	5	8	15	9	PC3	TWI Fm+	AIN31	0,AINP4 1,AINP4	XCK	<u>SS</u> ₀ SCK®	SCL(C) SCL(H) ^a SCL(C) ^a	WO3ª WO5ª				1,OUT
10	10	6	-	-	-	PD0		AIN0	0,AINN1 1,AINN1				WO0 ²³				2,IN0 2,IN0®
11	11	7	-			PD1		AIN1					W01 ¹⁰				2,IN1 2,IN1
12	12	8	-	-	-	PD2		AIN2	0,AINP0 1,AINP0				WO2 ^{ra}			EVOUTD	2,IN2 2,IN2®
13	13	9		-	-	PD3		AIN3	0,AINN0 1,AINP1				WO3 ¹⁰				2,OUT
14	14	10	9	16	10	PD4		AIN4	0,AINP5 1,AINP2	TxD∞	MOSI		WO4ª				
15	15	11	10	17	11	PD5		AIN5	0,AINP6 1,AINN0	RxD∞	MISO		W05ª				
16	16	12	11	18	12	PD6		AIN6	0,AINP3 1,AINP3	XCK∞	SCK®		WO6ª				2,OUT₽
17	17	13	12	19	13	PD7	VREFA	AIN7	0,AINN2 1,AINN2	XDIR®	SSm		W07 ^(a)			EVOUTD	
18	18	14	13	20	14	VDD											
19	19	15	14	1	1	GND											
20	20	16	-	-	-	PF0		AIN16					WO0 ^{ra}				3,IN0

co	intinuet																
VQFN32 TQFP32	VQFN28	SPDIP28 SOIC28 SSOP28	VQFN20	SSOP20	SOIC14 SSOP14	Pin name 🚆	Special	ADC0	ACn	USARTO	SPIO	TWIO	TCE0+WEX0	TCBn	TCF0	EVSYS	ссг-глтл
21	21	17	-	-	-	PF1		AIN17					WO1 [®]				3,IN1
22	-	-	-	-	-	PF2		AIN18					WO2 [®]			EVOUTF	3,IN2
23	-	-	-	-	-	PF3		AIN19					WO3®				3,OUT
24	-	-	-	-	-	PF4		AIN20					WO4®	0,WO®	WO0 ^a		
25	-	-	-	-	-	PF5		AIN21					WO5®	1,WO®	WO1 [®]		
26	22	18	15	2	2	PF6®	RESET			RxD∞							
27	23	19	16	3	3	PF7	UPDI			TxD∞	<u>SS</u> ®					EVOUTF	
28	24	20	-	-	-	VDD											
29	25	21	-	-	-	GND											

Notes:

- 1. The pin names are Pxn type, with x being the PORT instance (A, B, C, ...) and n, the pin number. The notation for signals is PORTx_PINn. All pins can be used as event inputs.
- 2. All pins can be used for external interrupt.
- 3. Alternate pin positions. For selecting alternate positions, refer to the *PORTMUX Port Multiplexer* section.
- 4. The TWI pins that can be used as hosts or clients are marked *H*. The pins with client-only are marked *C*.
- 5. Input-only.

4. Hardware Guidelines

This section contains guidelines for designing or reviewing electrical schematics using AVR 8-bit microcontrollers. The information presented here is a brief overview of the most common topics. More detailed information can be found in application notes, listed in this section where applicable.

This section covers the following topics:

- General guidelines
- Connection for power supply
- Connection for RESET
- Connection for UPDI (Unified Program and Debug Interface)
- Connection for external crystal oscillators
- Connection for VREF (external voltage reference)

4.1 General Guidelines

Unused pins must be soldered to their respective soldering pads. The soldering pads must not be connected to the circuit.

The PORT pins are in their default state after Reset. Follow the recommendations in the *PORT* section to reduce power consumption.

All values are typical values and serve only as a starting point for circuit design.

Refer to the following application notes for further information:

- AVR040 EMC Design Considerations
- AVR042 AVR Hardware Design Considerations

4.1.1 Special Consideration for Packages with Center Pad

Flat packages often come with an exposed pad located on the bottom, often referred to as the center pad or the thermal pad. This pad is not electrically connected to the internal circuit of the chip but mechanically bonded to the internal substrate. It serves as a thermal heat sink and provides added mechanical stability. This pad must be connected to GND since the ground plane is the best heat sink (largest copper area) of the printed circuit board (PCB).

4.2 Connection for Power Supply

The basics and details of power supply design lie beyond the scope of these guidelines. See the application notes mentioned at the beginning of this section for more detailed information about this subject.

A decoupling capacitor must be placed close to the microcontroller for each supply pin pair (VDD or other power supply pin and its corresponding GND pin). If the decoupling capacitor is placed too far from the microcontroller, a high-current loop might form that will result in increased noise and increased radiated emission.

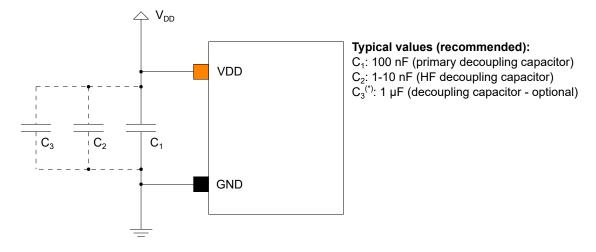
Each supply pin pair (power input pin and ground pin) must have separate decoupling capacitors.

It is recommended to place the decoupling capacitor on the same side of the PCB as the microcontroller. If space does not allow it, the decoupling capacitor may be placed on the other side through a via, but make sure to keep the distance to the supply pin as short as possible.

If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor parallel to the decoupling capacitor described above. Place this second capacitor next to the primary decoupling capacitor.

On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first and then to the device pins, ensuring that the decoupling capacitors

are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.


As mentioned at the beginning of this section, all values used in examples are typical values. The actual design may require other values.

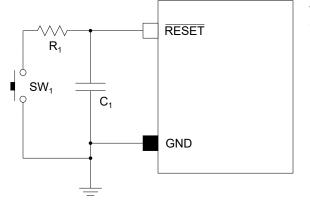
4.2.1 Digital Power Supply

For higher pin count package types, there are several VDD and corresponding GND pins. All the VDD pins in the microcontroller are internally connected. The same voltage must be applied to each of the VDD pins.

The figure below shows the recommended connection of the power supply to the device's VDD pin(s).

Figure 4-1. Recommended VDD Connection Circuit Schematic

Important: For systems that frequently cycle V_{DD} or experience fast V_{DD} transients, it is recommended to add a decoupling capacitor (C₃) if the power supply slew rate exceeds the slew rate limits. Refer to the *Supply Voltage* section in the *Electrical Characteristics* for details about the power supply's slew rate limits.


4.3 Connection for RESET

The RESET pin on the device is active-low with an internal pull-up resistor, and externally pulling the pin low will result in a device Reset. An external pull-up resistor is usually not required.

The following figure shows the recommendation for connecting an external Reset switch to the device.

Figure 4-2. Recommended External Reset Circuit Schematic

Typical values (recommended): C_1 : 100 nF (filtering capacitor) R_1 : 330 Ω (switch series resistance)

Shorting the filtering capacitor may cause a noise spike that can harm the system. To prevent this, a resistor in series with the switch can safely discharge the filtering capacitor preventing a current surge.

UPDI Enable with High-Voltage Override

It is possible to enable a disabled UPDI by applying a high-voltage pulse on the RESET pin. Take care with the reset circuit design and any components connected to the RESET pin to prevent damage if such a high-voltage pulse may be applied.

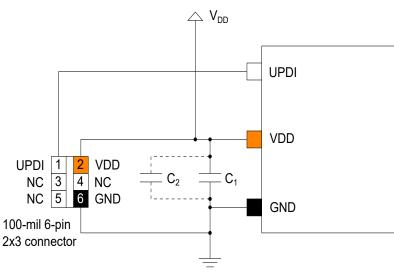
See the Connection for UPDI Programming sub-section and the UPDI section for more details.

4.4 Connection for UPDI Programming

The Unified Program and Debugging Interface (UPDI) connection provides a one-wire interface for external programming and on-chip debugging (OCD). This section is related to the physical connection itself and not the details of the signal protocol and features of the UPDI peripheral. These details are described in the *UPDI* section.

The recommended UPDI connection has changed since its first introduction. For this reason, both connections are described below, with the initial UPDI connection layout named **UPDI Connection v1** while the new UPDI connection layout is named **UPDI Connection v2**. The difference between the two connections is the inclusion of a RESET signal in the connection for v2.

4.4.1 UPDI Connection v1


This was the initial layout for the UPDI connection used by older programming tools (like the Atmel ICE).

The **UPDI Connection v1** is a 100-mil 6-pin 2x3 header. Even though using only three pins for programming, it is recommended to use a 2x3 header since most programming tools using this connection are delivered with 100-mil 6-pin 2x3 connectors.

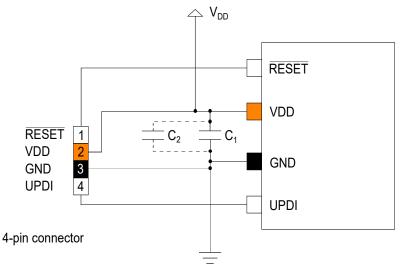
The following figure shows the recommendation for a UPDI connection to the device using the **UPDI Connection v1**.

Figure 4-3. Recommended UPDI Programming Circuit Schematic

Typical values (recommended):

 $\begin{array}{l} C_1\!\!: 100 \text{ nF (primary decoupling capacitor)} \\ C_2\!\!: 1\!\!-\!10 \text{ nF (HF decoupling capacitor)} \\ \text{NC = Not Connected} \end{array}$

The decoupling capacitor between VDD and GND must be placed as close to the pin pair as possible. Include the decoupling capacitor even if the UPDI connector is not included in the circuit.


4.4.2 UPDI Connection v2

This connection is compatible with any AVR device but requires an adapter cable for users with older programmers/debuggers like the *Atmel-ICE* and the *Atmel PowerDebugger* with the 100-mil 2x3 header connector. This connection is directly compatible with the programming tool *PICkit*^{\sim} 4 *In-Circuit Debugger*.

The UPDI Connection v2 is a 100-mil 4-pin 1x4 header. Even though three pins are sufficient for programming many AVR devices, it is recommended to use a single row 100-mil 4-pin header, allowing for the RESET signal to be included. This connector is also compatible with the PICkit 4 programmer.

The following figure shows the recommendation for connecting a UPDI connector to the device.

Figure 4-4. Recommended UPDI Programming Circuit Schematic

Typical values (recommended): C₁: 100 nF (primary decoupling capacitor)

C₂: 1-10 nF (HF decoupling capacitor)

The decoupling capacitor between VDD and GND must be placed as close to the pin pair as possible. Include the decoupling capacitor even if the UPDI connector is not included in the circuit.

Enabling UPDI using RESET

By design or mistake it may be possible to disable UPDI by writing to the appropriate fuse. For details on disabling UPDI, see the *FUSE* sub-section of the *Memories* section. Note that for some devices, it is not possible to disable UPDI.

A high-voltage pulse must be applied to the RESET pin to re-enable the UPDI. See the UPDI section for details on how to apply the high-voltage pulse to the RESET pin.

Take additional care in the design of the circuit if the RESET pin is connected to other components. If the high-voltage pulse is applied to the RESET pin, other components connected to the line might be damaged. In this case, the design must allow disconnection of these components from the circuit before the high-voltage pulse is applied. One example of this may be a removable jumper.

Note: On devices that feature *Program and Debug Interface Disable (PDID)*, the UPDI cannot be re-enabled using the RESET pin after the PDID feature has been activated.

4.5 Connecting External Crystal Oscillators

The use of external oscillators and the design of oscillator circuits are not trivial because of many variables: V_{DD}, operating temperature range, crystal type and manufacture, loading capacitors, circuit layout, and PCB material. Some typical guidelines to help with the basic oscillator circuit design are presented in this section.

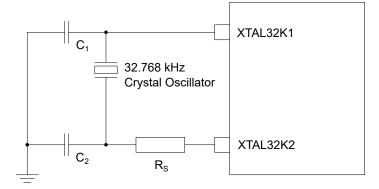
- Even the best performing oscillator circuits and high-quality crystals will not perform well if the layout and materials used during the assembly are not carefully considered
- The crystal circuit must be placed on the same side of the board as the device. Place the crystal circuit as close to the respective oscillator pins as possible and avoid long traces. This will reduce parasitic capacitance and increase immunity against noise and crosstalk. Mount the load capacitors on the same side of the board and next to the crystal. Do not use sockets.
- Place a grounded copper area around the crystal circuit to isolate it from surrounding circuits. If the circuit board has two sides, the copper area on the bottom layer must be a solid area covering the crystal circuit. The copper area on the top layer must surround the crystal circuit and be connected to the bottom layer area by using via(s).
- Do not run any signal traces or power traces inside the grounded copper area. Avoid routing digital lines, especially clock lines, close to the crystal lines.
- If using a two-sided PCB, avoid any traces beneath the crystal. For a multilayer PCB, avoid routing signals below the crystal lines.
- Dust and humidity will increase parasitic capacitance and reduce signal isolation. A protective coating is recommended.
- Successful oscillator design requires good specifications of operating conditions, a component selection phase with initial testing, and testing in actual operating conditions to ensure that the oscillator performs as desired

For more detailed information about oscillators and oscillator circuit design, see the following application notes:

- AN2648 Selecting and Testing 32 kHz Crystal Oscillators for AVR[®] Microcontrollers
- AN949 Making Your Oscillator Work

4.5.1 Connection for XTAL32K (External 32.768 kHz Crystal Oscillator)

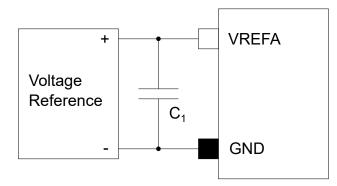
Ultra-low power 32.768 kHz oscillators typically dissipate significantly below 1 μ W, and the current flowing in the circuit is, therefore, extremely small. The crystal frequency is highly dependent on the capacitive load.


A series resistor R_S may be required to prevent overdriving the oscillator. The gain from the oscillator driver may sometimes be too high for low-frequency oscillators, and adding impedance with R_S can decrease the gain. The overdrive causes the oscillator to not swing properly, as the signal will be

saturated (clipped or "squashed"). Overdriving the crystal can also lead to the circuit jumping to a higher harmonic.

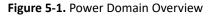
The following figure shows how to connect an external 32.768 kHz crystal oscillator:

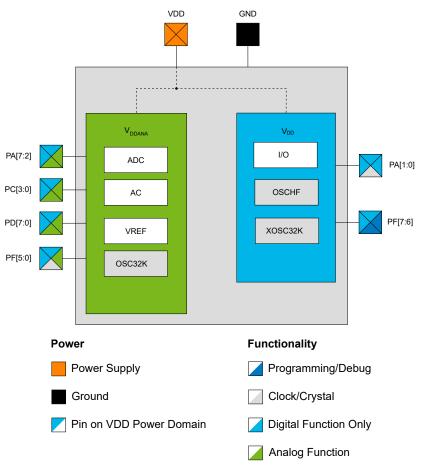
Figure 4-5. Recommended External 32.768 kHz Oscillator Connection Circuit Schematic



4.6 Connection for External Voltage Reference

If the design includes using an external voltage reference, the general recommendation is to use a suitable capacitor connected in parallel to the reference. The nature of the reference and the type of electrical noise that needs to be filtered out gives the capacitor value.


Additional filtering components may be necessary depending on the type of external voltage reference used.


Figure 4-6. Recommended External Voltage Reference Connection

5. Power Domains

The AVR[®] EB Family devices have several power domains with the following power supply pins:

Domain	Pin	Description
V _{DD}	VDD	Powers I/O lines, internal oscillators, and the internal voltage regulator
V _{DDANA}	VDD	Powers I/O lines, XOSC32K (external 32.768 kHz oscillator) and the analog peripherals

The same voltage must be applied to all VDD pins. This shared voltage is referred to as V_{DD} in the data sheet.

The ground pins (GND) must be conned to the same ground plane.

For recommendations on layout and decoupling, refer to the *Hardware Guidelines* section.

6. Conventions

6.1 Numerical Notation

Table 6-1. Numerical Notation

Symbol	Description
165	Decimal number
0b0101	Binary number
'0101'	Binary numbers are given without prefix if unambiguous
0x3B24	Hexadecimal number
X	Represents an unknown or do not care value
Z	Represents a high-impedance (floating) state for either a signal or a bus

6.2 Memory Size and Type

Table 6-2. Memory Size and Bit Rate

Symbol	Description
KB	kilobyte (2 ¹⁰ B = 1024B)
MB	megabyte (2 ²⁰ B = 1024 KB)
GB	gigabyte (2 ³⁰ B = 1024 MB)
b	bit (binary '0' or '1')
В	byte (8 bits)
1 kbit/s	1,000 bit/s rate
1 Mbit/s	1,000,000 bit/s rate
1 Gbit/s	1,000,000 bit/s rate
word	16-bit

6.3 Frequency and Time

Table 6-3. Frequency and Time

Symbol	Description			
kHz	1 kHz = 10 ³ Hz = 1,000 Hz			
MHz	1 MHz = 10 ⁶ Hz = 1,000,000 Hz			
GHz	1 GHz = 10 ⁹ Hz = 1,000,000,000 Hz			
ms	1 ms = 10 ⁻³ s = 0.001s			
μs	$1 \ \mu s = 10^{-6} s = 0.000001 s$			
ns	1 ns = 10 ⁻⁹ s = 0.00000001s			

6.4 Registers and Bits

Table 6-4. Register and Bit Mnemonics

Symbol	Description
R/W	Read/Write accessible register bit. The user can read from and write to this bit.
R	Read-only accessible register bit. The user can only read this bit. Writes will be ignored.
W	Write-only accessible register bit. The user can only write this bit. Reading this bit will return an undefined value.
BITFIELD	Bit field names are shown in uppercase. Example: INTMODE.

continued			
Symbol	Description		
BITFIELD[n:m]	A set of bits from bit n down to m. Example: PINA[3:0] = {PINA3, PINA2, PINA1, PINA0}.		
Reserved	Reserved bits, bit fields, and bit field values are unused and reserved for future use. For compatibility with future devices, always write reserved bits to '0' when the register is written. Reserved bits will always return zero when read.		
PERIPHERALn	If several instances of the peripheral exist, the peripheral name is followed by a single number to identify one instance. Example: USARTn is the collection of all instances of the USART module, while USART3 is one specific instance of the USART module.		
PERIPHERALx	If several instances of the peripheral exist, the peripheral name is followed by a single capital letter (A-Z) to identify one instance. Example: PORTx is the collection of all instances of the PORT module, while PORTB is one specific instance of the PORT module.		
Reset	Value of a register after a Power-on Reset. This is also the value of registers in a peripheral after performing a software Reset of the peripheral, except for the Debug Control registers.		
SET/CLR/TGL	Registers with SET/CLR/TGL suffix allow the user to clear and set bits in a register without doing a read-modify-write operation. Each SET/CLR/TGL register is paired with the register it is affecting. Both registers in a register pair return the same value when read. Example: In the PORT peripheral, the OUT and OUTSET registers form such a register pair. The contents of OUT will be modified by a write to OUTSET. Reading OUT and OUTSET will return the same value. Writing a '1' to a bit in the CLR register will clear the corresponding bit in both registers. Writing a '1' to a bit in the SET register will set the corresponding bit in both registers.		

6.4.1 Addressing Registers from Header Files

To address registers in the supplied C header files, the following rules apply:

- 1. A register is identified by <peripheral_instance_name>.<register_name>, e.g., CPU.SREG, USART2.CTRLA, or PORTB.DIR.
- 2. The peripheral name is given in the "Peripheral Address Map" in the "Peripherals and Architecture" section.
- 3. <peripheral_instance_name> is obtained by substituting any n or x in the peripheral name with the correct instance identifier.
- 4. When assigning a predefined value to a peripheral register, the value is constructed following the rule:

<peripheral_name>_<bit_field_name>_<bit_field_value>_gc

<peripheral_name> is <peripheral_instance_name>, but remove any instance identifier.

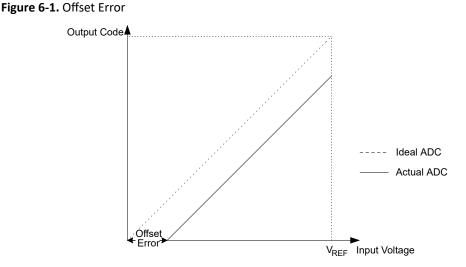
<bit_field_value> can be found in the "Name" column in the tables in the Register Description sections describing the bit fields of the peripheral registers.

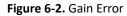
Example 6-1. Register Assignments

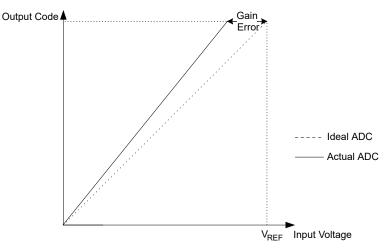
```
// EVSYS channel 0 is driven by TCB3 OVF event
EVSYS.CHANNEL0 = EVSYS_CHANNEL0_TCB3_OVF_gc;
```

```
// USART0 RXMODE uses Double Transmission Speed
USART0.CTRLB = USART_RXMODE_CLK2X_gc;
```

Note: For peripherals with different register sets in different modes, <peripheral_instance_name> and <peripheral_name> must be followed by a mode name, for example:

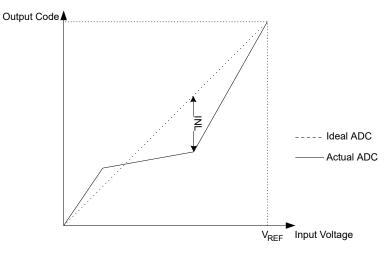

// TCA0 in Normal Mode (SINGLE) uses waveform generator in frequency mode
TCA0.SINGLE.CTRL=TCA_SINGLE_WGMODE_FRQ_gc;


6.5 ADC Parameter Definitions


An ideal n-bit single-ended ADC converts a voltage linearly between GND and V_{REF} in 2ⁿ steps (LSb). The lowest code is read as '0', and the highest code is read as '2ⁿ-1'. Several parameters describe the deviation from the ideal behavior:

Offset Error The deviation of the first transition (0x000 to 0x001) compared to the ideal transition (at 0.5 LSb). Ideal value: 0 LSb.

Gain ErrorAfter adjusting for offset, the gain error is found as the deviation of the last transition (e.g., 0x3FE to
0x3FF for a 10-bit ADC) compared to the ideal transition (at 1.5 LSb below maximum). Ideal value: 0
LSb.



Integral Aft Nonlinearity (INL) cor

After adjusting for offset and gain error, the INL is the maximum deviation of an actual transition compared to an ideal transition for any code. Ideal value: 0 LSb.

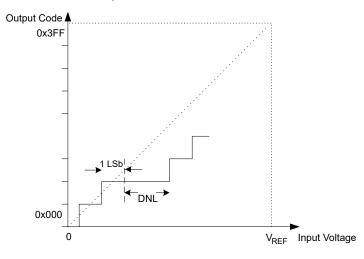


Figure 6-3. Integral Nonlinearity

DifferentialThe maximum deviation of the actual code width (the interval between two adjacent transitions) fromNonlinearity (DNL)the ideal code width (1 LSb). Ideal value: 0 LSb.

Figure 6-4. Differential Nonlinearity

Quantization Error Due to the quantization of the input voltage into a finite number of codes, a range of input voltages (1 LSb wide) will code to the same value. Always ±0.5 LSb.

Absolute Accuracy The maximum deviation of an actual (unadjusted) transition compared to an ideal transition for any code. This is the compound effect of all errors mentioned before. Ideal value: ±0.5 LSb.

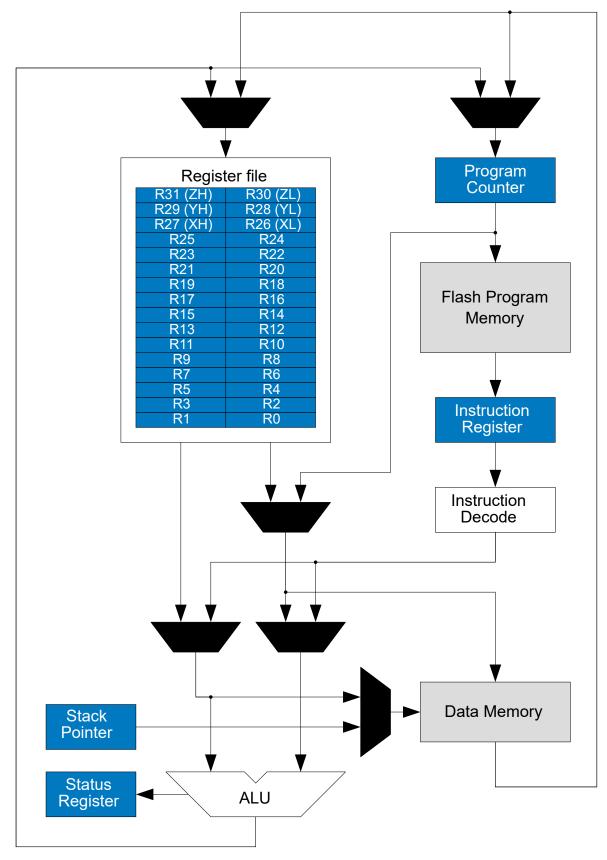
7. AVR[®] CPU

7.1 Features

- 8-Bit, High-Performance AVR RISC CPU:
 - 135 instructions
 - Hardware multiplier
- 32 8-Bit Registers Directly Connected to the ALU
- Stack in RAM
- Stack Pointer Accessible in I/O Memory Space
- Direct Addressing of up to 64 KB of Unified Memory
- Efficient Support for 8-, 16-, and 32-Bit Arithmetic
- Configuration Change Protection for System-Critical Features
- Native On-Chip Debugging (OCD) Support:
 - Two hardware breakpoints
 - Change of flow, interrupt, and software breakpoints
 - Run-time read-out of Stack Pointer (SP) register, Program Counter (PC), and Status Register (SREG)
 - Register file read- and writable in Stopped mode

7.2 Overview

The AVR CPU can access memories, perform calculations, control peripherals, execute instructions from the program memory, and handle interrupts.


7.3 Architecture

To maximize performance and parallelism, the AVR CPU uses a Harvard architecture with separate buses for program and data. The instructions in the program memory are executed with a single-level pipeline. While one instruction is being executed, the next instruction is prefetched from the program memory. This enables instructions to be executed on every clock cycle.

Refer to the *Instruction Set Summary* section for a summary of all AVR instructions.

7.3.1 Arithmetic Logic Unit (ALU)

The Arithmetic Logic Unit (ALU) supports arithmetic and logic operations between working registers or between a constant and a working register. Also, single-register operations can be executed.

The ALU operates in a direct connection with all the 32 general purpose working registers in the register file. The arithmetic operations between working registers or between a working register and an immediate operand are executed in a single clock cycle, and the result is stored in the register file. After an arithmetic or logic operation, the Status Register (CPU.SREG) is updated to reflect information about the result of the operation.

ALU operations are divided into three main categories – arithmetic, logical, and bit functions. Both 8and 16-bit arithmetic are supported, and the instruction set allows for an efficient implementation of the 32-bit arithmetic. The hardware multiplier supports signed and unsigned multiplication and fractional formats.

7.3.1.1 Hardware Multiplier

The multiplier is capable of multiplying two 8-bit numbers into a 16-bit result. The hardware multiplier supports different variations of signed and unsigned integer and fractional numbers:

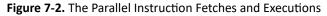
- Multiplication of signed/unsigned integers
- Multiplication of signed/unsigned fractional numbers
- · Multiplication of a signed integer with an unsigned integer
- Multiplication of a signed fractional number with an unsigned fractional number

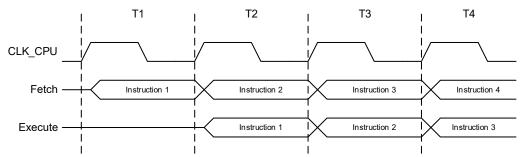
A multiplication takes two CPU clock cycles.

7.4 Functional Description

7.4.1 Program Flow

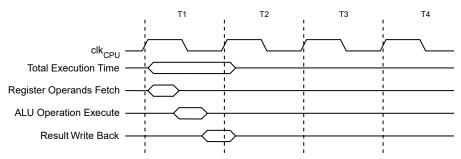
After being reset, the CPU will execute instructions from the lowest address in the Flash program memory, 0x0000. The Program Counter (PC) addresses the next instruction to be fetched.


The CPU supports instructions that can change the program flow conditionally or unconditionally and are capable of addressing the whole address space directly. Most AVR instructions use a 16-bit word format, and a limited number use a 32-bit format.


During interrupts and subroutine calls, the return address PC is stored on the stack as a word pointer. The stack is allocated in the general data SRAM, and consequently, the stack size is only limited by the total SRAM size and the usage of the SRAM. After the Stack Pointer (SP) is reset, it points to the highest address in the internal SRAM. The SP is read/write accessible in the I/O memory space, enabling easy implementation of multiple stacks or stack areas. The data SRAM can easily be accessed through the five different Addressing modes supported by the AVR CPU. See the *Instruction Set Summary* section for details.

7.4.2 Instruction Execution Timing

The AVR CPU is clocked by the CPU clock, CLK_CPU. No internal clock division is applied. The figure below shows the parallel instruction fetches and executions enabled by the Harvard architecture and the fast-access register file concept. This is the basic pipelining concept enabling up to 1 MIPS/MHz performance with high efficiency.



The following figure shows the internal timing concept for the register file. In a single clock cycle, an ALU operation using two register operands is executed, and the result is stored in the destination register.

Figure 7-3. Single Cycle ALU Operation

7.4.3 Status Register

The Status Register (CPU.SREG) contains information about the result of the most recently executed arithmetic or logic instructions. This information can be used for altering the program flow to perform conditional operations.

CPU.SREG is updated after all ALU operations, as specified in the *Instruction Set Summary* section, which will, in many cases, remove the need for using the dedicated compare instructions, resulting in a faster and more compact code. CPU.SREG is not automatically stored or restored when entering or returning from an Interrupt Service Routine (ISR). Therefore, maintaining the Status Register between context switches must be handled by user-defined software. CPU.SREG is accessible in the I/O memory space.

7.4.4 Stack and Stack Pointer

The stack is used for storing return addresses after interrupts and subroutine calls. Also, it can be used for storing temporary data. The Stack Pointer (SP) always points to the top of the stack. The address pointed to by the SP is stored in the Stack Pointer (CPU.SP) register. The CPU.SP is implemented as two 8-bit registers that are accessible in the I/O memory space.

Data are pushed and popped from the stack using the instructions given in Table 7-1, or by executing interrupts. The stack grows from higher to lower memory locations. This means that when pushing data onto the stack, the SP decreases, and when popping data off the stack, the SP increases. The SP is automatically set to the highest address of the internal SRAM after being reset. If the stack is changed, it must be set to point above the SRAM start address (see the *SRAM Data Memory* topic in the *Memories* section for the SRAM start address), and it must be defined before any subroutine calls are executed and before interrupts are enabled. See the table below for SP details.

Table 7-1. Stack Pointer Instructions

Instruction	Stack Pointer	Description
PUSH	Decremented by 1	Data are pushed onto the stack
CALL ICALL RCALL	Decremented by 2	A return address is pushed onto the stack with a subroutine call or interrupt
POP	Incremented by 1	Data are popped from the stack
RET RETI	Incremented by 2	A return address is popped from the stack with a return from subroutine or return from interrupt

During interrupts or subroutine calls, the return address is automatically pushed on the stack as a word, and the SP is decremented by two. The return address consists of two bytes and the Least Significant Byte (LSB) is pushed on the stack first (at the higher address). As an example, a byte pointer return address of 0x0006 is saved on the stack as 0x0003 (shifted one bit to the right), pointing to the fourth 16-bit instruction word in the program memory. The return address is popped off the stack with RETI (when returning from interrupts) and RET (when returning from subroutine calls), and the SP is incremented by two.

The SP is decremented by one when data are pushed on the stack with the PUSH instruction, and incremented by one when data are popped off the stack using the POP instruction.

To prevent corruption when updating the SP from software, a write to SPL will automatically disable interrupts for up to four instructions or until the next I/O memory write, whichever comes first.

7.4.5 Register File

The register file consists of 32 8-bit general purpose working registers used by the CPU. The register file is located in a separate address space from the data memory.

All CPU instructions that operate on working registers have direct and single-cycle access to the register file. Some limitations apply to which working registers can be accessed by an instruction, like the constant arithmetic and logic instructions SBCI, SUBI, CPI, ANDI, ORI and LDI. These instructions apply to the second half of the working registers in the register file, R16 to R31. See the *AVR Instruction Set Manual* for further details.

7 0	Addr.	
R0	0x00	
R1	0x01	
R2	0x02	
R13	0x0D	
R14	0x0E	
R15	0x0F	
R16	0x10	
R17	0x11	
R26	0x1A	X-register Low Byte
R27	0x1B	X-register High Byte
R28	0x1C	Y-register Low Byte
R29	0x1D	Y-register High Byte
R30	0x1E	Z-register Low Byte
R31	0x1F	Z-register High Byte


Figure 7-4. AVR[®] CPU General Purpose Working Registers

7.4.5.1 The X-, Y-, and Z-Registers

Working registers R26...R31 have added functions besides their general purpose usage.

These registers can form 16-bit Address Pointers for indirect addressing of data memory. These three address registers are called the X-register, Y-register, and Z-register. The Z-register can also be used as Address Pointer for program memory.

Bit (individually)	7	R27	0	7	R26	0
X-register		ХН			XL	
Bit (X-register)	15		8	7		0
Bit (individually)	7	R29	0	7	R28	0
Y-register		YH			YL	
Bit (Y-register)	15		8	7		0
Bit (individually)	7	R31	0	7	R30	0
Z-register		ZH			ZL	
Bit (Z-register)	15		8	7		0

The lowest register address holds the Least Significant Byte (LSB), and the highest register address holds the Most Significant Byte (MSB). These address registers can function as fixed displacement, automatic increment, and automatic decrement, with different LD*/ST* instructions. See the *Instruction Set Summary* section for details.

7.4.6 Configuration Change Protection (CCP)

System critical I/O register settings are protected from accidental modification. Flash selfprogramming is protected from accidental execution. This is handled globally by the Configuration Change Protection (CCP) register.

Changes to the protected I/O registers or bits, or execution of protected instructions, are only possible after the CPU writes a signature to the CCP register. The different signatures are listed in the description of the CCP register (CPU.CCP).

Once the correct signature is written by the CPU, interrupts will be ignored for the duration of the configuration change enable period. Any interrupt request (including non-maskable interrupts) during the CCP period will set the corresponding Interrupt flag as normal, and the request is kept pending. After the CCP period is completed, any pending interrupts are executed according to their level and priority.

There are two modes of operation: One for protected I/O registers, and one for protected self-programming.

7.4.6.1 Sequence for Write Operation to Configuration Change Protected I/O Registers

To write to registers protected by CCP, the following steps are required:

- 1. The software writes the signature that enables change of protected I/O registers to the CCP bit field in the CPU.CCP register.
- 2. Within four instructions, the software must write the appropriate data to the protected register. Most protected registers also contain a Write Enable/Change Enable/Lock bit. This bit must be written to '1' in the same operation as the data are written.

The protected change is immediately disabled if the CPU performs write operations to the I/O register or data memory, if load or store accesses to Flash, NVMCTRL, or EEPROM are conducted, or if the SLEEP instruction is executed.

7.4.6.2 Sequence for Execution of Self-Programming

To execute self-programming (the execution of writes to the NVM controller's command register), the following steps are required:

- 1. The software temporarily enables self-programming by writing the SPM signature to the CCP register (CPU.CCP).
- 2. Within four instructions, the software must execute the appropriate instruction. The protected change is immediately disabled if the CPU performs accesses to the Flash, NVMCTRL, or EEPROM, or if the SLEEP instruction is executed.

7.4.7 On-Chip Debug Capabilities

The AVR CPU includes native On-Chip Debug (OCD) support. It contains some powerful debug capabilities to enable profiling and detailed information about the CPU state. It is possible to alter the CPU state and resume code execution. Also, normal debug capabilities like hardware Program Counter breakpoints, breakpoints on change of flow instructions, breakpoints on interrupts, and software breakpoints (BREAK instruction) are present. Refer to the UPDI - Unified Program and Debug Interface section for details about OCD.

7.5 Register Summary

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0	
0x00											
	Reserved										
0x03											
0x04	CCP	7:0				CCP	[7:0]				
0x05											
	Reserved										
0x0C											
0x0D	SP	7:0	SP[7:0]								
UXUD	SF	15:8	SP[15:8]								
0x0F	SREG	7:0	I	Т	Н	S	V	N	Z	С	

7.6 Register Description

7.6.1 Configuration Change Protection

	Name: Offset: Reset: Property:	CCP 0x04 0x00 -							
Bit	7	6	5	4	3	2	1	0	
				CCP	[7:0]				7
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-
Reset	0	0	0	0	0	0	0	0	

Bits 7:0 – CCP[7:0] Configuration Change Protection

Writing the correct signature to this bit field allows changing protected I/O registers or executing protected instructions within the following four CPU instructions executed.

All interrupts are ignored during these cycles. After completing these cycles, the interrupts will be handled automatically by the CPU. Any pending interrupts will be executed according to their level and priority.

When the protected I/O register signature is written, CCP[0] will read '1' as long as the CCP feature is enabled.

When the protected self-programming signature is written, CCP[1] will read '1' as long as the CCP feature is enabled.

CCP[7:2] will always read '0'.

Value	Name	Description
0x9D	SPM	Allow self-programming
0xD8	IOREG	Unlock protected I/O registers

7.6.2 Stack Pointer

Name:SPOffset:0x0DReset:Top of stackProperty:-

The CPU.SP register holds the Stack Pointer (SP) that points to the top of the stack. After being reset, the SP points to the highest internal SRAM address.

Only the number of bits required to address the available SRAM is implemented for each device. The remaining bits are set, so the Stack Pointer (SP) always points to the SRAM.

The CPU.SPL and CPU.SPH register pair represents the 16-bit value, CPU.SP. The low byte [7:0] (suffix L) is accessible at the original offset. The high byte [15:8] (suffix H) can be accessed at offset + 0×01 .

To prevent corruption when updating the SP from software, a write to CPU.SPL will automatically disable interrupts for the following four instructions or until the next I/O memory write, whichever comes first.

Bit	15	14	13	12	11	10	9	8
				SP[1	5:8]			
Access Reset	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit	7	6	5	4	3	2	1	0
				SP[7:0]			
Access Reset	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bits 15:8 - SP[15:8] Stack Pointer High Byte

These bits hold the MSB of the 16-bit register.

Bits 7:0 - SP[7:0] Stack Pointer Low Byte

These bits hold the LSB of the 16-bit register.

7.6.3 Status Register

Name:	SREG
Offset:	0x0F
Reset:	0x00
Property:	-

The Status Register contains information about the result of the most recently executed arithmetic or logic instructions. See the *Instruction Set Summary* section for the bit details in this register and how they are influenced by different instructions.

Bit	7	6	5	4	3	2	1	0
	I	Т	Н	S	V	N	Z	C
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 7 – I Global Interrupt Enable Bit

Writing a '1' to this bit enables interrupts on the device.

Writing a '0' to this bit disables the interrupts on the device, independent of the individual interrupt enable settings of the peripherals.

This bit is not cleared by hardware while entering an Interrupt Service Routine (ISR) or set when the RETI instruction is executed.

This bit can be set and cleared by software with the ${\tt SEI}$ and ${\tt CLI}$ instructions.

Changing the I bit through the I/O register results in a one-cycle Wait state on the access.

Bit 6 – T Transfer Bit

The bit copy instructions, Bit Load (BLD) and Bit Store (BST), use the T bit as source or destination for the operated bit.

Bit 5 - H Half Carry Flag

This flag is set when there is a half carry in the arithmetic operations that support this and is cleared otherwise. Half carry is useful in BCD arithmetic.

Bit 4 – S Sign Flag

This flag is always an Exclusive Or (*XOR*) between the Negative flag (N) and the Two's Complement Overflow (V) flag.

Bit 3 – V Two's Complement Overflow Flag

This flag is set when there is an overflow in the arithmetic operations that support this and is cleared otherwise.

Bit 2 – N Negative Flag

This flag is set when there is a negative result in an arithmetic or logic operation and is cleared otherwise.

Bit 1 – Z Zero Flag

This flag is set when there is a zero result in an arithmetic or logic operation and is cleared otherwise.

Bit 0 – C Carry Flag

This flag is set when there is a carry in an arithmetic or logic operation and is cleared otherwise.

8. Memories

8.1 Overview

The main memories of the AVR16EB14/20/28/32 devices are SRAM data memory space, EEPROM data memory space, and Flash program memory space. Also, the peripheral registers are located in the I/O memory space.

8.2 Memory Map

The figure below shows the memory map for the highest memory derivative in the AVR[®] EB Family family. Refer to the subsequent sections and the *Peripheral Address Map* table for further details.

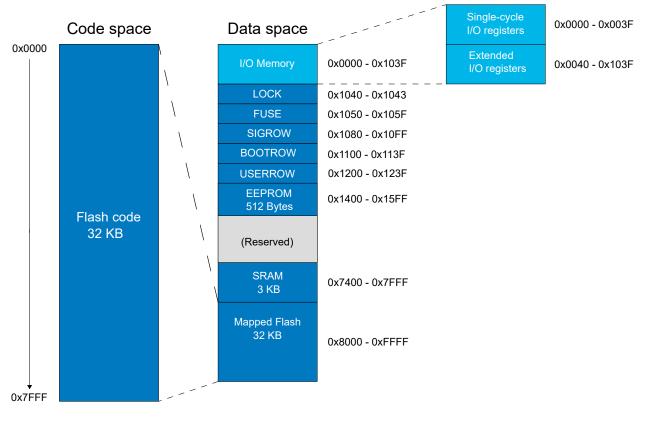


Figure 8-1. Memory Map: Flash 32 KB, Internal SRAM 3 KB, EEPROM 512B

8.3 In-System Reprogrammable Flash Program Memory

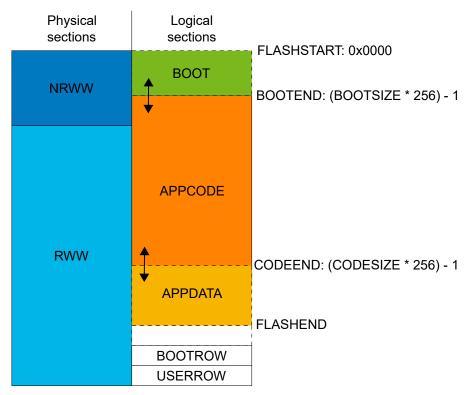
The AVR16EB14/20/28/32 contains 16 KB on-chip in-system reprogrammable Flash memory for program storage. Since all AVR instructions are 16 or 32 bits wide, the Flash is organized with a 16-bit data width. For write protection, the Flash program memory space can be divided into three sections: Boot (BOOT) section, Application Code (APPCODE) section, and Application Data (APPDATA) section. Code placed in one section may be restricted from writing to addresses in other sections. See the *Nonvolatile Memory Controller* (NVMCTRL) section for more details.

The Program Counter (PC) can address the whole program memory. The procedure for writing Flash memory is described in detail in the *NVMCTRL* section.

The Flash memory is mapped into the data space and is accessible with ordinary LD/ST instructions. See the NVMCTRL section for details on which Flash section maps into the data space. For LD/ST instructions, the Flash is mapped from address 0x8000. Also, read the Flash memory with the LPM instruction. For the LPM instruction, the Flash start address is 0x0000.

The AVR16EB14/20/28/32 has a CRC module that is a host on the data bus.

Table 8-1. Physical Properties of Flash Memory


Property	AVR16EB32 AVR16EB28 AVR16EB20 AVR16EB14
Size	16 KB
Page size	64B
Number of pages	256
Start address in data space	0x8000
Start address in code space	0x0000

The figure below shows the mapping of the physical and logical memory sections.

- **NRWW** = No-Read-While-Write
- **RWW** = Read-While-Write

See the *NVMCTRL* section for more details about the different physical and logical memory sections and their configuration.

Figure 8-2. Flash Sections

8.4 Program and Debug Interface Disable (PDID)

After activating the *Program and Debug Interface Disable (PDID)*, the only way to write to the reprogrammable Flash memory (nonvolatile memory - NVM) is from the Boot Code section of the NVM. Consequently, CHIPERASE or other re-programming attempts through the UPDI will fail. Also, any attempt to read out any NVM content will fail.

Use the following procedure to enable the PDID feature (restrict access to NVM):

1. Write 0xB452 to the PDI Configuration (PDICFG) fuse:

- Provide the NVM Protection Active (NVMACT) key by writing 0xB45 to bits PDICFG[15:4] (KEY)
- Bits PDICFG[3:2] are unused ensure they are zero
- Select the Protection Level NVM Access Disabled (NVMACCDIS) by writing 0x2 to PDICFG[1:0] (LEVEL)
- 2. Write the Lock Key Bits (KEY) in the LOCK.KEY fuse to LOCKED
- 3. Reset the device

Once protection level NVMACCDIS is invoked, the following access rules apply:

- NVM access through UPDI is disabled
- Updates to the application software can only be performed by code located in the Boot Code section (bootloader)
- Chip Erase is disabled
- User Row write access is disabled
- CRC status will be available

Important: Unlike for locked devices, performing a CHIPERASE through the UPDI interface once the PDID feature is activated is impossible. The only way to alter the NVM content after PDID activation is by executing NVM writes from the Boot Code section (bootloader). The application software must ensure that the bootloader implementation fulfills the security requirements.

Note: After PDID activation, the access to NVM is very restricted for external testing. Some testing will be possible, but advanced failure analysis will not be possible.

8.5 SRAM Data Memory

The primary task of the SRAM memory is to store application data. It is not possible to execute code from SRAM.

After reset, the program stack is located at the end of SRAM.

Property	AVR16EB32 AVR16EB28 AVR16EB20 AVR16EB14
Size	2 KB
Start address	0x7800
End address	0x7FFF

Table 8-2. Physical Properties of SRAM

8.6 **EEPROM Data Memory**

The task of the EEPROM memory is to store nonvolatile application data. The EEPROM memory supports single- and multi-byte read and write. The EEPROM is controlled by the Nonvolatile Memory Controller (NVMCTRL).

Table 8-3.	Physical	Properties	of EEPROM	Memory
	i nysicai	roperties		wichiory

Property	AVR [®] EB Family
Size	512B
Start address	0x1400

8.7 SIGROW - Signature Row

The content of the Signature Row (SIGROW) fuses is pre-programmed and cannot be altered. SIGROW holds information like device ID, serial number, and calibration values.

All the AVR16EB14/20/28/32 devices have a three-byte device ID identifying the device. This device ID can be read using the UPDI interface, even if the device is locked. The three bytes reside in the Signature Row. The signature bytes are given in the following table.

Device Name	Signature Bytes Address						
Device Name	0x00	0x01	0x02				
AVR16EB14	0x1E	0x94	0x49				
AVR16EB20	0x1E	0x94	0x40				
AVR16EB28	0x1E	0x94	0x3F				
AVR16EB32	0x1E	0x94	0x3E				

Table 8-4. Device ID

8.7.1 Signature Row Summary

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00	DEVICEID0	7:0				DEVICE	ID[7:0]			
0x01	DEVICEID1	7:0				DEVICE	ID[7:0]			
0x02	DEVICEID2	7:0				DEVICE	ID[7:0]			
0x03	Reserved									
0x04	TEMPSENSE0	7:0				TEMPSE	NSE[7:0]			
0X04	TEIVIFSEINSEU	15:8				TEMPSEN	NSE[15:8]			
0x06	TEMPSENSE1	7:0				TEMPSE	NSE[7:0]			
0,00	I LIVIF SLINSLI	15:8				TEMPSEN	VSE[15:8]			
0x08										
	Reserved									
0x0F										
0x10	SERNUM0	7:0				SERNU	M[7:0]			
0x1F	SERNUM15	7:0				SERNU	M[7:0]			

8.7.2 Signature Row Description

8.7.2.1 Device ID n

Name:	DEVICEIDn
Offset:	0x00 + n*0x01 [n=02]
Reset:	[Device ID]
Property:	-

Each device has an ID identifying the device and its properties, including memory sizes, pin count, and die revision. Use this ID to identify a device and the available features. The device ID consists of three bytes: SIGROW.DEVICEID[2:0].

Bit	7	6	5	4	3	2	1	0
				DEVICE	ID[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	х	х	х	х	х	х	х	х

Bits 7:0 - DEVICEID[7:0] Byte n of the Device ID

8.7.2.2 Temperature Sensor Calibration n

Name:	TEMPSENSEn
Offset:	0x04 + n*0x02 [n=01]
Reset:	[Temperature sensor calibration value]
Property:	-

The Temperature Sensor Calibration registers contain correction factors for temperature measurements from the on-chip sensor. SIGROW.TEMPSENSE0 is a correction factor for the gain/ slope (signed) and SIGROW.TEMPSENSE1 is a correction factor for the offset (signed).

Bit	15	14	13	12	11	10	9	8
				TEMPSEN	VSE[15:8]			
Access	R	R	R	R	R	R	R	R
Reset	Х	х	х	х	х	х	х	х
Bit	7	6	5	4	3	2	1	0
				TEMPSE	NSE[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	Х	х	х	х	х	х	х	х

Bits 15:0 - TEMPSENSE[15:0] Temperature Sensor Calibration

Refer to the ADC - Analog-to-Digital Converter section for using these registers.

8.7.2.3 Serial Number Byte n

Name:	SERNUMn
Offset:	0x10 + n*0x01 [n=015]
Reset:	[Byte n of device serial number]
Property:	-

Each device has a unique serial number representing a unique ID, which can be used to identify a specific device in the field. The serial number consists of sixteen bytes: SIGROW.SERNUM[15:0].

Bit	7	6	5	4	3	2	1	0
				SERNU	IM[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	х	х	х	х	х	х	х	х

Bits 7:0 - SERNUM[7:0] Serial Number Byte n

8.8 USERROW - User Row

The AVR16EB14/20/28/32 devices have a special 64-byte memory section called the User Row (USERROW). USERROW can be used for end-production data and is not affected by chip erase. It can be written by the Unified Program and Debug Interface (UPDI) even if the part is locked, which enables storage of final configuration without having access to any other memory. The UPDI is not allowed to read the content of the USERROW when the part is locked.

The CPU can write and read this memory as an ordinary Flash. Refer to the *System Memory Address Map* for further details.

8.9 BOOTROW - Boot Row

The AVR16EB14/20/28/32 devices have a special 64-byte memory section called the Boot Row (BOOTROW). The BOOTROW can be used for boot loader data and is erased by chip erase.

On a locked device, this section can only be accessed when executing from the BOOT section, making this area ideal for storing device specific information to be seen by the boot loader. Refer to the *System Memory Address Map* for further details.

8.10 FUSE - Configuration and User Fuses

Fuses are part of the nonvolatile memory and hold the device configuration. The fuses can be read by the CPU or theUPDI but programmed or cleared only by the UPDI. The configuration values stored in the fuses are written to their target registers at the end of the start-up sequence.

The fuses for peripheral configuration (FUSE) are pre-programmed but can be altered by the user. Altered values in the configuration fuse will be active only after a Reset.

Note: When writing the fuses, all reserved bits must be written to '1'.

8.10.1 Fuse Summary

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00	WDTCFG	7:0		WINDO	DW[3:0]			PERIC	D[3:0]	
0x01	BODCFG	7:0		LVL[2:0]		SAMPFREQ	ACTIVE[1:0]		SLEEP[1:0]	
0x02	OSCCFG	7:0					OSCHFFRQ			
0x03										
	Reserved									
0x04										
0x05	SYSCFG0	7:0	CRCSF	RC[1:0]	CRCSEL	UPDIPINCFG	RSTPINCFG		BROWSAVE	EESAVE
0x06	SYSCFG1	7:0							SUT[2:0]	
0x07	CODESIZE	7:0				CODES	IZE[7:0]			
0x08	BOOTSIZE	7:0		BOOTSIZE[7:0]						
0x09	Reserved									
0x0A	PDICFG	7:0		KEY	[3:0]				LEVE	L[1:0]
UXUA	FDICFG	15:8	KEY[11:4]					-		

8.10.2 Fuse Description

8.10.2.1 Watchdog Configuration

Name:	WDTCFG
Offset:	0x00
Default:	0x00
Property:	-

The default value given in this fuse description is the factory-programmed value and may not be mistaken for the Reset value.

Bit	7	6	5	4	3	2	1	0	
[WINDO	DW[3:0]		PERIOD[3:0]				
Access	R	R	R	R	R	R	R	R	
Default	0	0	0	0	0	0	0	0	

Bits 7:4 - WINDOW[3:0] Watchdog Window Time-out Period

This value is loaded into the WINDOW bit field of the Watchdog Control A (WDT.CTRLA) register at the end of the start-up sequence after power-on or Reset.

Bits 3:0 - PERIOD[3:0] Watchdog Time-out Period

This value is loaded into the PERIOD bit field of the Watchdog Control A (WDT.CTRLA) register at the end of the start-up sequence after power-on or Reset.

8.10.2.2 Brown-Out Detector Configuration

Name:	BODCFG
Offset:	0x01
Default:	0x00
Property:	-

The bit values of this fuse register are written to the corresponding BOD configuration registers at the start-up.

The default value given in this fuse description is the factory-programmed value and may not be mistaken for the Reset value.

Bit	7	6	5	4	3	2	1	0
Γ		LVL[2:0]		SAMPFREQ	ACTI	/E[1:0]	SLEE	P[1:0]
Access	R	R	R	R	R	R	R	R
Default	0	0	0	0	0	0	0	0

Bits 7:5 - LVL[2:0] BOD Level

This value is loaded into the LVL bit field of the BOD Control B (BOD.CTRLB) register during Reset. **Note:** Values in the **Description** column are typical values. Refer to the *Electrical Characteristics* section for further details.

Note: BODLEVELO will only be enabled during chip erase. In normal operation, writing ' 0×0 ' to this bit field will be the same as disabling the BOD.

Value	Name	Description
0x0	BODLEVEL0	1.75V (BOD enabled only during chip erase, see the <i>Electrical Characteristics</i> section).
0x1	BODLEVEL1	1.90V
0x2	BODLEVEL2	2.60V
0x3	BODLEVEL3	4.30V
other	-	Reserved

Bit 4 – SAMPFREQ BOD Sample Frequency

This value is loaded into the Sample Frequency (SAMPFREQ) bit of the BOD Control A (BOD.CTRLA) register during Reset. Refer to the *Brown-out Detector* section for further details.

Value	Name	Description
0x0	128HZ	The sample frequency is 128 Hz
0x1	32HZ	The sample frequency is 32 Hz

Bits 3:2 - ACTIVE[1:0] BOD Operation Mode in Active and Idle

This value is loaded into the ACTIVE bit field of the BOD Control A (BOD.CTRLA) register during Reset. Refer to the *Brown-out Detector* section for further details.

Value	Name	Description
0x0	DISABLE	BOD disabled
0x1	ENABLE	BOD enabled in continuous mode
0x2	SAMPLE	BOD enabled in sampled mode
0x3	ENABLEWAIT	Enabled in continuous mode with code execution halted until BOD is ready

Bits 1:0 – SLEEP[1:0] BOD Operation Mode in Sleep

The value is loaded into the SLEEP bit field of the BOD Control A (BOD.CTRLA) register during Reset. Refer to the *Brown-out Detector* section for further details.

Value	Name	Description
0x0	DISABLE	BOD disabled
0x1	ENABLE	BOD enabled in continuous mode
0x2	SAMPLE	BOD enabled in sampled mode
0x3	-	Reserved

8.10.2.3 Oscillator Configuration

Name:	OSCCFG
Offset:	0x02
Default:	0x00
Property:	-

The default value given in this fuse description is the factory-programmed value and may not be mistaken for the Reset value.

Bit	7	6	5	4	3	2	1	0
					OSCHFFRQ			
Access					R			
Default					0			

Bit 3 – OSCHFFRQ Internal High-frequency Oscillator Frequency

This fuse bit controls the running frequency of the internal high-frequency oscillator (OSCHF).

Value	Description
0	OSCHF running at 20 MHz
1	OSCHF running at 16 MHz

8.10.2.4 System Configuration 0

Name:	SYSCFG0
Offset:	0x05
Default:	0xD0
Property:	-

The default value given in this fuse description is the factory-programmed value and may not be mistaken for the Reset value.

Bit	7	6	5	4	3	2	1	0
	CRCSI	RC[1:0]	CRCSEL	UPDIPINCFG	RSTPINCFG		BROWSAVE	EESAVE
Access	R	R	R	R	R		R/W	R
Default	1	1	0	1	0		0	0

Bits 7:6 - CRCSRC[1:0] CRC Source

This bit field controls which section of the Flash will be checked by the CRCSCAN peripheral during the Reset initialization. Refer to the *CRCSCAN* section for more information about the functionality.

Value	Name	Description
0x0	FLASH	CRC of full Flash (boot, application code and application data)
0x1	BOOT	CRC of the boot section
0x2	BOOTAPP	CRC of application code and boot sections
0x3	NOCRC	No CRC

Bit 5 – CRCSEL CRC Polynomial Selection

This bit controls the type of CRC performed by the CRCSCAN peripheral. Refer to the *CRCSCAN* section for more information about the functionality.

Value	Name	Description
0x0	CRC16	CRC16 - CCITT
0x1	CRC32	CRC32 (IEEE 802.3)

Bit 4 – UPDIPINCFG Configuration of UPDI Pin at Start-Up

This bit selects the UPDI pin configuration at start-up.				
Value	Name	Description		
0x0	GPIO	The UPDI pin is configured as GPIO		
0x1	UPDI	The UPDI pin is configured as UPDI with pull-up enabled on PF7		

Bit 3 - RSTPINCFG Configuration of Reset Pin at Start-Up

This bit selects the pin configuration for the Reset pin at start-up.

Value	Name	Description
0x0	INPUT	PF6 configured as input pin
0x1	RESET	External reset with pull-up on PF6 enabled

Bit 1 – BROWSAVE Boot Row Save During Chip Erase

This bit controls if the Boot Row will be erased or not during a chip erase. If the device is locked, the Boot Row is erased by a chip erase regardless of this bit.

Value	Name	Description
0	DISABLE	The Boot Row is erased by a chip erase
1	ENABLE	The Boot Row is not erased by a chip erase

Bit 0 – EESAVE EEPROM Saved During Chip Erase

This bit controls whether the EEPROM is erased or preserved during a chip erase. If enabled, chip erase will erase only the Flash memory.

Value	Name	Description				
0x0	DISABLE	EEPROM is erased during a chip erase				
0x1	ENABLE	EEPROM is preserved during a chip erase regardless of whether the device is locked				

8.10.2.5 System Configuration 1

Name:	SYSCFG1
Offset:	0x06
Default:	0x07
Property:	-

The default value given in this fuse description is the factory-programmed value and may not be mistaken for the Reset value.

Bit	7	6	5	4	3	2	1	0
							SUT[2:0]	
Access						R	R	R
Default						1	1	1

Bits 2:0 - SUT[2:0] Start-up Time

This bit field controls the start-up time, meaning the time between power-on and start of code execution.

Value	Name	Description
0x0	OMS	0 ms
0x1	1MS	1 ms
0x2	2MS	2 ms
0x3	4MS	4 ms
0x4	8MS	8 ms
0x5	16MS	16 ms
0x6	32MS	32 ms
0x7	64MS	64 ms

8.10.2.6 Code Size

Name:	CODESIZE
Offset:	0x07
Default:	0x00
Property:	-

The default value given in this fuse description is the factory-programmed value and may not be mistaken for the Reset value.

Bit	7	6	5	4	3	2	1	0
				CODES	IZE[7:0]			
Access	R	R	R	R	R	R	R	R
Default	0	0	0	0	0	0	0	0

Bits 7:0 - CODESIZE[7:0] Code Section Size

This bit field defines the combined size of the Boot Code and Application Code sections in blocks of 256 bytes. For more details, refer to the *Nonvolatile Memory Controller* section. **Note:** The entire Flash is set as the Boot Code section without using the FUSE.CODESIZE value if FUSE.BOOTSIZE is 0×00 .

8.10.2.7 Boot Size

Name:	BOOTSIZE
Offset:	0x08
Default:	0x00
Property:	-

The default value given in this fuse description is the factory-programmed value and may not be mistaken for the Reset value.

Bit	7	6	5	4	3	2	1	0
				BOOTS	IZE[7:0]			
Access	R	R	R	R	R	R	R	R
Default	0	0	0	0	0	0	0	0

Bits 7:0 - BOOTSIZE[7:0] Boot Section Size

This bit field controls the size of the boot section in blocks of 256 bytes. A value of 0×00 defines the entire Flash as BOOT section.

For more details, refer to the *Nonvolatile Memory Controller* section.

8.10.2.8 UPDI Protection

Name:	PDICFG
Offset:	0x0A
Default:	0x03
Property:	-

The default value given in this fuse description is the factory-programmed value and may not be mistaken for the Reset value.

Bit	15	14	13	12	11	10	9	8
				KEY[11:4]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Default	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
		KEY	[3:0]				LEVE	L[1:0]
Access	R/W	R/W	R/W	R/W			R/W	R/W
Default	0	0	0	0			1	1

Bits 15:4 - KEY[11:0] UPDI Protection Activate Key

This bit field contains the 12-bit enable key for UPDI protection. The protection does not take effect unless the device is code protected (LOCK.KEY is set to LOCKED state).

Value	Name	Description
0xB45	LOCK	Protection enabled
Other	UNLOCK	Protection disabled

Bits 1:0 - LEVEL[1:0] UPDI Protection Level

This bit field is used to set the level of UPDI protection.

Value	Name	Description
2'b00 - 2'b01	Reserved	
2'b10	NVMACCDIS	NVM access through UPDI disabled. Chip Erase and USERROW write are also disabled.
2'b11	UNPROT	UPDI interface and UPDI pins working as normal

8.11 LOCK - Memory Sections Access Protection

The device can be locked, the memories cannot be read using the Unified Program and Debug Interface (UPDI). The locking protects the Flash (all Boot Code, Application Code, and Application Data sections), SRAM, and the EEPROM, including the FUSE data, preventing the reading of application data or code using the debugger interface. Regular memory access from within the application is still enabled.

The device is locked by writing a non-valid key to the Lock Key (LOCK.KEY) register.

Memory Section	CPU	Access	UPDI Access		
	Read	Write	Read	Write	
Flash	Yes	Yes	Yes	Yes	
SRAM	Yes	Yes	Yes	Yes	
EEPROM	Yes	Yes	Yes	Yes	
SIGROW	Yes	No	Yes	No	
BOOTROW	Yes ⁽²⁾	Yes ⁽²⁾	Yes	Yes	
USERROW	Yes	Yes	Yes	Yes	

Table 8-5. Memory Access Unlocked (LOCK.KEY Valid Key)⁽¹⁾

.....continued

Memory Section	CPU A	Access	UPDI Access		
	Read	Write	Read	Write	
FUSE	Yes	No	Yes	Yes	
LOCK	Yes	No	Yes	Yes	
Registers	Yes	Yes	Yes	Yes	

Table 8-6. Memory Access Locked (LOCK.KEY Invalid Key)⁽¹⁾

Memory Section	CPU /	Access	UPDI Access		
Welliony Section	Read	Write	Read	Write	
Flash	Yes	Yes	No	No	
SRAM	Yes	Yes	No	No	
EEPROM	Yes	Yes	No	No	
SIGROW	Yes	No	No	No	
BOOTROW	Yes ⁽²⁾	Yes ⁽²⁾	No	No	
USERROW	Yes	Yes	No	Yes ⁽³⁾	
FUSE	Yes	No	No	No	
LOCK	Yes	No	No	No	
Registers	Yes	Yes	No	No	

Notes:

- 1. Read operations marked No in the tables may appear successful, but the data are invalid. Hence, any attempt of code validation through the UPDI will fail on these memory sections.
- 2. Write and read only possible from the Boot section
- 3. In the Locked mode, the USERROW can be written using the Fuse Write command, but the current USERROW values cannot be read.

Important: The only way to unlock a device is to perform a CHIPERASE. No application data are retained.

8.11.1 Lock Summary

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
		7:0				KEY[[7:0]			
0x00	KEY	15:8				KEY[15:8]			
0,00	KL1	23:16				KEY[2	3:16]			
		31:24				KEY[3	81:24]			

8.11.2 Lock Description

8.11.2.1 Lock Key

Name:	KEY
Offset:	0x00
Reset:	Initial factory value 0x5CC5C55C
Property:	-

Bit	31	30	29	28	27	26	25	24	
	KEY[31:24]								
Access	R	R	R	R	R	R	R	R	
Reset	х	х	х	х	х	х	х	х	
Bit	23	22	21	20	19	18	17	16	
				KEY[2	23:16]				
Access	R	R	R	R	R	R	R	R	
Reset	Х	х	х	х	х	х	х	х	
Bit	15	14	13	12	11	10	9	8	
				KEY[15:8]				
Access	R	R	R	R	R	R	R	R	
Reset	х	х	х	х	х	х	х	х	
Bit	7	6	5	4	3	2	1	0	
				KEY	[7:0]				
Access	R	R	R	R	R	R	R	R	
Reset	х	х	х	х	х	х	х	х	

Bits 31:0 - KEY[31:0] Lock Key

This bit field controls whether the device is locked.

Value	Name	Description
0x5CC5C55C	UNLOCKED	Device unlocked
Other	LOCKED	Device locked

8.12 I/O Memory

All AVR16EB14/20/28/32 devices' I/O and peripheral registers are located in the I/O memory space. Refer to the *Peripheral Address Map* table for further details.

The reserved bits must be written to '0' for compatibility with future devices if a register containing reserved bits is written. Never write reserved I/O memory addresses.

Single-Cycle I/O Registers

The I/O memory ranging from 0×00 to $0 \times 3F$ can be accessed by a single-cycle CPU instruction using the IN or OUT instructions.

The peripherals available in the single-cycle I/O registers are as follows:

- VPORTx
 - Refer to the I/O Configuration section for further details
- GPR
 - Refer to the General Purpose Register section for further details
- CPU
 - Refer to the AVR CPU section for further details

The single-cycle I/O registers ranging from 0x00 to 0x1F (VPORTx and GPR) are also directly bitaccessible using the SBI or CBI instruction. In these single-cycle I/O registers, single bits can be checked using the SBIS or SBIC instruction.

Refer to the Instruction Set Summary documentation for further details.

8.12.1 Accessing 16-Bit Registers

Most of the registers for the AVR16EB14/20/28/32 devices are 8-bit registers, but the devices also feature a few 16-bit registers. As the AVR data bus has a width of eight bits, accessing the 16-bit requires two read or write operations. All the 16-bit registers of the AVR16EB14/20/28/32 devices are connected to the 8-bit bus through a temporary (TEMP) register.

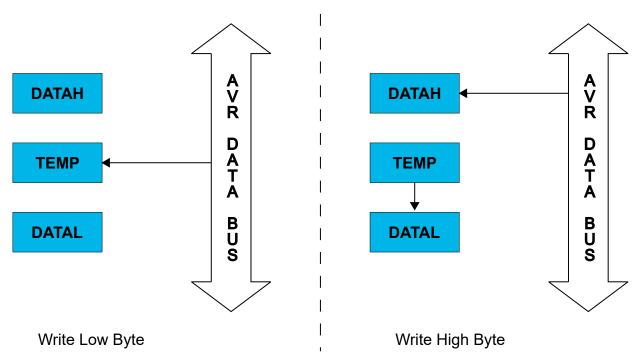
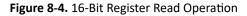
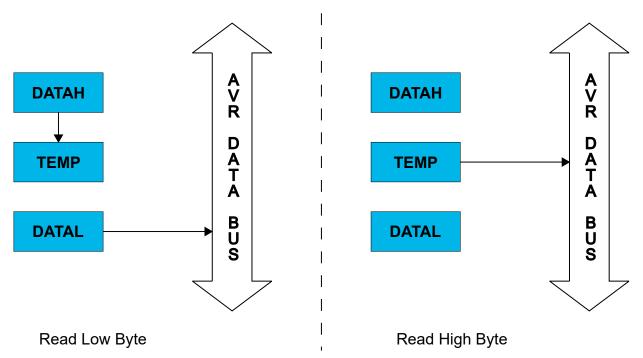




Figure 8-3. 16-Bit Register Write Operation

For a 16-bit write operation, the low byte register (e.g., DATAL) of the 16-bit register must be written before the high byte register (e.g., DATAH). Writing the low byte register will result in a write to the temporary (TEMP) register instead of the low byte register, as shown in the left side of the figure above. When the high byte register of the 16-bit register is written, TEMP will be copied into the low byte of the 16-bit register in the same clock cycle, as shown on the right side of the same figure.

For a 16-bit read operation, the low byte register (e.g., DATAL) of the 16-bit register must be read before the high byte register (e.g., DATAH). When the low byte register is read, the high byte register of the 16-bit register is copied into the temporary (TEMP) register in the same clock cycle, as shown on the left side of the figure above. Reading the high byte register will result in a read from TEMP instead of the high byte register, as shown on the right side of the same figure.

The described mechanism ensures that the low and high bytes of 16-bit registers are always accessed simultaneously when reading or writing the registers.

Interrupts can corrupt the timed sequence if an interrupt is triggered during a 16-bit read/write operation, and a 16-bit register within the same peripheral is accessed in the interrupt service routine. To prevent this, it is recommended to disable interrupts when writing or reading 16-bit registers. Alternatively, the temporary register can be read before and restored after the 16-bit access in the interrupt service routine.

8.12.2 Accessing 24-and 32-Bit Registers

For 24-and 32-bit registers, the read and write access is done in the same way as described for 16-bit registers, except there are two temporary registers for 24-bit registers and three temporary registers for 32-bit registers. The Most Significant Byte (MSB) must be written last when writing to the register, and the Least Significant Byte (LSB) must be read first when reading the register.

9. GPR - General Purpose Registers

The AVR16EB14/20/28/32 devices provide four General Purpose Registers. These registers can be used for storing any information, and they are particularly useful for storing global variables and interrupt flags. No implicit or explicit semantic applies to the bits in the General Purpose Registers. The interpretation of the bit values is completely determined by software.

General Purpose Registers, residing in the address range 0x001C - 0x001F, are directly bit-accessible using the SBI, CBI, SBIS, and SBIC instructions.

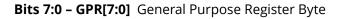
9.1 Register Summary

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00	GPR0	7:0				GPR	[7:0]			
0x01	GPR1	7:0		GPR[7:0]						
0x02	GPR2	7:0				GPR	[7:0]			
0x03	GPR3	7:0				GPR	[7:0]			

9.2 Register Description

9.2.1 General Purpose Register n

```
        Name:
        GPRn


        Offset:
        0x00 + n*0x01 [n=0..3]

        Reset:
        0x00

        Property:
        -
```

These General Purpose Registers are used to store data, such as global variables and flags, in the bit-accessible I/O memory space.

Bit	7	6	5	4	3	2	1	0
				GPR	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

10. Peripherals and Architecture

10.1 Peripheral Address Map

The address map shows the base address for each peripheral. Refer to the respective peripheral sections for a complete register description and summary for each peripheral.

able 10-1. Periph	ieral Address Ma	p				
Base Address	Name	Description	14-pin	20-pin	28-pin	32-pin
0x0000	VPORTA	Virtual Port A	Х	Х	Х	Х
0x0008	VPORTC	Virtual Port C	Х	Х	Х	Х
0x000C	VPORTD	Virtual Port D	Х	Х	Х	Х
0x0014	VPORTF	Virtual Port F	Х	Х	Х	Х
0x001C	GPR	General Purpose registers	Х	Х	Х	Х
0x0030	CPU	CPU	Х	Х	Х	Х
0x0040	RSTCTRL	Reset Controller	Х	Х	Х	Х
0x0050	SLPCTRL	Sleep Controller	Х	Х	Х	Х
0x0060	CLKCTRL	Clock Controller	Х	Х	Х	Х
0x00A0	BOD	Brown-out Detector	Х	Х	Х	Х
0x00B0	VREF	Voltage Reference	Х	Х	Х	Х
0x0100	WDT	Watchdog Timer	Х	Х	Х	Х
0x0110	CPUINT	Interrupt Controller	Х	Х	Х	Х
0x0120	CRCSCAN	Cyclic Redundancy Check Memory Scan	Х	Х	Х	Х
0x0140	RTC	Real-Time Counter	Х	Х	Х	Х
0x01C0	CCL	Configurable Custom Logic	Х	Х	Х	Х
0x0200	EVSYS	Event System	Х	Х	Х	Х
0x0400	PORTA	Port A Configuration	Х	Х	Х	Х
0x0440	PORTC	Port C Configuration	Х	Х	Х	Х
0x0460	PORTD	Port D Configuration	Х	Х	Х	Х
0x04A0	PORTF	Port F Configuration	Х	Х	Х	Х
0x05E0	PORTMUX	Port Multiplexer	Х	Х	Х	Х
0x0600	ADC0	Analog-to-Digital Converter	Х	Х	Х	Х
0x0680	AC0	Analog Comparator 0	Х	Х	Х	Х
0x0688	AC1	Analog Comparator 1	Х	Х	Х	Х
0x0800	USART0	Universal Synchronous Asynchronous Receiver Transmitter 0	Х	Х	Х	Х
0x0900	TWI0	Two-Wire Interface	Х	Х	Х	Х
0x0940	SPI0	Serial Peripheral Interface	Х	Х	Х	Х
0x0A00	TCE0	Timer/Counter Type E instance 0	Х	Х	Х	Х
0x0B00	TCB0	Timer/Counter Type B instance 0	Х	Х	Х	Х
0x0B10	TCB1	Timer/Counter Type B instance 1	Х	Х	Х	Х
0x0C00	TCF0	Timer/Counter Type F instance 0	Х	Х	Х	Х
0x0C80	WEX0	Waveform Extension instance 0	Х	Х	Х	Х
0x0F00	SYSCFG	System Configuration	Х	Х	Х	Х
0x0F80	OCD	On-Chip Debug	Х	Х	Х	Х
0x1000	NVMCTRL	Nonvolatile Memory Controller	Х	Х	Х	Х

 Table 10-1.
 Peripheral Address Map

Table 10-2. System Memory Address Map

Base Address	Name	Description	14-pin	20-pin	28-pin	32-pin
0x1040	LOCKBIT	Lock bits	Х	Х	Х	Х
0x1050	FUSE	User Configuration Fuses	Х	Х	Х	Х
0x1080	SIGROW	Signature Row	Х	Х	Х	Х
0x1100	BOOTROW	Boot Row	Х	Х	Х	Х
0x1200	USERROW	User Row	Х	Х	Х	Х

10.2 Interrupt Vector Mapping

Each interrupt vector is connected to one peripheral instance, as shown in the table below. A peripheral can have one or more interrupt sources. For more details on the available interrupt sources, see the *Interrupt* section in the *Functional Description* of the respective peripheral.

An interrupt flag is set in the peripheral's interrupt flag (*<peripheral*>.INTFLAGS) register when the interrupt condition occurs, even if the interrupt is not enabled.

By writing to the corresponding Interrupt Enable bit in the peripheral's Interrupt Control (*>peripheral>*.INTCTRL) register, an interrupt is enabled or disabled.

An interrupt request is generated when the corresponding interrupt is enabled, and the interrupt flag is set. The interrupt request remains active until the interrupt flag is cleared. See the peripheral's interrupt flag (*<peripheral*>.INTFLAGS) register for details on how to clear interrupt flags.

Note: Interrupts must be enabled globally for interrupt requests to be generated.

Vector Number	Program Address (word)	Peripheral Source (Name)	Description	14-pin	20-pin	28-pin	32-pin
0	0x00	RESET		Х	Х	Х	Х
1	0x02	NMI	Non-Maskable interrupt available for CRCSCAN	Х	Х	Х	Х
2	0x04	BOD_VLM	Voltage Level Monitor	Х	Х	Х	Х
3	0x06	RTC_CNT	Overflow / compare match	Х	Х	Х	Х
4	0x08	RTC_PIT	Periodic interrupt	Х	Х	Х	Х
5	0x0A	CCL_CCL	Configurable Custom Logic	Х	Х	Х	Х
6	0x0C	PORTA_PORT	External interrupt	Х	Х	Х	Х
7	0x0E	WEX0	Fault detect	Х	Х	Х	Х
8	0x10	TCE0_OVF	Overflow	Х	Х	Х	Х
9	0x12	TCE0_CMP0	Compare Channel 0	Х	Х	Х	Х
10	0x14	TCE0_CMP1	Compare Channel 1	Х	Х	Х	Х
11	0x16	TCE0_CMP2	Compare Channel 2	Х	Х	Х	Х
12	0x18	TCE0_CMP3	Compare Channel 3	Х	Х	Х	Х
13	0x1A	TCB0_INT	Capture / Overflow	Х	Х	Х	Х
14	0x1C	TCB1_INT	Capture / Overflow	Х	Х	Х	Х
15	0x1E	TWI0_TWIC	Client	Х	Х	Х	Х
16	0x20	TWI0_TWIH	Host	Х	Х	Х	Х
17	0x22	SPI0_INT	Serial Peripheral Interface 0	Х	Х	Х	Х
18	0x24	USART0_RXC	Receive complete	Х	Х	Х	Х
19	0x26	USART0_DRE	Data register empty	Х	Х	Х	Х
20	0x28	USART0_TXC	Transmit complete	Х	Х	Х	Х
21	0x2A	PORTD_PORT	External interrupt	Х	Х	Х	Х

Table 10-3. Interrupt Vector Mapping

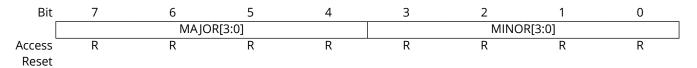
continued										
Vector Number	Program Address (word)	Peripheral Source (Name)	Description	14-pin	20-pin	28-pin	32-pin			
22	0x2C	TCF0_INT	Compare / Overflow	Х	Х	Х	Х			
23	0x2E	AC0_AC	Compare	Х	Х	Х	Х			
24	0x30	ADC0_ERROR	Error	Х	Х	Х	Х			
25	0x32	ADC0_RESRDY	Result ready	Х	Х	Х	Х			
26	0x34	ADC0_SAMPRDY	Sample ready	Х	Х	Х	Х			
27	0x36	AC1_AC	Compare	Х	Х	Х	Х			
28	0x38	PORTC_PORT	External interrupt	Х	Х	Х	Х			
29	0x3A	PORTF_PORT	External interrupt	Х	Х	Х	Х			
30	0x3C	NVMCTRL_NVMREADY	EEPROM / Flash ready	Х	Х	Х	Х			

10.3 SYSCFG - System Configuration

The system configuration contains the revision ID of the part. The revision ID is readable from the CPU, making it useful for implementing application changes between part revisions.

10.3.1 Register Summary

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00	Reserved									
0x01	REVID	7:0	MAJOR[3:0]				MINOR[3:0]			


10.3.2 Register Description

10.3.2.1 Device Revision ID

Name:REVIDOffset:0x01Reset:[revision ID]Property:-

This register is read-only and displays the device revision ID. Revisions = A0, A1, ..., B0, B1, .. and so on.

Bits 7:4 - MAJOR[3:0] Major Revision

This bit field contains the major device revision. $0 \times 01 = A$, $0 \times 02 = B$, and so on.

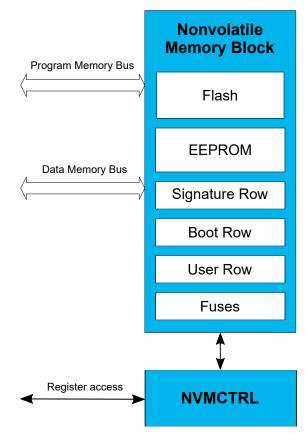
Bits 3:0 - MINOR[3:0] Minor Revision

This bit field contains the minor device revision, starting at 0×0 .

11. NVMCTRL - Nonvolatile Memory Controller

11.1 Features

- In-System Programmable
- Self-Programming and Boot Loader Support
- True Read-While-Write Support
- Configurable Memory Sections:
 - Boot code section
 - Application code section
 - Application data section
- Signature Row for Factory-Programmed Data:
 - ID for each device type
 - Serial number for each device
 - Calibration bytes for factory-calibrated peripherals
- User Row for Application Data:
 - Can be read and written from software
 - Can be written from the UPDI on a locked device
 - Content is kept after a chip erase
- Boot Row for Boot Data:
 - For storage of device specific data
 - Accessible from the BOOT section only


11.2 Overview

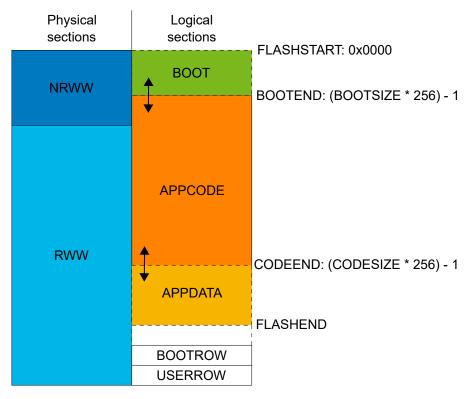
The NVM Controller (NVMCTRL) is the interface between the CPU and Nonvolatile Memories (Flash, EEPROM, Signature Row, User Row, and fuses). These are reprogrammable memory blocks that retain their values when not powered. The Flash is mainly used for program storage but can also be used for data storage. EEPROM, Signature Row, User Row, and fuses are used solely for data storage.

11.2.1 Block Diagram

Figure 11-1. NVMCTRL Block Diagram

11.3 Functional Description


11.3.1 Memory Organization


11.3.1.1 Flash

The Flash is divided into a set of pages. A page is the smallest addressable unit when erasing the Flash. It is only possible to write or erase an entire page at a time. One page consists of 64 bytes.

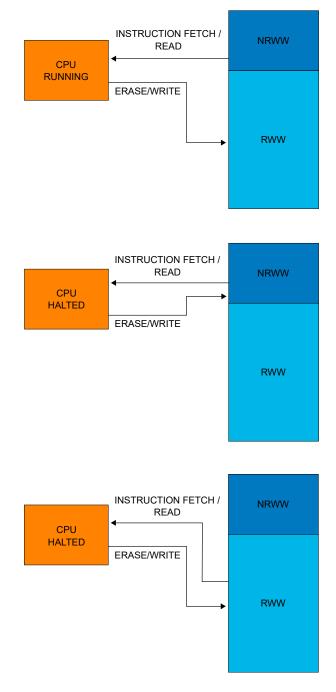
Independent of page size, the Flash is organized in sections. The Flash is split into two physical sections to optimize the structure for boot loader applications: Read-While-Write (RWW) and No-Read-While-Write (NRWW). It is possible to divide these two sections into three logical sections: Boot Loader Code (BOOT), Application Code (APPCODE), and Application Data (APPDATA).

11.3.1.1.1 Physical Sections

The Flash is divided physically into two fixed sections: A **Read-While-Write (RWW)** section and a **No-Read-While-Write (NRWW)** section.

The main differences between the two sections are as follows:

- When erasing or writing a page located inside the RWW Flash, the NRWW Flash can be read during the operation
- When erasing or writing a page located inside the NRWW Flash, the CPU is halted during the entire operation


The syntax "Read-While-Write section" refers to which section to program (erase or write), not the one read. Only the code located inside the NRWW Flash is accessible by either executing a CPU instruction or reading data while the RWW Flash is being written or erased.

Note: The interrupt code in the RWW section may halt the CPU if the associated interrupt is triggered while the RWW section is erased or written. Disable or place the interrupt code in the Boot Code (BOOT) section to avoid this.

The figures and table below explain these two physical Flash sections in detail:

Figure 11-3. Read-While-Write Scenarios

Table 11-1. Read-While-Write Scenarios

Flash Section Erased/Written	Flash Section Accessed	CPU
RWW section	NRWW section	Running
NRWW section	NRWW section	Halted
RWW section	RWW section	Halted

Notes:

- The User Row is located in the RWW Flash. When erasing or writing a page in the User Row, the NRWW Flash can be read during the operation.
- The Boot Row is located in the RWW Flash. When erasing or writing a page in the Boot Row, the NRWW Flash can be read during the operation.
- The physical section sizes are device-dependent. Refer to the *Memory Overview* section for further details.

11.3.1.1.2 Logical Sections

The Flash can be divided into three logical sections, each consisting of a variable number of pages. These sections are:

- **Boot Code (BOOT)** The code executed from the BOOT area has write access to all other Flash sections. Boot loader software must be placed in this section if used.
- **Application Code (APPCODE)** The code executed from the APPCODE area has limited write access to other Flash sections. Executable application code is typically placed in this section.
- **Application Data (APPDATA)** Flash section without write access. Parameters are usually placed in this section.

Note: For detailed inter-section read/write access, refer to the *Flash Access Protection* section.

Section Sizes

The Boot Size (FUSE.BOOTSIZE) fuse and Code Size (FUSE.CODESIZE) fuse set the sizes of these sections. The fuses select section sizes in blocks of 256 bytes. The BOOT section stretches from FLASHSTART to BOOTEND, and the APPCODE section extends from BOOTEND to CODEEND. The remaining area is the APPDATA section.

If FUSE.BOOTSIZE is written to '0', the entire Flash is regarded as the BOOT section. If FUSE.CODESIZE is written to '0' and FUSE.BOOTSIZE > 0, the APPCODE section runs from BOOTEND to the end of Flash (no APPDATA section).

When FUSE.CODESIZE ≤ FUSE.BOOTSIZE, the APPCODE section is removed, and the APPDATA runs from BOOTEND until the end of the Flash.

0				
BOOTSIZE	CODESIZE	BOOT Section	APPCODE Section	APPDATA Section
0	-	0 to FLASHEND	-	-
> 0	0	0 to BOOTEND	BOOTEND to FLASHEND	-
> 0	≤ BOOTSIZE	0 to BOOTEND	-	BOOTEND to FLASHEND
> 0	> BOOTSIZE	0 to BOOTEND	BOOTEND to CODEEND	CODEEND to FLASHEND

Table 11-2. Setting Up Flash Sections

Using the BOOT section for the application code is recommended if there is no boot loader software.

Notes:

- 1. After Reset, the default vector table location is at the start of the APPCODE section. The peripheral interrupts can be used in the code running in the BOOT section by relocating the interrupt vector table at the beginning of this section. That is done by setting the IVSEL bit in the CPUINT.CTRLA register. Refer to the *CPUINT* section for details.
- 2. If BOOTEND/CODEEND, as determined by the BOOTSIZE/CODESIZE fuse settings, exceeds the device FLASHEND, the corresponding fuse setting is ignored, and the default value is used. Refer to *Fuse* in the *Memories* section for default values.

Example 11-1. Size of Flash Sections Example

If FUSE.BOOTSIZE is written to 0×04 and FUSE.CODESIZE is written to 0×08 , the first 4*256 bytes will be BOOT, the next 4*256 bytes will be APPCODE, and the remaining Flash will be APPDATA.

11.3.1.1.3 Flash Access Protections

Inter-Section Write Protection

For security reasons, it is impossible to write to the section of Flash from which the code is currently executing. Code writing to the APPCODE section must execute from the BOOT section, and code writing to the APPDATA section must execute from either the BOOT section or the APPCODE section.

Program Execution Section	Section Being Addressed	Programming Allowed?
	BOOT	No
	APPCODE	
BOOT	APPDATA	Yes
6001	EEPROM	res
	USERROW	
	BOOTROW	Yes
	BOOT	No
	APPCODE	NO
APPCODE	APPDATA	
AFFCODE	EEPROM	Yes
	USERROW	
	BOOTROW	No
	BOOT	
APPDATA	APPCODE	
	APPDATA	No
	EEPROM	
	USERROW	
	BOOTROW	No

Table 11-3. Write Protection for Self-Programming

Flash Read/Write Protection

In addition to the inter-section write protection, the NVMCTRL provides a security mechanism to avoid unwanted access to the Flash memory sections. Even if the CPU can never write to the BOOT section, a Boot Section Read Protection (BOOTRP) bit in the Control B (NVMCTRL.CTRLB) register is provided to prevent the read and execution of code from the BOOT section. This bit can be set only from the code executed in the BOOT section and has an effect only when leaving the BOOT section.

The three write protection bits (EEWP, APPDATAWP and APPCODEWP) in the Control B (NVMCTRL.CTRLB) register can be set to prevent writes respectively to the EEPROM or the APPDATA or APPCODE sections.

11.3.1.2 EEPROM

The EEPROM is a 512 bytes nonvolatile memory section divided into a set of pages, where one page consists of multiple bytes. The EEPROM has byte granularity on erase/write. Each write/erase can contain one or more bytes inside a page. When writing data to the page buffer, the address for that byte is marked to be updated when performing the next erase/write. The remaining bytes on the page will not be erased/written. It can also perform a byte erase and write in one operation.

11.3.1.3 User Row

The User Row is 64 bytes of Read-While-Write (RWW) Flash. Use this section to store various data, such as calibration/configuration data and serial numbers. This section is not erased by a chip erase.

The User Row section can be read or written from the CPU. When erasing the User Row, the entire row is erased at once.

This section can be written through UPDI on a locked device.

11.3.1.4 Boot Row

The Boot Row is 64 bytes of Read-While-Write (RWW) Flash. This section stores information only accessible to the boot loader, such as keys. This section is optionally erased by a chip erase controlled from the fuse settings (FUSE).

The Boot Row section can be read or written from the CPU. When erasing the Boot Row, the entire row is erased at once.

The Boot Row cannot be accessed from the application section.

11.3.1.5 Fuses

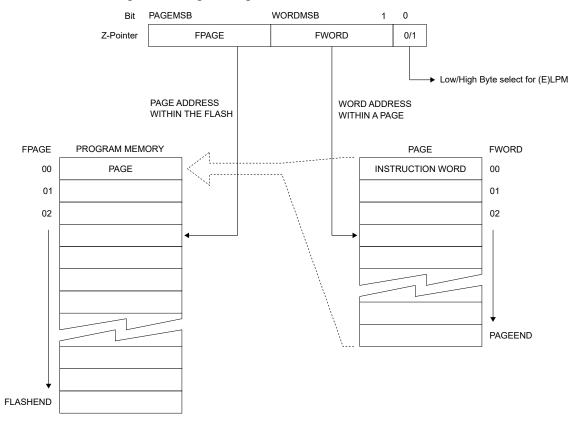
The fuses contain device configuration values and are copied to their target registers at the end of the start-up sequence.

The fuses can be read by the CPU or the UPDI but can only be programmed or cleared by the UPDI.

11.3.1.6 Signature Row

The Signature Row contains a device ID that identifies each microcontroller device type and a serial number for each manufactured device. The serial number consists of the production lot number, wafer number, and the device's wafer coordinates. The Signature Row can be read by the CPU or the UPDI interface but not written or erased.

11.3.2 Memory Access


The Flash memory can be accessed from either the code space or the CPU data space for read/ write operations. When using the code space, the Flash is accessible through the LPM and SPM instructions.

Additionally, the Flash memory is byte accessible through the CPU data space, which means that it shares the same address space and instructions as SRAM, EEPROM and I/O registers and is accessible using LD/ST instructions in assembly.

Addressing Flash Memory in Code Space

For read and write access to the Flash memory in the code space, use the Z-pointer for ${\tt LPM/SPM}$ access.

Figure 11-4. Flash Addressing for Self-Programming

The Flash is word-accessed and organized in pages, so the Address Pointer can be treated as having two sections, as shown in the figure above. The word address in the page (FWORD) is held by the Least Significant bits (LSb) in the Address Pointer, while the Most Significant bits (MSb) in the Address Pointer hold the Flash page address (FPAGE). FWORD and FPAGE hold an absolute address to a word in the Flash.

For Flash read operations, read one byte at a time. For this, use the Least Significant bit (bit 0) in the Address Pointer to select the low byte or high byte in the word address. If this bit is '0', the low byte is read, and if this bit is '1', the high byte is read.

Once initializing a programming operation, the address is latched, and the Address Pointer can be updated and used for other tasks.

Addressing Flash in CPU Data Space

The Flash area in the data space has only 32 KB. For devices with a Flash memory size greater than 32 KB, the Flash memory is divided into blocks of 32 KB. Those blocks are mapped into data space using the FLMAP bit field of the NVMCTRL.CTRLB register.

For read and write access to the Flash memory in the CPU data space, use the LD/ST instructions to access one byte at a time.

11.3.2.1 Read

Reading the Flash is done using Load Program Memory (LPM) instructions or Load (LD*) instructions with an address according to the memory map. Reading the EEPROM and Signature Row is done using LD* instructions. Performing a read operation while a write or erase is in progress will result in a bus wait, and the instruction will be suspended until the ongoing operation is complete.

11.3.2.2 Page Buffer Load

The page buffer is loaded by writing directly to the memories, as defined in the memory map. EEPROM has a separate page buffer, while Flash and User Row share the same page buffer, so only one section can be programmed at once. Use the address's Least Significant bits (LSb) to select where to write the data in the page buffer. The resulting data will be a binary AND operation between the new and the previous content of the page buffer. The page buffer will automatically be erased (all bits set) after:

- A device Reset
- Any page write or erase operation
- A Clear Page Buffer command
- A device wake-up from any sleep mode

Note: Any operation on the page buffer will halt the CPU until the previous NVMCTRL operation (command) is completed.

11.3.2.3 Programming

For page programming, filling the page buffer and writing the page buffer into Flash, User Row, and EEPROM are two separate operations.

Before programming a Flash page with the data in the page buffer, the content of the Flash page must be erased (read back $0 \times FF$). Programming an unerased Flash page will corrupt its content.

Two options are available to make sure that the Flash page content is programmed correctly:

Option 1: The Flash is programmed using one command that handles both erase and write.

- 1. Make sure the Flash is ready by reading the Flash Busy (FLBUSY) flag in the NVMCTRL.STATUS register.
- 2. Fill the page buffer.
- 3. Write the page buffer to Flash with the Flash Page Erase and Page Write (FLPERW) command.

Option 2: The Flash is programmed using separate commands for page erase and page write.

- 1. Make sure the Flash is ready by reading the Flash Busy (FLBUSY) flag in the NVMCTRL.STATUS register.
- 2. Write to a location on the page to set up the address.
- 3. Perform a Flash Page Erase (FLPER) command.
- 4. Fill the page buffer.
- 5. Perform a Flash Page Write (FLPW) command.

The NVM command set supports both single Page Erase and Write (FLPERW/EEPERW) operations and split Page Erase (FLPER/EEPER) and Page Write (FLPW/EEPW) commands for both Flash and EEPROM. These split commands enable a shorter programming time for each command, and the erase operations can be done during non-time-critical programming execution.

The EEPROM programming is similar to Flash programming, but only the bytes updated in the page buffer will be written or erased in the EEPROM.

Memory Section	Erase Granularity	Write Granularity
Flash array	Page	Page
EEPROM array	Byte	Byte
User Row	Page ⁽¹⁾	Page ⁽¹⁾
Boot Row	Page ⁽²⁾	Page ⁽²⁾

Table 11-4. Programming Granularity

Notes:

- 1. User Row page is 64 bytes.
- 2. Boot Row page is 64 bytes.

11.3.2.4 Command Modes

Reading the memory arrays is handled using the $LD*/LPM^{(1)}$ instructions.

The EEPROM Erase (EECHER) command is started by writing a command to the NVMCTRL.CTRLA register. The other write/erase operations are just enabled by writing commands to the NVMCTRL.CTRLA register and must be followed by writes using ST*/SPM⁽¹⁾ instructions to the memory arrays.

Note:

1. LPM/SPM cannot be used for EEPROM.

To write a command in the NVMCTRL.CTRLA register, the following sequence needs to be executed:

- 1. Confirm that any previous operations are completed by reading the Busy (EEBUSY and FLBUSY) flags in the NVMCTRL.STATUS register.
- 2. Write the appropriate key to the Configuration Change Protection (CPU.CCP) register to unlock the NVM Control A (NVMCTRL.CTRLA) register.
- 3. Write the desired command value to the CMD bit field in the Control A (NVMCTRL.CTRLA) register within the following four instructions.

11.3.2.4.1 Page Write Command

The Page Write (FLPW/EEPW) commands write the content of the page buffer to the Flash or EEPROM.

If the write is to the Flash, the CPU will execute code as explained in 11.3.1.1.1. Physical Sections.

If the write is to the EEPROM, the CPU will continue executing code while the operation is ongoing. Erase the page/byte before performing a write.

The page buffer used will automatically be cleared after finishing the operation.

11.3.2.4.2 Page Erase Command

The Page Erase (FLPER/EEPER) commands erase the current page. Write one byte in the page buffer for the Page Erase command to take effect.

For erasing the Flash, a dummy write to one address in the desired page is required first, followed by command execution. The whole page in the Flash will then be erased. The CPU will stop or continue based on the same conditions as the Page Write command.

When executing the command for the EEPROM, only the bytes written in the page buffer will be erased. To erase a specific byte, write to its corresponding address before executing the command. Update all the bytes in the page buffer before writing the command to erase a whole page. The CPU will continue running code while the operation is ongoing.

The page buffer used will automatically be cleared after finishing the operation.

11.3.2.4.3 Flash Multi-Page Erase Mode

The Multi-Page Erase (FLMPERn) mode will allow each write to the memory array to erase multiple pages. When using FLMPERn, it is possible to select between erasing 2, 4, 8, 16, or 32 pages.

The LSbs of the page address are ignored when defining which Flash pages are erased. Using FLMPER4 as an example, erasing any page in the 0x08 - 0x0B range will cause the erase of all pages in the range.

Table 11-5. Flash Multi-Page Erase CMD Pages Erased Description FLMPER2 Pages matching FPAGE[N:1] are erased. The value in FPAGE[0] is ignored. 2 FLMPER4 4 Pages matching FPAGE[N:2] are erased. The value in FPAGE[1:0] is ignored. FLMPER8 8 Pages matching FPAGE[N:3] are erased. The value in FPAGE[2:0] is ignored. FLMPER16 Pages matching FPAGE[N:4] are erased. The value in FPAGE[3:0] is ignored. 16 FLMPER32 32 Pages matching FPAGE[N:5] are erased. The value in FPAGE[4:0] is ignored.

Note: FPAGE is the page number when doing a Flash erase. Refer to 11.3.2. Memory Access for details.

11.3.2.4.4 Page Erase/Write Operation

Page Erase and Write (FLPERW/EEPERW) commands combine Page Erase and Page Write commands - but without clearing the page buffer after the Page Erase command. The erase/write operation erases the selected page, then writes the content of the page buffer to the same page.

When performed on the Flash, the CPU will stop or continue based on the same conditions as the Page Write command. When done on the EEPROM, the CPU will continue executing code.

The page buffer used will automatically be cleared after finishing the operation.

11.3.2.4.5 Page Buffer Clear Commands

The Page Buffer Clear (FLPBCLR/EEPBCLR) commands clear the corresponding page buffer. The contents of the page buffer will be all '1's after the operation. The CPU will halt while the operation executes (seven CPU cycles).

11.3.2.4.6 EEPROM Erase Command

The EEPROM Erase (EECHER) command erases the EEPROM. All EEPROM bytes will read back 0xFF after the operation. The CPU is halted during the EEPROM erase.

11.3.3 Preventing Flash/EEPROM Corruption

A Flash/EEPROM write or erase can cause memory corruption if the supply voltage is too low for the CPU and the Flash/EEPROM to operate correctly. These issues are the same on board-level systems using Flash/EEPROM. The internal or an external Brown-out Detector (BOD) is recommended to ensure that the operating voltage is high enough.

Two circumstances may cause Flash/EEPROM corruption when the voltage is too low:

- 1. A regular write sequence to the Flash, requiring a minimum voltage to operate correctly.
- 2. The CPU can execute instructions incorrectly when the supply voltage is too low.

The chip erase does not clear fuses. If the BOD is enabled by fuses before starting the Chip Erase command, it is automatically enabled at its previous configured level during the chip erase.

Refer to the *Electrical Characteristics* section for Maximum Frequency vs. V_{DD}.

Attention: Taking the following measures may avoid Flash/EEPROM corruption:

- 1. Keep the device in Reset during periods of insufficient power supply voltage. Do this by enabling the internal BOD.
- 2. The Voltage Level Monitor (VLM) in the BOD can be used to prevent starting a write to the EEPROM close to the BOD level.
- 3. If the detection levels of the internal BOD do not match the required detection level, an external V_{DD} Reset protection circuit can be used. If a Reset occurs while a write operation is ongoing, the write operation will be aborted.

11.3.4 Interrupts

Name	Vector Description	Conditions		
EEREADY	NVM	The EEPROM is ready for new write/erase operations		
FLREADY		The Flash is ready for new write/erase operations		

When an interrupt condition occurs, the FLREADY or EEREADY interrupt flag is set in the Interrupt Flags (NVMCTRL.INTFLAGS) register.

An interrupt source is enabled or disabled by writing to the FLREADY or EEREADY bit in the Interrupt Control (NVMCTRL.INTCTRL) register.

An interrupt request is generated when the corresponding interrupt source is enabled and the interrupt flag set. The interrupt request remains active until the interrupt flag is cleared. Refer to the NVMCTRL.INTFLAGS register for details on how to clear interrupt flags.

11.3.5 Sleep Mode Operation

If there is no ongoing write operation, the NVMCTRL will enter a sleep mode when the system enters a sleep mode.

If a write operation is ongoing when the system enters a sleep mode, the NVM block, the NVM Controller, and the system clock will remain ON until the write is finished, which is valid for all sleep modes, including the Power-Down sleep mode.

The EEPROM Ready and Flash Ready interrupts will only wake the device from Idle sleep mode.

The page buffer is cleared when waking up from sleep.

11.3.6 Configuration Change Protection

This peripheral has registers that are under Configuration Change Protection (CCP). To write to these registers, a given key must first be written to the CPU.CCP register, followed by a write access to the protected bits within four CPU instructions.

Attempting to write to a protected register without following the appropriate CCP unlock sequence leaves it unchanged.

The following registers are under CCP:

 Table 11-7. NVMCTRL - Registers Under Configuration Change Protection

Register	Кеу
NVMCTRL.CTRLA	SPM
NVMCTRL.CTRLB	IOREG

11.4 Register Summary

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00	CTRLA	7:0					CMD[6:0]			
0x01	CTRLB	7:0	FLMAPLOCK		FLMA	P[1:0]	EEWP	APPDATAWP	BOOTRP	APPCODEWP
0x02	CTRLC	7:0							BOOTROWW P	UROWWP
0x03	Reserved									
0x04	INTCTRL	7:0							FLREADY	EEREADY
0x05	INTFLAGS	7:0							FLREADY	EEREADY
0x06	STATUS	7:0			ERROR[2:0]				FLBUSY	EEBUSY
0x07	Reserved									
0x08	DATA	7:0				DATA	4[7:0]			
0x08	DATA	15:8				DATA	[15:8]			
0x0A										
 0x0B	Reserved									
		7:0				ADDI	R[7:0]			
0x0C	ADDR	15:8				ADDR	R[15:8]			
UXUC	ADDR	23:16				ADDR	[23:16]			
		31:24								

11.5 Register Description

11.5.1 Control A

Name:	CTRLA
Offset:	0x00
Reset:	0x00
Property:	Configuration Change Protection

Bit	7	6	5	4	3	2	1	0
ſ					CMD[6:0]			
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0

Bits 6:0 - CMD[6:0] Command

Write this bit field to enable or issue a command. The Chip Erase and EEPROM erase commands start when writing either command to the bit field. The other commands enable an erase or a write operation. These operations start when doing a store to the Flash address being erased or written. Including a NOCMD or NOOP instruction is recommended when going from one command to the next to prevent a Command Collision error (in the ERROR bit field in NVMCTRL.STATUS). The Configuration Change Protection key for self-programming (SPM) protects these bits.

Value	Name	Description
0x00	NOCMD	No command
0x01	NOOP	No operation
0x04	FLPW	Flash Page Write
0x05	FLPERW	Flash Page Erase and Page Write
0x08	FLPER	Flash Page Erase
0x09	FLMPER2	Flash 2-page Erase Enable
0x0A	FLMPER4	Flash 4-page Erase Enable
0x0B	FLMPER8	Flash 8-page Erase Enable
0x0C	FLMPER16	Flash 16-page Erase Enable
0x0D	FLMPER32	Flash 32-page Erase Enable
0x0F	FLPBCLR	Flash Page Buffer Clear
0x14	EEPW	EEPROM Page Write
0x15	EEPERW	EEPROM Page Erase and Page Write
0x17	EEPER	EEPROM Page Erase
0x1F	EEPBCLR	EEPROM Page Buffer Clear
0x20	CHER	Erase Flash and EEPROM. EEPROM is skipped if the EESAVE fuse is set (UPDI access only).
0x30	EECHER	EEPROM Erase
Other	-	Reserved

11.5.2 Control B

Name:	CTRLB
Offset:	0x01
Reset:	0x30
Property:	Configuration Change Protection

Bit	7	6	5	4	3	2	1	0
	FLMAPLOCK		FLMA	P[1:0]	EEWP	APPDATAWP	BOOTRP	APPCODEWP
Access	R/W	•	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		1	1	0	0	0	0

Bit 7 – FLMAPLOCK Flash Mapping Lock

Setting this bit to '1' prevents further updates of FLMAP[1:0]. Only a Reset can clear this bit.

Bits 5:4 - FLMAP[1:0] Flash Section Mapped into Data Space

Select which part (in blocks of 32 KB) of the Flash will be mapped as part of the CPU data space and accessible through LD/ST instructions. Changing this bitfield value doesn't affect devices with 32 KB or less Flash size, as the entire Flash is mapped to the CPU data space.

Value(*)	Name	Mapped Flash Section (16 KB)
0x0	SECTION0	0 - 16
0x1	SECTION1	0 - 16
0x2	SECTION2	0 - 16
0x3	SECTION3	0 - 16

Note: For the AVR[®] EB Family, the entire Flash is mapped into the data space, whatever value is set for the FLMAP bitfield (Flash size \leq 32 KB).

Bit 3 – EEWP EEPROM Write Protection

Writing a '1' to this bit protects the EEPROM from further writes. This bit can only be written to '1'. Only Reset clears it to '0'.

Bit 2 - APPDATAWP Application Data Section Write Protection

Writing a '1' to this bit protects the application data section from further writes. This bit can only be written to '1'. Only Reset clears it to '0'.

Bit 1 – BOOTRP Boot Section Read Protection

Writing a '1' to this bit protects the BOOT section from a read and instruction fetch. If issuing a read from the application section, it will return '0'. An instruction fetch from the BOOT section returns an NOP instruction.

This bit can only be written to '1' from the BOOT section. Only Reset clears it to '0'. The bit will only take effect when the BOOT section is left the first time after the bit is written. The BOOTROW will also be locked for access from the application section.

Bit 0 - APPCODEWP Application Code Section Write Protection

Writing a '1' to this bit protects the application code section from further writes. This bit can only be written to '1'. Only Reset clears it to '0'.

11.5.3 Control C

Name:	CTRLC
Offset:	0x02
Reset:	0x0
Property:	Configuration Change Protection

Bit	7	6	5	4	3	2	1	0
							BOOTROWW	UROWWP
							Р	
Access			•		•		R/W	R/W
Reset							0	0

Bit 1 – BOOTROWWP Boot Row Write Protection

Writing this bit to '1' prevents further updates to the Boot Row. Only a Reset can clear this bit.

Bit 0 – UROWWP User Row Write Protection

Writing this bit to '1' prevents further updates to the User Row. Only a Reset can clear this bit.

11.5.4 Interrupt Control

	Name: Offset: Reset: Property:	INTCTRL 0x04 0x00 -						
Bit	7	6	5	4	3	2	1	0
							FLREADY	EEREADY
Access		÷	•	·	•		R/W	R/W
Reset							0	0

Bit 1 – FLREADY Flash Ready Interrupt Enable

Writing a '1' to this bit enables the interrupt, which indicates that the Flash is ready for new write/ erase operations.

This is a level interrupt that will be triggered only when the FLREADY flag in the INTFLAGS register is set to '1'. Thus, the interrupt must not be enabled before triggering an NVM command, as the FLBUSY flag will not be set before the NVM command is issued. The interrupt must be disabled in the interrupt handler.

Bit 0 – EEREADY EEPROM Ready Interrupt Enable

Writing a '1' to this bit enables the interrupt, which indicates that the EEPROM is ready for new write/erase operations.

This is a level interrupt that will be triggered only when the EEREADY flag in the INTFLAGS register is set to '1'. Thus, the interrupt must not be enabled before triggering an NVM command, as the EEBUSY flag will not be set before the NVM command is issued. The interrupt must be disabled in the interrupt handler.

11.5.5 Interrupt Flags

Name:	INTFLAGS
Offset:	0x05
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
							FLREADY	EEREADY
Access				•			R/W	R/W
Reset							0	0

Bit 1 – FLREADY Flash Ready Interrupt Flag

This flag is set continuously as long as the Flash is not busy. This flag is cleared by writing a '1' to it.

Bit 0 - EEREADY EEPROM Ready Interrupt Flag

This flag is set continuously as long as the EEPROM is not busy. This flag is cleared by writing a '1' to it.

11.5.6 Status

Name:	STATUS
Offset:	0x06
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
			ERROR[2:0]				FLBUSY	EEBUSY
Access		R/W	R/W	R/W			R	R
Reset		0	0	0			0	0

Bits 6:4 - ERROR[2:0] Error Code

This bit field will show the last error that occurred. The error code can be cleared by writing '0' to the bit field.

Value	Name	Description
0x00	NONE	No error
0x02	WRITEPROTECT	Attempting to write a write-protected section
0x03	CMDCOLLISION	Selecting a new write command while a write command is already selected
0x04	WRONGSECTION	Wrong write command for the address used

Bit 1 – FLBUSY Flash Busy

This bit will read '1' when a Flash programming operation is ongoing.

Bit 0 - EEBUSY EEPROM Busy

This bit will read '1' when an EEPROM programming operation is ongoing.

11.5.7 Data

Name:	DATA
Offset:	0x08
Reset:	0x00
Property:	-

The NVMCTRL.DATAL and NVMCTRL.DATAH register pair represents the 16-bit value, NVMCTRL.DATA. The low byte [7:0] (suffix L) is accessible at the original offset.

The high byte [15:8] (suffix H) can be accessed at offset + 0x01.

Bit	15	14	13	12	11	10	9	8
				DATA	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				DATA	A[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - DATA[15:0] Data Register

The Data register will contain the last read value from Flash, EEPROM, or NVMCTRL. For EEPROM access, only DATA[7:0] is used.

11.5.8 Address

Name:	ADDR
Offset:	0x0C
Reset:	0x00
Property:	-

NVMCTRL.ADDR0, NVMCTRL.ADDR1, NVMCTRL.ADDR2 and NVMCTRL.ADDR3 represent the 32-bit value NVMCTRL.ADDR.

The low byte [7:0] (suffix 0) is accessible at the original offset.

The high byte [15:8] (suffix 1) can be accessed at offset +0x01.

The extended byte [23:16] (suffix 2) can be accessed at offset $+0 \times 02$.

The byte [31:24] (suffix 3) can be accessed at offset $+0 \times 03$, but it never contains any data.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
				ADDR[[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				ADDR	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
[ADD	R[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 23:0 - ADDR[23:0] Address

The Address register contains the address of the last accessed memory location. Only the number of bits required to access the memory is used.

12. CLKCTRL - Clock Controller

12.1 Features

- All Clocks and Clock Sources are Automatically Enabled when Requested by Peripherals
- Internal Oscillators:
 - Up to 20 MHz Internal High-Frequency Oscillator (OSCHF)
 - 32.768 kHz Ultra-Low Power Oscillator (OSC32K)
 - Up to 80 MHz PLL; clock multiplication by 8x or 16x
- Auto-Tuning for Improved Internal Oscillator Accuracy
- External Clock Options:
 - 32.768 kHz Crystal Oscillator (XOSC32K)
 - External clock
- Main Clock Features:
 - Safe run-time switching
 - Prescaler with a division factor ranging from 1 to 256 (with PBDIV)

12.2 Overview

The Clock Controller (CLKCTRL) controls, distributes and prescales the clock signals from the available oscillators and supports internal and external clock sources.

The CLKCTRL is based on an automatic clock request system implemented in all peripherals on the device. The peripherals will automatically request the clocks needed. The request is routed to the correct clock source if multiple clock sources are available.

The Main Clock (CLK_MAIN) is used by the CPU, RAM, and all peripherals connected to the I/O bus. The main clock source can be selected and prescaled. Some peripherals can share the same clock source as the main clock or run asynchronously to the main clock domain.

12.2.1 Block Diagram - CLKCTRL

The clock system consists of the main clock and clocks derived from the main clock, as well as several asynchronous clocks:

- Main Clock (CLK_MAIN) always run in Active mode and Idle sleep mode. If requested, it will also run in Standby sleep mode.
- CLK_MAIN is prescaled and distributed by the clock controller:
 - CLK_CPU is used by the CPU, the SRAM and the Nonvolatile Memory Controller (NVMCTRL)
 - CLK_PER is used by all peripherals that are not listed under asynchronous clocks and can also be routed to the CLKOUT pin
 - All the clock sources can be used as the main clock
- Clocks running asynchronously to the main clock domain:
 - CLK_RTC is used by the Real-Time Counter (RTC) and the Periodic Interrupt Timer (PIT). It will be requested when the RTC/PIT is enabled. The clock source for CLK_RTC may be changed only if the peripheral is disabled.
 - CLK_WDT is used by the Watchdog Timer (WDT). It will be requested when the WDT is enabled.
 - CLK_BOD is used by the Brown-out Detector (BOD). It will be requested when the BOD is enabled in the Sampled mode. A fuse controls the alternative clock source.

The clock source for the main clock domain is configured by writing to the Clock Select (CLKSEL) bit field in the Main Clock Control A (CLKCTRL.MCLKCTRLA) register. This register has Configuration

Change Protection (CCP). Write the appropriate key to the CCP register before writing to the CLKSEL bit field. The asynchronous clock sources are configured by the registers in the respective peripheral.

12.2.2 Signal Description

Signal	Туре	Description
CLKOUT	Digital output	CLK_PER output
EXTCLK	Analog input	Input for external clock source (EXTCLK)
XTAL32K1	Analog input	Input for external 32.768 kHz clock source or one pin of a 32.768 kHz crystal
XTAL32K2	Analog input	Input for one pin of a 32.768 kHz crystal

For more details, refer to the *I/O Multiplexing* section.

12.3 Functional Description

12.3.1 Initialization

To initialize a clock source as the main clock, follow these steps:

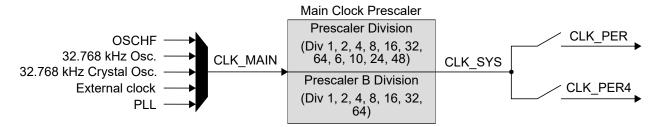
- 1. Optional: Force the clock to always run by writing the Run Standby (RUNSTDBY) bit in the respective clock source CTRLA register to '1'.
- 2. Configure the clock source as needed in the corresponding clock source CTRLA register and, if applicable, enable the clock source by writing a '1' to the Enable bit.
- 3. Optional: If RUNSTDBY is '1', wait for the clock source to stabilize by polling the respective status bit in CLKCTRL.MCLKSTATUS.
- 4. The following sub-steps need to be performed in an order such that the main clock frequency never exceeds the allowed maximum clock frequency. Refer to the *Electrical Characteristics* section for further information.
 - a. If required, configure the clock source frequency by writing to the Prescaler Division (PDIV) bit field and enable the main clock prescaler by writing a '1' to the Prescaler Enable (PEN) bit in CLKCTRL.MCLKCTRLB.
 - b. Select the configured clock source as the main clock in the Clock Select (CLKSEL) bit field in CLKCTRL.MCLKCTRLA.
- 5. Wait for Main Clock to change by polling the Main Clock Oscillator Changing (SOSC) bit in the Main Clock Status (CLKCTRL.MCLKSTATUS) register.
- 6. Optional: Clear the RUNSTDBY bit in the clock source CTRLA register.

12.3.2 Main Clock Selection and Prescaler

All available oscillators and the external clock (EXTCLK) can be used as the main clock source for the Main Clock (CLK_MAIN). The main clock source is selectable from software and can safely be changed during ordinary operation.

The Configuration Change Protection mechanism prevents unsafe clock switching. For more details, refer to the *Configuration Change Protection* section.

When selecting an external clock source, a switch to the chosen clock source will occur if a sufficient number of edges are detected. If enough number of clock edges are not detected, the clock source remains unchanged, and it is impossible to change to another clock source without executing a Reset.


The Main Clock Oscillator Changing (SOSC) bit in the Main Clock Status (CLKCTRL.MCLKSTATUS) register indicates an ongoing clock source switch. The stability of the external clock sources is indicated by the respective Status (EXTS and XOSC32KS) bits in CLKCTRL.MCLKSTATUS.

Δ CAUTION If an external clock source fails while used as the CLK_MAIN source, only the Watchdog Timer (WDT) can provide a System Reset.

The CLK_MAIN is fed into the prescaler before being used by the peripherals (CLK_PER) in the device. The prescaler divides CLK_MAIN by a factor from 1 to 256 (with PBDIV).

Figure 12-2. Main Clock and Prescaler

12.3.3 Main Clock After Reset

After any Reset, the Main Clock (CLK_MAIN) is provided by the 20 MHz Oscillator (OSCHF) with a prescaler division factor of 6.

The actual OSCHF frequency is determined by the Frequency Select bits (FREQSEL) of the Oscillator Configuration fuse (FUSE.OSCCFG). Refer to the description of the FUSE.OSCCFG fuse for details of the possible frequencies after Reset.

12.3.4 Clock Sources

All the internal clock sources are automatically enabled when requested by a peripheral. The crystal oscillators, based on an external crystal, must be enabled before they can serve as a clock source.

 The XOSC32K oscillator is enabled by writing a '1' to the ENABLE bit in the 32.768 kHz Crystal Oscillator Control A (CLKCTRL.XOSC32KCTRLA) register

After Reset, the device starts running from the internal high-frequency or 32.768 kHz oscillator.

The respective oscillator status bits in the Main Clock Status (CLKCTRL.MCLKSTATUS) register indicate if the clock source is running and stable.

12.3.4.1 Internal Oscillators

The internal oscillators do not require any external components to run. Refer to the *Electrical Characteristics* section for accuracy and electrical specifications.

12.3.4.1.1 Internal High-Frequency Oscillator (OSCHF)

The OSCHF supports output frequencies of up to 20 MHz. It can be used as the main clock (CLK_MAIN) and clock source for the real-time counter (CLK_RTC). The output frequency of the OSCHF can be tuned either manually or automatically against an external oscillator.

Refer to *Electrical Characterization* for tuning ranges and oscillator specifications.

12.3.4.1.2 32.768 kHz Oscillator (OSC32K)

The 32.768 kHz oscillator is optimized for Ultra-Low Power (ULP) operation. Power consumption is decreased at the cost of reduced accuracy compared to an external crystal oscillator.

This oscillator provides a 1.024 kHz or 32.768 kHz clock for the Real-Time Counter (RTC), the Watchdog Timer (WDT), and the Brown-out Detector (BOD). Also, this oscillator can provide a 32.768 kHz clock to the Main Clock (CLK_MAIN).

For the start-up time of this oscillator, refer to the *Electrical Characteristics* section.

12.3.4.2 External Clock Sources

These external clock sources are available:

- Instead of a crystal oscillator, XTALHF1 can be configured to accept an external clock source
- The XTAL32K1 and XTAL32K2 pins are dedicated to driving a 32.768 kHz crystal oscillator (XOSC32K)
- Instead of a crystal oscillator, XTAL32K1 can be configured to accept an external clock source

12.3.4.2.1 32.768 kHz Crystal Oscillator (XOSC32K)

This oscillator supports two input options:

- A crystal is connected to the XTAL32K1 and XTAL32K2 pins
- An external clock running at 32.768 kHz, connected to XTAL32K1

Configure the input option by writing the Source Select (SEL) bit in the XOSC32K Control A (CLKCTRL.XOSC32KCTRLA) register.

The XOSC32K is enabled by writing a '1' to the ENABLE bit in CLKCTRL.XOSC32KCTRLA. When enabled, the configuration of the general purpose input/output (GPIO) pins used by the XOSC32K is overridden of XTAL32K1 and XTAL32K2 pins. The oscillator needs to be enabled to start running when requested.

The start-up time of a given crystal oscillator can be accommodated by writing to the Crystal Start-Up Time (CSUT) bit field in XOSC32KCTRLA.

When XOSC32K is configured to use an external clock on XTAL32K1, the start-up time is fixed to two cycles.

12.3.5 Phase-Locked Loop (PLL)

The PLL can increase the clock source frequency defined by the SOURCE bit field in the PLL Control A (CLKCTRL.PLLCTRLA) register. The PLL provides clock multiplication by 8x or 16x and can only be used when the clock source's nominal frequency is between 2.5 to 5.5 MHz.

The PLL can run in Active, Idle and Standby sleep modes and can serve as an input clock for TCE.

The maximum frequency generated using the PLL is up to 80 MHz.

Initialization:

- 1. Enable the clock source to be used as input.⁽¹⁾
- 2. Configure the SOURCE bit field in the PLL Control A (CLKCTRL.PLLCTRLA) register to the desired clock source.
- 3. Configure the SOURCEDIV bit field in the PLL Control A (CLKCTRL.PLLCTRLA) register if the nominal frequency of the selected clock source is not in the 2.5 to 5.5 MHz range.
- 4. Enable the PLL by writing the desired multiplication factor to the MULFAC bit field in CLKCTRL.PLLCTRLA.
- 5. Wait for the PLL Status (PLLS) bit in the CLKCTRL.MCLKSTATUS register to become '1', indicating that the PLL has locked in on the desired frequency.

Refer to the *Block Diagram* figure in the *CLKCTRL* - *Clock Controller* section for available connections.

Note:

1. Alternatively, setting the RUNSTDBY bit in the CLKCTRL.PLLCTRLA register and enabling the input clock source after the PLL becomes stable (PLLS bit in CLKCTRL.MCLKSTATUS becomes '1') ensures control over the periods in which the PLL is turned on.

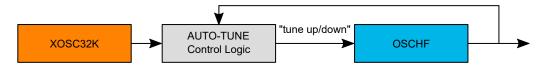
12.3.6 Timebase

The Timebase is used to generate a timing period that is equal to or longer than 1 μ s, used for timing internal delays such as ADC start-up time. This is done by setting the TIMEBASE bitfield in the

Timebase (CLKCTRL.TIMEBASE) register to a count of CLK_PER cycles that is equivalent to or larger than 1 µs. The timebase must be rounded up to the closest integer.

12.3.7 Manual Tuning and Autotune

The output frequency of the OSCHF can be tuned either manually or automatically against an external oscillator.


Manual Tuning

The output frequency of the OSCHF can be tuned up and down by writing the Oscillator Tune (TUNE) bit field in the Frequency Tune (TUNE) register. The Automatic Oscillator Tune (AUTOTUNE) bit field in the CTRLA register must remain zero.

Autotune against External Crystal Oscillator

The OSCHF output frequency can be stabilized by automatic tuning against an external crystal oscillator. Enable Autotune by selecting the external oscillator in the Automatic Oscillator Tune (AUTOTUNE) bit field in the CTRLA register, which will lock the TUNE register and prevent manual tuning. The TUNE register is updated with the latest TUNE value when AUTOTUNE is disabled.

Figure 12-3. OSCHF Auto-Tune Block Diagram

Refer also to the *Electrical Characteristics* for details.

12.3.8 Sleep Mode Operation

When a clock source is not used or requested, it will stop. It is possible to request a clock source directly by writing a '1' to the Run Standby (RUNSTDBY) bit in the respective oscillator's Control A (CLKCTRL.oscillatorCTRLA) register. This will cause the oscillator to run constantly, except for Power-Down sleep mode. Additionally, when this bit is written to a '1', the oscillator start-up time is eliminated when the clock source is requested by a peripheral.

The main clock will always run in Active mode and Idle sleep mode. In Standby sleep mode, the main clock will run only if any peripheral is requesting it, or RUNSTDBY in the respective oscillator's CLKCTRL.oscillatorCTRLA register is written to a '1'.

In Power-Down sleep mode, the main clock will stop after all nonvolatile memory (NVM) operations are completed. Refer to the *SLPCTRL* - *Sleep Controller* section for more details on sleep mode operation.

12.3.9 Configuration Change Protection

This peripheral has registers that are under Configuration Change Protection (CCP). To write to these registers, a given key must first be written to the CPU.CCP register, followed by a write access to the protected bits within four CPU instructions.

Attempting to write to a protected register without following the appropriate CCP unlock sequence leaves it unchanged.

The following registers are under CCP:

Table 12-1. CLKCTRL - Registers Under Configuration Change Protection

Register	Key
CLKCTRL.MCLKCTRLA	IOREG
CLKCTRL.MCLKCTRLB	IOREG

continued	
Register	Key
CLKCTRL.OSCHFCTRLA	IOREG
CLKCTRL.PLLCTRLA	IOREG
CLKCTRL.PLLCTRLB	IOREG
CLKCTRL.OSC32KCTRLA	IOREG
CLKCTRL.XOSC32KCTRLA	IOREG

12.4 Register Summary

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00	MCLKCTRLA	7:0	CLKOUT					CLKSE	EL[3:0]	
0x01	MCLKCTRLB	7:0			PBDIV		PDI	/[3:0]		PEN
0x02										
	Reserved									
0x04										
0x05	MCLKSTATUS	7:0			PLLS	EXTS	XOSC32KS	OSC32KS	OSCHFS	SOSC
0x06	MCLKTIMEBASE	7:0						TIMEBASE[4:0]]	
0x07	Reserved									
0x08	OSCHFCTRLA	7:0	RUNSTDBY							AUTOTUNE
0x09	OSCHFTUNE	7:0				TUN	[7:0]			
0x0A										
	Reserved									
0x0F										
0x10	PLLCTRLA	7:0	RUNSTDBY	SOUR	CE[1:0]	SOURCE	DIV[1:0]		MULF	AC[1:0]
0x11	PLLCTRLB	7:0								CLKDIV
0x12										
	Reserved									
0x17										
0x18	OSC32KCTRLA	7:0	RUNSTDBY							
0x19										
	Reserved									
0x1B										
0x1C	XOSC32KCTRLA	7:0	RUNSTDBY		CSU	T[1:0]		SEL	LPMODE	ENABLE

12.5 Register Description

12.5.1 Main Clock Control A

Name:	MCLKCTRLA
Offset:	0x00
Reset:	0x00
Property:	Configuration Change Protection

Bit	7	6	5	4	3	2	1	0
Γ	CLKOUT					CLKSE	L[3:0]	
Access	R/W				R/W	R/W	R/W	R/W
Reset	0				0	0	0	0

Bit 7 – CLKOUT Main Clock Out

This bit controls whether the main clock is available on the Main Clock Out (CLKOUT) pin when the main clock is running.

Value	Description
0	The main clock is not available on the CLKOUT pin
1	The main clock is available on the CLKOUT pin

Bits 3:0 - CLKSEL[3:0] Clock Select

This bit field controls the source for the Main Clock (CLK_MAIN).

Value	Name	Description
0x0	OSCHF	Internal high-frequency oscillator
0x1	OSC32K	32.768 kHz internal oscillator
0x2	XOSC32K	32.768 kHz external clock or 32.768 kHz external crystal oscillator, depending on the SEL bit in XOSC32KCTRLA
0x3	EXTCLK	External clock
0x4	PLL	PLL Oscillator
Other	Reserved	Reserved

12.5.2 Main Clock Control B

Name:	MCLKCTRLB
Offset:	0x01
Reset:	0x11
Property:	Configuration Change Protection

Bit	7	6	5	4	3	2	1	0
			PBDIV		PDIV	[3:0]		PEN
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	1	0	0	0	1

Bit 5 – PBDIV Prescaler B Division

If this bit is '1', the clock frequencies for the CLK_PER and CLK_CPU will be set relative to the CLK_PER4 clock. When the Prescaler B Division (PBDIV) bit and Prescaler Enable (PEN) bit are '1', only prescaler settings matching 2ⁿ are available for PDIV.

Value	Name	Description	
0x0	NONE	No Division	
0x1	DIV4	Divide by 4	

Bits 4:1 – PDIV[3:0] Prescaler Division

This bit field defines the division ratio of the Main Clock (CLK_MAIN) prescaler A when the Prescaler Enable (PEN) bit is '1'. This bit field can be written at run-time to control the frequency of the CLK_PER4 clock relative to the Main Clock (CLK_MAIN).

Value	Name	Description	Value if PBDIV = 1 ⁽¹⁾
0x0	DIV2	Divide by 2	DIV2
0x1	DIV4	Divide by 4	DIV4
0x2	DIV8	Divide by 8	DIV8
0x3	DIV16	Divide by 16	DIV16
0x4	DIV32	Divide by 32	DIV32
0x5	DIV64	Divide by 64	DIV64
0x6-0x7	-	Reserved	-
0x8	DIV6	Divide by 6	DIV2
0x9	DIV10	Divide by 10	DIV4
0xA	DIV12	Divide by 12	DIV8
0xB	DIV24	Divide by 24	DIV16
0xC	DIV48	Divide by 48	DIV32
0xD-0xF	-	Reserved	-

Note: Configuration of the input frequency (CLK_MAIN) and prescaler settings must not exceed the allowed maximum frequency of the peripheral clock (CLK_PER) or CPU clock (CLK_CPU). Refer to the *Electrical Characteristics* section for further information.

Bit 0 – PEN Prescaler Enable

This bit controls whether the Main Clock (CLK_MAIN) prescaler is enabled.

Value	Description
0	The CLK_MAIN prescaler is disabled
1	The CLK_MAIN prescaler is enabled, and the division ratio is controlled by the Prescaler Division (PDIV) bit field

Note:

1. If the PBDIV bit is set, only prescaler settings matching 2ⁿ will be available, and the division will change as if PDIV[3] = 0.

12.5.3 Main Clock Status

Name:	MCLKSTATUS
Offset:	0x05
Reset:	0x00
Property:	-

All Status bits, except SOSC, will be available only if the respective source is requested as the main clock or by a peripheral. If the oscillator RUNSTDBY bit is set and the oscillator is unused/not requested, these bits will be '0'.

Bit	7	6	5	4	3	2	1	0
			PLLS	EXTS	XOSC32KS	OSC32KS	OSCHFS	SOSC
Access		•	R	R	R	R	R	R
Reset			0	0	0	0	0	0

Bit 5 - PLLS PLL Status

Value	Description	
0	PLL is not stable	
1	PLL is stable	

Bit 4 – EXTS External Clock Status

Value	Description
0	EXTCLK is not stable
1	EXTCLK is stable

Bit 3 - XOSC32KS 32.768 kHz External Crystal Oscillator Status

Value	Description	
0	XOSC32K is not stable	
1	XOSC32K is stable	

Bit 2 - OSC32KS 32.768 kHz Ultra Low-Power Internal Oscillator Status

Value	Description	
0	OSC32K is not stable	
1	OSC32K is stable	

Bit 1 - OSCHFS Internal High-Frequency Oscillator Status

Value	Description	
0	OSCHF is not stable	
1	OSCHF is stable	

Bit 0 – SOSC Main Clock Oscillator Changing

Value	Description
0	The clock source for CLK_MAIN is not undergoing a switch
1	The clock source for CLK_MAIN is undergoing a switch and will change as soon as the new source is stable

0

12.5.4 Timebase

Reset

	Name: Offset: Reset:	MCLKTIMEBA 0x06 0x00	SE					
Bit	7	6	5	4	3	2	1	0
				TIMEBASE[4:0]				
Access		•		R/W	R/W	R/W	R/W	R/W

Bits 4:0 - TIMEBASE[4:0] Timebase

This bit field specifies the count of CLK_PER cycles that is equivalent to or larger than 1 μ s. This is used for timing internal delays such as ADC start-up time.

0

0

0

0

The value must be rounded up to the closest integer. The following code snippet shows how to do this using the ceil function.

#include <math.h>
#define CLK_PER 33333333 // 20 MHz/6 = 3.333333 MHz
#define TIMEBASE_VALUE ((uint8_t) ceil(CLK_PER*0.000001))

12.5.5 Internal High-Frequency Oscillator Control A

Name:	OSCHFCTRLA
Offset:	0x08
Reset:	0x0C
Property:	Configuration Change Protection

Bit	7	6	5	4	3	2	1	0
	RUNSTDBY							AUTOTUNE
Access	R/W						•	R/W
Reset	0							0

Bit 7 – RUNSTDBY Run Standby

This bit co	ntrols whether the Internal High-Frequency Oscillator (OSCHF) is always running.
Value	Description

0	The OSCHF oscillator will only run when requested by a peripheral or by the main clock ⁽¹⁾
1	The OSCHF oscillator will always run in Active mode, Idle sleep mode and Standby sleep mode ⁽²⁾

Notes:

- 1. The requesting peripheral, or the main clock, must take the oscillator start-up time into account.
- 2. The oscillator signal is only available if requested and will be available after two OSCHF cycles.

Bit 0 – AUTOTUNE Auto-Tune Enable

This bit controls whether the 32.768 kHz crystal auto-tune functionality of the Internal High-

Frequency Oscillator (OSCHF) is enabled.						
Value	Name	Description				
0	OFF	The auto-tune functionality of the OSCHF oscillator is disabled				
1	XOSC32K	The auto-tune functionality of the OSCHF oscillator is enabled				
other	-	Reserved				

12.5.6 Internal High-Frequency Oscillator Frequency Tune

	Name: Offset: Reset: Property:	OSCHFTUNE 0x09 0x00 -						
Bit	7	6	5	4	3	2	1	0
				TUNE	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:0 - TUNE[7:0] User Frequency Tuning

This bit field controls the manual tuning of the output frequency of the Internal High-Frequency Oscillator (OSCHF). The frequency can be tuned 32 steps down or 31 steps up from the oscillator's target frequency. Thus, the register's acceptable input value range is -32 to +31. Writing to bits 6 and 7 has no effect, as bit 5 will be mirrored to bits 6 and 7 due to the 6-bit value in this bit field being represented in a signed (two's complement) form.

Note: The TUNE value is locked if the Auto-Tune Enable (AUTOTUNE) bit in the Internal High-Frequency Oscillator Control A (CLKCTRL.OSCHFCTRLA) register is enabled. When AUTOTUNE is disabled, it takes up to 0.75 µs and three Main Clock cycles before the latest tune value from the auto-tune operation has updated this bit field.

12.5.7 Internal 32.768 kHz Oscillator Control A

Name:	OSC32KCTRLA
Offset:	0x18
Reset:	0x00
Property:	Configuration Change Protection

Bit	7	6	5	4	3	2	1	0
	RUNSTDBY							
Access	R/W							
Reset	0							

Bit 7 – RUNSTDBY Run Standby

This bit controls whether the 32.768 kHz Oscillator (OSC32K) is always running.

Value	Description
0	The OSC32K oscillator will only run when requested by a peripheral or by the main clock ⁽¹⁾
1	The OSC32K oscillator will always run in Active mode, Idle sleep mode, Standby sleep mode and Power-Down sleep mode ⁽²⁾

Notes:

1. The requesting peripheral, or the main clock, must take the oscillator start-up time into account.

2. The oscillator signal is only available if requested and will be available after four OSC32K cycles.

12.5.8 External 32.768 kHz Crystal Oscillator Control A

Name:	XOSC32KCTRLA
Offset:	0x1C
Reset:	0x00
Property:	Configuration Change Protection

Bit	7	6	5	4	3	2	1	0	
	RUNSTDBY		CSUT	Γ[1:0]		SEL	LPMODE	ENABLE]
Access	R/W		R/W	R/W		R/W	R/W	R/W	-
Reset	0		0	0		0	0	0	

Bit 7 – RUNSTDBY Run Standby

This bit controls whether the 32.768 kHz Crystal Oscillator (XOSC32K) is always running and in which modes when the ENABLE bit is '1'.

Value	Description
0	The XOSC32K oscillator will only run when requested by a peripheral or by the main clock in Active mode and Idle sleep mode ⁽¹⁾
1	The XOSC32K oscillator will always run in Active mode, Idle sleep mode, Standby sleep mode and Power-Down sleep mode ⁽²⁾

Notes:

- 1. The requesting peripheral, or the main clock, must take the oscillator start-up time into account.
- 2. The oscillator signal is only available if requested and will be available after a maximum of three XOSC32K cycles if the initial crystal start-up time has already ended.

Bits 5:4 – CSUT[1:0] Crystal Start-Up Time

This bit field controls the 32.768 kHz Crystal Oscillator (XOSC32K) start-up time when the Source Select (SEL) bit is '0'.

Value	Name	Description	
0x0	1K	1k cycles	
0x1	16K	16k cycles	
0x2	32K	32k cycles	
0x3	64K	64k cycles	

Note: This bit field is read-only when the ENABLE bit or the XOSC32K Status (XOSCS) bit in the Main Clock Status (CLKCTRL.MCLKSTATUS) register is '1'.

Bit 2 – SEL Source Select

This bit controls the source of the 32.768 kHz Crystal Oscillator (XOSC32K).

Value	Description
0	External crystal connected to the XTAL32K1 and XTAL32K2 pins
1	External clock on the XTAL32K1 pin

Note: This bit field is read-only when the ENABLE bit or the XOSC32K Status (XOSCS) bit in the Main Clock Status (CLKCTRL.MCLKSTATUS) register is '1'.

Bit 1 – LPMODE Low-Power Mode

This bit controls whether the 32.768 kHz Crystal Oscillator (XOSC32K) is in Low-Power mode. **Note:** Enabling the Low-Power mode can increase the crystal's start-up time. Mitigate this by altering the crystal implementation to reduce serial resistance and overall capacitance or disabling the Low-Power mode.

Value	Description
0	The Low-Power mode is disabled
1	The Low-Power mode is enabled

Bit 0 - ENABLE Enable

This bit controls whether the 32.768 kHz Crystal Oscillator (XOSC32K) is enabled.

Value	Description
0	The XOSC32K oscillator is disabled
1	The XOSC32K oscillator is enabled and overrides ordinary port operation for the respective oscillator pins

12.5.9 PLL Control A

Name:	PLLCTRLA
Offset:	0x10
Reset:	0x00
Property:	Configuration Change Protection

Bit	7	6	5	4	3	2	1	0
	RUNSTDBY	SOUR	CE[1:0]	SOURCE	DIV[1:0]		MULF	AC[1:0]
Access	R/W	R/W	R/W	R/W	R/W		R/W	R/W
Reset	0	0	0	0	0		0	0

Bit 7 – RUNSTDBY Run Standby

This bit controls whether the Phase-Locked Loop (PLL) is always running.

Value	Description
0	The PLL will only run if requested by a peripheral ⁽¹⁾
1	The PLL will always run in Active, Idle and Standby sleep modes ⁽²⁾

Notes:

- 1. The requesting peripheral must take the PLL start-up time and PLL source start-up time into account.
- 2. The oscillator signal will only be available if requested and will be available after two PLL cycles.

Bits 6:5 - SOURCE[1:0] Select Source for PLL

This bit controls the Phase-Locked Loop (PLL) clock source.

Value	Name	Description
0x0	OSCHF	Internal high-frequency oscillator as PLL source
0x1	EXTCLK	External clock as PLL source
0x2-0x3	Reserved	

Bits 4:3 - SOURCEDIV[1:0] Select Source Division for PLL

This bit field divides the source frequency before being used as input to the PLL.

Value	Name	Description
0x0	NONE	No division. Nominal source frequency 2.5 to 5.5 MHz
0x1	DIV2	Divide by 2. Nominal source frequency 5 to 11 MHz
0x2	DIV4	Divide by 4. Nominal source frequency 10 to 22 MHz
0x3	DIV6	Divide by 6. Nominal source frequency 15 to 33 MHz

Bits 1:0 - MULFAC[1:0] Multiplication Factor

This bit field controls the multiplication factor for the Phased-Locked Loop (PLL).

Value	Name	Description
0x0	DISABLE	PLL is disabled
0x1	-	Reserved
0x2	8X	8x multiplication factor
0x3	16X	16x multiplication factor

12.5.10 PLL Control B

Name:	PLLCTRLB
Offset:	0x11
Reset:	0x00
Property:	Configuration Change Protection

Bit	7	6	5	4	3	2	1	0
								CLKDIV
Access		•		•				R/W
Reset								0

Bit 0 – CLKDIV PLL Output Clock Divider

This bit field controls the PLL Output Clock division for clock used by asynchronous peripherals.

Value	Name	Description			
0	NONE	Use undivided PLL clock.			
1	DIV2	Divide PLL clock by two.			

Note: Using DIV2 will also remove any duty cycle error from the PLL. This bit can be changed while PLL is running.

13. SLPCTRL - Sleep Controller

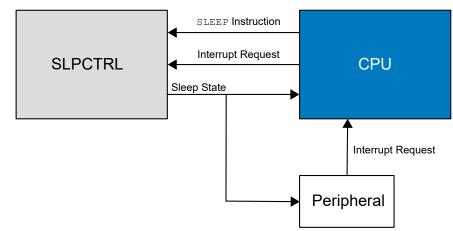
13.1 Features

- Power Management for Adjusting Power Consumption and Functions
- Three Sleep Modes:
 - Idle
 - Standby
 - Power-Down
- · Configurable Standby Mode Where Peripherals Can Be Configured as ON or OFF

13.2 Overview

Sleep modes are used to shut down peripherals and clock domains in the device to save power. The Sleep Controller (SLPCTRL) controls and handles the transitions between Active and sleep modes.

There are four modes available: One Active mode in which software is executed, and three sleep modes. The available sleep modes are Idle, Standby and Power-Down.


All sleep modes are available and can be entered from the Active mode. In Active mode, the CPU is executing application code. When the device enters sleep mode, the program execution is stopped. The application code decides which sleep mode to enter and when.

Interrupts are used to wake the device from sleep. The available interrupt wake-up sources depend on the configured sleep mode. When an interrupt occurs, the device will wake up and execute the Interrupt Service Routine before continuing normal program execution from the first instruction after the SLEEP instruction. Any Reset will take the device out of sleep mode.

The content of the register file, SRAM and registers, is kept during sleep. If a Reset occurs during sleep, the device will reset, start, and execute from the Reset vector.

13.2.1 Block Diagram

Figure 13-1. SLPCTRL Block Diagram

13.3 Functional Description

13.3.1 Initialization

To put the device into a sleep mode, follow these steps:

1. Configure and enable the interrupts that can wake the device from sleep.

Enable also the global interrupts.

 \triangle warning If there are no interrupts enabled when going to sleep, the device cannot wake up again. Only a Reset will allow the device to continue operation.

 Select which sleep mode to enter, and enable the Sleep Controller by writing to the Sleep Mode (SMODE) bit field and the Enable (SEN) bit in the Control A (SLPCTRL.CTRLA) register. The SLEEP instruction must be executed to make the device go to sleep.

13.3.2 Operation

13.3.2.1 Sleep Modes

Three different sleep modes can be enabled to reduce power consumption.

- IdleThe CPU stops executing code, resulting in reduced power consumption.All peripherals are running, and all interrupt sources can wake the device.
- **Standby** All high-frequency clocks are stopped apart from any peripheral or clock that are enabled to run in Standby sleep mode. This is enabled by writing the corresponding RUNSTDBY bit to '1'. The power consumption is dependent on the enabled functionality. A subset of interrupt sources can wake the device⁽¹⁾.
- Power-All high-frequency clocks are stopped, resulting in a power consumption lower than theDownIdle sleep mode.
 - A subset of the peripherals are running, and a subset of interrupt sources can wake the device⁽¹⁾.

Note:

1. Refer to the *Sleep Mode Activity* tables for further information.

Refer to the *Wake-up Time* section for information on how the wake-up time is affected by the different sleep modes.

Peripheral	Clock	Active in Slee	Active in Sleep Mode					
		Idle	Standby	Power-Down				
CPU	CLK_CPU							
RTC	CLK_RTC	Х	X ^(1,2)	X ⁽²⁾				
WDT	CLK_WDT	Х	X	Х				
BOD	CLK_BOD ⁽³⁾	Х	X	Х				
CCL	(4)	Х	X ⁽¹⁾					
TCF	(4)	Х	X					
ADCn								
TCE		Х	X ⁽¹⁾					
TCBn	CLK_PER							
All other peripherals		Х						

Table 13-1. Sleep Mode Activity Overview for Peripherals

Notes:

- 1. RUNSTDBY bit of the corresponding peripheral must be set to enter an active state.
- 2. In Standby sleep mode, only the RTC functionality requires the RUNSTDBY to be set to enter an active state. In Power-Down sleep mode, only the PIT functionality is available.
- 3. Sampled mode only.
- 4. The clock domain depends on the clock source selected for CCL.

Table 13-2. Sleep Mode Activity Overview for Clock Sources

Clock Source	Active in Sleep Mode					
	Idle	Standby	Power-Down			
Main clock source	Х	X ⁽¹⁾				
RTC clock source	Х	X ^(1,2)	X ⁽²⁾			
WDT oscillator	Х	Х	Х			
BOD oscillator ⁽³⁾	Х	Х	Х			
CCL clock source	Х	X ⁽¹⁾				
TCF clock source	X	X ⁽¹⁾				

Notes:

- 1. RUNSTDBY bit of the corresponding peripheral must be set to enter an active state.
- 2. In Standby sleep mode, only the RTC functionality requires the RUNSTDBY to be set to enter an active state. In Power-Down sleep mode, only the PIT functionality is available.
- 3. Sampled mode only.

Table 13-3. Sleep Mode Wake-Up Sources

Wake-Up Source	Active in Sleep Mode					
	Idle	Standby	Power-Down			
PORT Pin interrupt	Х	X	X ⁽¹⁾			
TWI Address Match interrupt	Х	X	Х			
BOD VLM interrupt	Х	X	Х			
CCL interrupts	Х	X ⁽²⁾	X ⁽³⁾			
RTC interrupts	Х	X ^(2,4)	X ⁽⁴⁾			
USART Start-of-Frame interrupt	-	Х	-			
ADCn interrupts	Х	X ⁽²⁾	-			
ACn interrupts						
TCEn interrupts						
TCBn interrupt						
TCFn interrupt						
All other interrupts	Х	-	-			

Notes:

- 1. The I/O pin has to be configured according to *Asynchronous Sensing Pin Properties* in the PORT section.
- 2. RUNSTDBY bit of the corresponding peripheral must be set to enter an active state.
- 3. CCL can wake up the device if the path through LUTn is asynchronous (FILTSEL= $0 \ge 0$ and EDGEDET= $0 \ge 0$ in the LUT n Control A (CCL.LUTnCTRLA) register).
- 4. In Standby sleep mode, only the RTC functionality requires the RUNSTDBY to be set to enter an active state. In Power-Down sleep mode, only the PIT functionality is available.

13.3.2.2 Wake-up Time

The normal wake-up time for the device is six main clock cycles (CLK_PER), plus the time it takes to start the main clock source and the time it takes to start the regulator if it has been switched off:

- In Idle sleep mode, the main clock source is kept running to eliminate additional wake-up time
- In Standby sleep mode, the main clock might be running depending on the peripheral configuration

In Power-Down sleep mode, only the internal 32.768 kHz oscillator and the Real-Time Clock (RTC) clock source may be running. These are used by the Brown-out Detector (BOD), Watchdog Timer (WDT) or Periodic Interrupt Timer (PIT). All the other clock sources will be OFF.

Table 13-4. Sleep Modes and Start-Up Time

Sleep Mode	Start-Up Time
Idle	Six clock cycles
Standby	Six clock cycles + one OSC start-up
Power-Down	Six clock cycles + one OSC start-up

The start-up time for the different clock sources is described in the CLKCTRL - Clock Controller section.

In addition to the normal wake-up time, it is possible to make the device wait until the BOD is ready before executing the code. This is done by writing 0×3 to the BOD operation mode in the Active and Idle (ACTIVE) bit field in the BOD Configuration (FUSE.BODCFG) fuse. If the BOD is ready before the normal wake-up time, the total wake-up time will be the same. If the BOD takes longer than the normal wake-up time, the wake-up time will be extended until the BOD is ready. This ensures correct supply voltage whenever code is executed.

13.3.3 Debug Operation

During run-time debugging, this peripheral will continue normal operation. The SLPCTRL is only affected by a break in the debug operation: If the SLPCTRL is in a sleep mode when a break occurs, the device will wake up, and the SLPCTRL will go to Active mode, even if there are no pending interrupt requests.

If the peripheral is configured to require periodic service by the CPU through interrupts or similar, improper operation or data loss may result during halted debugging.

13.4 Register Summary

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00	CTRLA	7:0						SMOD	DE[1:0]	SEN

13.5 Register Description

13.5.1 Control A

Name:	CTRLA
Offset:	0x00
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
						SMOD	DE[1:0]	SEN
Access	R	R	R	R	R	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 2:1 - SMODE[1:0] Sleep Mode

Writing these bits selects which sleep mode to enter when the Sleep Enable (SEN) bit is written to '1' and the SLEEP instruction is executed.

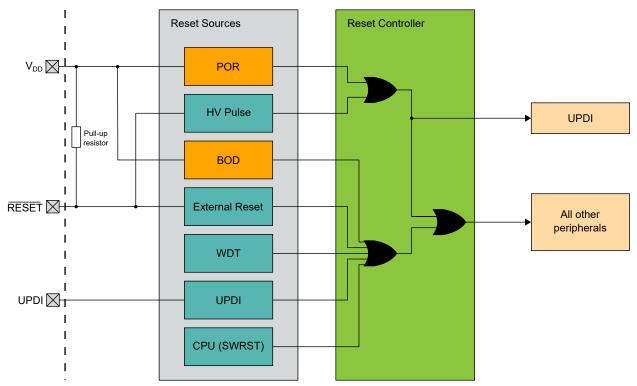
Value	Name	Description			
0x0	IDLE	dle sleep mode enabled			
0x1	STANDBY	Standby sleep mode enabled			
0x2	PDOWN	Power-Down sleep mode enabled			
other	-	Reserved			

Bit 0 – SEN Sleep Enable

This bit must be written to '1' before the SLEEP instruction is executed to make the MCU enter the selected Sleep mode.

14. RSTCTRL - Reset Controller

14.1 Features


- Returns the Device to an Initial State after a Reset
- Identifies the Previous Reset Source
- Power Supply Reset Sources:
 - Power-on Reset (POR)
 - Brown-out Detector (BOD) Reset
- User Reset Sources:
 - External Reset (RESET)
 - Watchdog Timer (WDT) Reset
 - Software Reset (SWRST)
 - Unified Program and Debug Interface (UPDI) Reset

14.2 Overview

The Reset Controller (RSTCTRL) manages the Reset of the device. It issues a device Reset, sets the device to its initial state, and allows the software to identify the Reset source.

14.2.1 Block Diagram

Figure 14-1. Reset System Overview

14.2.2 Signal Description

Signal	Description	Туре
RESET	External Reset (active-low)	Digital input

continued					
Signal	Description	Туре			
UPDI	Unified Program and Debug Interface	Digital input			

14.3 Functional Description

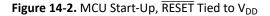
14.3.1 Initialization

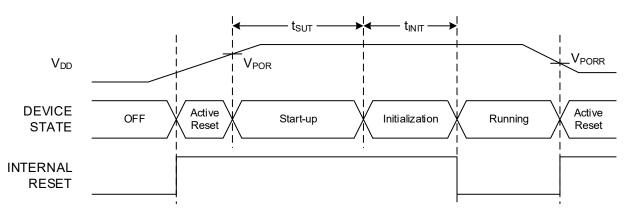
The RSTCTRL is always enabled, but some of the Reset sources must be enabled individually (either by Fuses or software) before they can request a Reset.

The registers in the device with automatic loading from the Fuses or the Signature Row are updated. The program counter will be set to 0x0000 after a Reset from any source.

14.3.2 Operation

14.3.2.1 Reset Sources

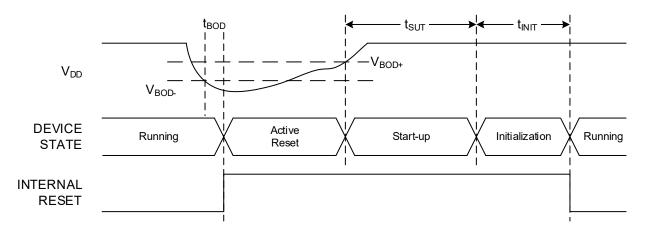

After any Reset, the source that caused the Reset is found in the Reset Flag (RSTCTRL.RSTFR) register. The user can identify the previous Reset source by reading this register in the software application.


There are two types of Resets based on the source:

- Power Supply Reset Sources:
 - Power-on Reset (POR)
 - Brown-out Detector (BOD) Reset
- User Reset Sources:
 - External Reset (RESET)
 - Watchdog Timer (WDT) Reset
 - Software Reset (SWRST)
 - Unified Program and Debug Interface (UPDI) Reset

14.3.2.1.1 Power-on Reset (POR)

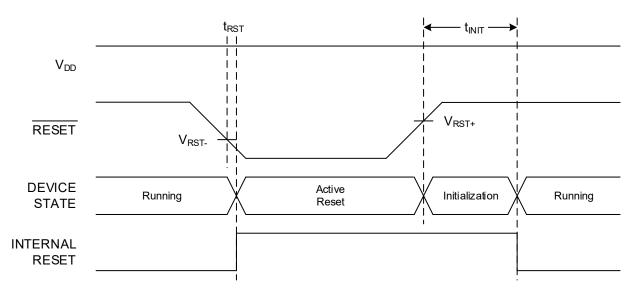
The Power-on Reset (POR) aim is to ensure a safe start-up of logic and memories. An on-chip detection circuit is always enabled and generates this. The POR is activated when the V_{DD} rises and gives active Reset as long as V_{DD} is below the POR threshold voltage (V_{POR}). The Reset will last until the Start-up and Reset initialization sequence is finished. Fuses determine the Start-Up Time (SUT). Reset is activated again, without delay, when V_{DD} falls below the detection level (V_{POR}).



14.3.2.1.2 Brown-out Detector (BOD) Reset

The on-chip Brown-out Detector (BOD) circuit will monitor the V_{DD} level during operation by comparing it to a fixed trigger level. The trigger level for the BOD can be selected by fuses. If BOD is unused in the application, it is forced to a minimum level to ensure a safe operation during internal Reset and chip erase.

Figure 14-3. Brown-out Detector Reset

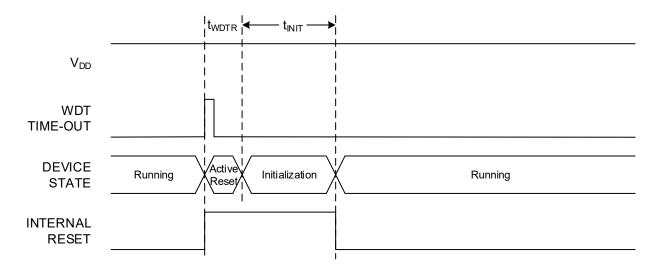


14.3.2.1.3 External Reset

The external Reset is enabled by a fuse. See the RSTPINCFG field in FUSE.SYSCFG0. Also, the internal pull-up resistor for the Reset-pin is enabled when the external Reset is enabled.

When enabled, the external Reset requests a Reset as long as the RESET pin is low. The device will stay in Reset until RESET is high again.

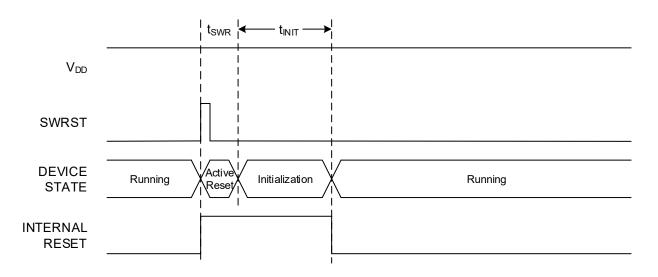
Figure 14-4. External Reset Characteristics



14.3.2.1.4 Watchdog Reset

The Watchdog Timer (WDT) is a system function for monitoring correct program operation. A Watchdog Reset will be issued if the WDT is not reset from software according to the programmed time-out period. See the *WDT - Watchdog Timer* section for further details.

Figure 14-5. Watchdog Reset


Note: The time t_{WDTR} is approximately 150 ns.

14.3.2.1.5 Software Reset (SWRST)

The Software Reset makes it possible to issue a System Reset from the software. Writing a '1' to the Software Reset (SWRST) bit in the Software Reset (RSTCTRL.SWRR) register generates the Reset.

The Reset sequence will start immediately after the bit is written.

Figure 14-6. Software Reset

Note: The time t_{SWR} is approximately 150 ns.

14.3.2.1.6 Unified Program and Debug Interface (UPDI) Reset

The Unified Program and Debug Interface (UPDI) contains a separate Reset source used to reset the device during external programming and debugging. The Reset source is accessible only from external debuggers and programmers. Find more details in the *UPDI - Unified Program and Debug Interface* section.

14.3.2.1.7 High Voltage (HV) Pulse

A device Reset is issued if a high voltage is applied to or removed from the RESET pin. When using the HV pulse to enable the UPDI, it will cause a device Reset. Refer to the UPDI - Unified Program and Debug Interface section for more information on the HV pulse.

14.3.2.1.8 Domains Affected By Reset

The following logic domains are affected by the various Resets:

Table 14-1	Logic Domains	Affected b	ov Various	Resets
10010 21 21		, and could a	<i>y v</i> anoas	1100010

Reset Type	Fuses are Reloaded	Reset of UPDI	Reset of Other Volatile Logic
POR	Х	Х	Х
BOD	Х		Х
External Reset	Х		Х
Watchdog Reset	Х		Х
Software Reset	Х		Х
UPDI Reset	Х		Х
High Voltage (HV) Pulse ⁽¹⁾	Х	Х	Х

Note: 1. An HV pulse can cause a Reset but should not be used intentionally as a Reset source.

14.3.2.2 Reset Time

The Reset time can be split into two parts.

The first part is when any of the Reset sources are active. This part depends on the input to the Reset sources. The external Reset is active as long as the RESET pin is low. The Power-on Reset (POR) and the Brown-out Detector (BOD) are active when the supply voltage is below the Reset source threshold.

The second part is when all the Reset sources are released, and an internal Reset initialization of the device is done. If a Power Supply Reset Source has caused the Reset, this time will be increased with the start-up time given by the Start-Up Time (SUT) bit field in the System Configuration 1 (FUSE.SYSCFG1) fuse. The internal Reset initialization time will also increase if the Cyclic Redundancy Check Memory Scan (CRCSCAN) is configured to run at start-up. This configuration can be changed in the CRC Source (CRCSRC) bit field in the System Configuration 0 (FUSE.SYSCFG0) fuse.

14.3.3 Sleep Mode Operation

The RSTCTRL operates in Active mode and all sleep modes.

14.3.4 Configuration Change Protection

This peripheral has registers that are under Configuration Change Protection (CCP). To write to these registers, a given key must first be written to the CPU.CCP register, followed by a write access to the protected bits within four CPU instructions.

Attempting to write to a protected register without following the appropriate CCP unlock sequence leaves it unchanged.

The following registers are under CCP:

Table 14-2. RSTCTRL - Registers Under Configuration Change Protection

Register	Кеу
RSTCTRL.SWRR	IOREG

14.4 Register Summary

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00	RSTFR	7:0			UPDIRF	SWRF	WDRF	EXTRF	BORF	PORF
0x01	SWRR	7:0								SWRE

14.5 Register Description

14.5.1 Reset Flag Register

Name:	RSTFR
Offset:	0x00
Reset:	0xXX
Property:	-

The Reset flags can be cleared by writing a '1' to the respective flag. All the flags will be cleared by a Power-on Reset (POR) or a Brown-out Reset (BOR), except for the Power-on Reset (PORF) and Brown-out Reset (BORF) flags.

Bit	7	6	5	4	3	2	1	0
			UPDIRF	SWRF	WDRF	EXTRF	BORF	PORF
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			х	х	х	х	х	х

Bit 5 - UPDIRF UPDI Reset Flag

This bit is set if either a UPDI Reset occurs or a Reset caused by an HV pulse occurs.

Bit 4 - SWRF Software Reset Flag

This bit is set if a Software Reset occurs.

Bit 3 – WDRF Watchdog Reset Flag

This bit is set if a Watchdog Reset occurs.

Bit 2 – EXTRF External Reset Flag

This bit is set if an External Reset occurs.

Bit 1 – BORF Brown-out Reset Flag

This bit is set if a Brown-out Reset occurs.

- Bit 0 PORF Power-on Reset Flag
 - This bit is set if a POR occurs.

After a POR, only the POR flag is set, and all the other flags are cleared. No other flags can be set before a full system boot is run after the POR.

14.5.2 Software Reset Register

Name:	SWRR
Offset:	0x01
Reset:	0x00
Property:	Configuration Change Protection

Bit	7	6	5	4	3	2	1	0
								SWRE
Access						•		R/W
Reset								0

Bit 0 – SWRE Software Reset Enable

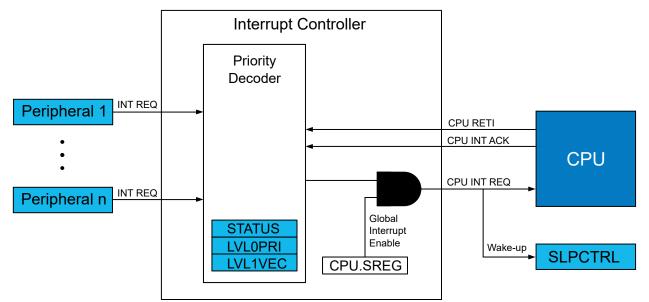
When this bit is written to '1', a software Reset will occur. This bit will always read as '0'.

15. CPUINT - CPU Interrupt Controller

15.1 Features

- Short and Predictable Interrupt Response Time
- Separate Interrupt Configuration and Vector Address for Each Interrupt
- Interrupt Prioritizing by Level and Vector Address
- Non-Maskable Interrupts (NMI) for Critical Functions
- Two Interrupt Priority Levels: 0 (Normal) and 1 (High):
 - One of the interrupt requests can optionally be assigned as a priority level 1 interrupt
 - Optional round robin priority scheme for priority level 0 interrupts
- Interrupt Vectors Optionally Placed in the Application Section or the Boot Loader Section
- Selectable Compact Vector Table (CVT)

15.2 Overview


An interrupt request signals a state change inside a peripheral and can be used to alter the program execution. The peripherals can have one or more interrupts. All interrupts are individually enabled and configured. When an interrupt is enabled and configured, it will generate an interrupt request when the interrupt condition occurs.

The CPU Interrupt Controller (CPUINT) handles and prioritizes the interrupt requests. When an interrupt is enabled and the interrupt condition occurs, the CPUINT will receive the interrupt request. Based on the interrupt's priority level and the priority level of any ongoing interrupt, the interrupt request is either acknowledged or kept pending until it has priority. After returning from the interrupt handler, the program execution continues from where it was before the interrupt occurred, and any pending interrupts are served after executing one instruction.

The CPUINT offers NMI for critical functions, one selectable high-priority interrupt, and an optional round robin scheduling scheme for normal-priority interrupts. The round robin scheduling ensures servicing all interrupts within a certain amount of time.

15.2.1 Block Diagram

Figure 15-1. CPUINT Block Diagram

15.3 Functional Description

15.3.1 Initialization

Initialize an interrupt in the following order:

- 1. Optional: Configure the expected location of the interrupt vectors using the IVSEL bit in the Control A (CPUINT.CTRLA) register.
- 2. Optional: Enable compact vector table by writing '1' to the CVT bit in the Control A (CPUINT.CTRLA) register.
- 3. Optional: Enable vector prioritizing by round robin by writing a '1' to the Round Robin Priority Enable (LVLORR) bit in CPUINT.CTRLA.
- 4. Optional: Select the Priority Level 1 vector by writing the interrupt vector number to the Interrupt Vector with Priority Level 1 (CPUINT.LVL1VEC) register.
- 5. Optional: Modify the priority of the LVL0 interrupts by configuring Interrupt Priority Level 0 (LVL0PRI) register.
- 6. Configure the interrupt conditions within each peripheral and enable the peripheral's interrupt.
- 7. Enable interrupts globally by writing a '1' to the Global Interrupt Enable (I) bit in the CPU Status (CPU.SREG) register.

15.3.2 Operation

15.3.2.1 Enabling, Disabling and Resetting

The global enabling of interrupts is done by writing a '1' to the Global Interrupt Enable (I) bit in the CPU Status (CPU.SREG) register. To disable interrupts globally, write a '0' to the I bit in CPU.SREG.

The desired interrupt lines must also be enabled in the respective peripheral by writing to the peripheral's Interrupt Control (*peripheral*.INTCTRL) register.

The interrupt flags are not automatically cleared after the interrupt is executed. The respective INTFLAGS register descriptions provide information on how to clear specific flags.

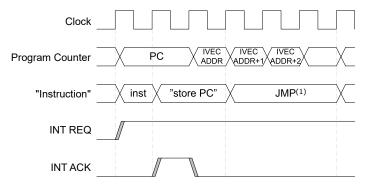
15.3.2.2 Interrupt Vector Locations

The expected location of interrupt vectors is dependent on the value of the Interrupt Vector Select (IVSEL) bit in the Control A (CPUINT.CTRLA) register. Refer to the IVSEL description in CPUINT.CTRLA for the possible locations.

If the program never enables an interrupt source, the interrupt vectors are not used, and the regular program code can be placed at these locations.

15.3.2.3 Interrupt Response Time

The minimum interrupt response time is represented in the following table.


Table 15-1. Minimum Interrupt Response Time

	Flash Size > 8 KB	Flash Size ≤ 8 KB
Finish ongoing instruction	One cycle	One cycle
Store PC to stack	Two cycles	Two cycles
Jump to interrupt handler	Three cycles (jmp)	Two cycles (rjmp)

After the Program Counter is pushed on the stack, the program vector for the interrupt is executed. See the following figure.

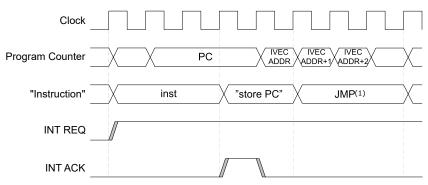


Figure 15-2. Interrupt Execution of Single-Cycle Instruction

If an interrupt occurs during the execution of a multi-cycle instruction, the instruction is completed before the interrupt is served, as shown in the following figure.

Figure 15-3. Interrupt Execution of Multi-Cycle Instruction

If an interrupt occurs when the device is in a sleep mode, the interrupt execution response time is increased by five clock cycles, as shown in the figure below. Also, the response time is increased by the start-up time from the selected sleep mode.

Figure 15-4. Interrupt Execution From Sleep

Clock			
Program Counter	PC	IVEC VIVEC VIVEC VIVEC ADDR+1 ADDR+2	_
"Instruction"	sleep	"store PC" JMP ⁽¹⁾	_
INT REQ			_
INT ACK			

A return from an interrupt handling routine takes four to five clock cycles, depending on the size of the Program Counter. During these clock cycles, the Program Counter is popped from the stack, and the Stack Pointer is incremented.

Note:

1. Devices with 8 KB of Flash or less use RJMP instead of JMP, which takes only two clock cycles.

15.3.2.4 Interrupt Priority

All interrupt vectors are assigned to one of three possible priority levels, as shown in the table below. An interrupt request from a high-priority source will interrupt any ongoing interrupt handler from a normal-priority source. When returning from the high-priority interrupt handler, the execution of the normal-priority interrupt handler will resume.

Priority	Level	Source
Highest	Non-Maskable Interrupt	Device-dependent and statically assigned
	Level 1 (high priority)	One vector is optionally user selectable as level 1
Lowest	Level 0 (normal priority)	The remaining interrupt vectors

Table 15-2. Interrupt Priority Levels

15.3.2.4.1 Non-Maskable Interrupts

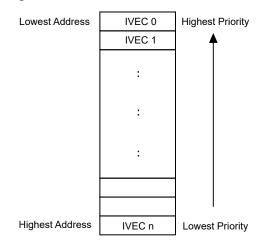
A Non-Maskable Interrupt (NMI) will be executed regardless of the I bit setting in CPU.SREG. An NMI will never change the I bit. No other interrupt can interrupt an NMI handler. If more than one NMI is requested at the same time, the priority is static according to the interrupt vector address, where the lowest address has the highest priority.

Which interrupts are non-maskable is device-dependent and not subject to configuration. Nonmaskable interrupts must be enabled before they can be used. Refer to the *Interrupt Vector Mapping* table of the device for available NMI sources.

15.3.2.4.2 High-Priority Interrupt

It is possible to assign one interrupt request to level 1 (high priority) by writing its interrupt vector number to the CPUINT.LVL1VEC register. This interrupt request will have a higher priority than the other (normal priority) interrupt requests. The priority level 1 interrupts will interrupt the level 0 interrupt handlers.

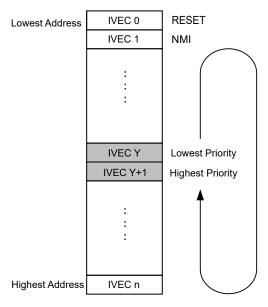
15.3.2.4.3 Normal-Priority Interrupts


All interrupt vectors other than NMI are assigned to priority level 0 (normal) by default. The user may override this by assigning one of these vectors as a high-priority vector. The device will have many normal-priority vectors, and some of these may be pending at the same time. Two different scheduling schemes are available to choose which of the pending normal-priority interrupts to service first: Static or round robin.

IVEC is the interrupt vector mapping, as listed in the *Peripherals and Architecture* section. The following sections use IVEC to explain the scheduling schemes. IVEC0 is the Reset vector, IVEC1 is the NMI vector, and so on. In a vector table with n+1 elements, the vector with the highest vector number is denoted IVECn. Reset, non-maskable interrupts, and high-level interrupts are included in the IVEC map, but will always be prioritized over the normal-priority interrupts.

Static Scheduling

If several level 0 interrupt requests are pending at the same time, the one with the highest priority is scheduled for execution first. The following figure illustrates the default configuration, where the interrupt vector with the lowest address has the highest priority.

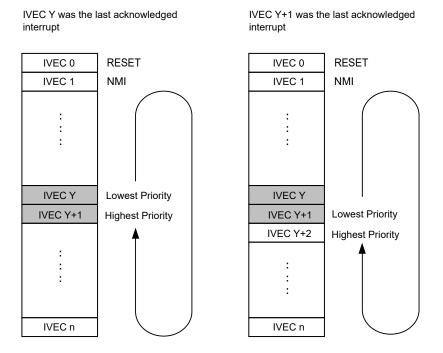


Modified Static Scheduling

The default priority can be changed by writing a vector number to the CPUINT.LVLOPRI register. This vector number will be assigned the lowest priority. The next interrupt vector in the IVEC will have the highest priority among the LVL0 interrupts, as shown in the following figure.

Figure 15-6. Static Scheduling When CPUINT.LVLOPRI Is Different from Zero

Here, value Y has been written to CPUINT.LVL0PRI so that the interrupt vector Y+1 has the highest priority. Note that, In this case, the priorities will wrap so that the lowest address no longer has the highest priority, not including RESET and NMI, which will always have the highest priority.


Refer to the interrupt vector mapping of the device for available interrupt requests and their interrupt vector number.

Round Robin Scheduling

The static scheduling may prevent some interrupt requests from being serviced. To avoid this, the CPUINT offers round robin scheduling for normal-priority (LVL0) interrupts. In the round robin scheduling, the CPUINT.LVL0PRI register stores the last acknowledged interrupt vector number. This register ensures that the last acknowledged interrupt vector gets the lowest priority and is automatically updated by the hardware. The following figure illustrates the priority order after acknowledging IVEC Y and after acknowledging IVEC Y+1.

Figure 15-7. Round Robin Scheduling

The round robin scheduling for LVL0 interrupt requests is enabled by writing a '1' to the Round Robin Priority Enable (LVL0RR) bit in the Control A (CPUINT.CTRLA) register.

15.3.2.5 Compact Vector Table

The Compact Vector Table (CVT) is a feature to allow the writing of compact code by having all level 0 interrupts share the same interrupt vector number. Thus, the interrupts share the same Interrupt Service Routine (ISR). This reduces the number of interrupt handlers and thereby frees up memory that can be used for the application code.

When CVT is enabled by writing a '1' to the CVT bit in the Control A (CPUINT.CTRLA) register, the vector table contains these three interrupt vectors:

- 1. The non-maskable interrupts (NMI) at vector address 1.
- 2. The Priority Level 1 (LVL1) interrupt at vector address 2.
- 3. All priority level 0 (LVL0) interrupts at vector address 3.

This feature is most suitable for devices with limited memory and applications using a few of interrupt generators.

15.3.3 Debug Operation

When using a level 1 priority interrupt, it is important to make sure the Interrupt Service Routine is configured correctly as it may cause the application to be stuck in an interrupt loop with level 1 priority.

By reading the CPUINT STATUS (CPUINT.STATUS) register, it is possible to see if the application has executed the correct RETI (interrupt return) instruction. The CPUINT.STATUS register contains state information, which ensures that the CPUINT returns to the correct interrupt level when the RETI instruction is executed at the end of an interrupt handler. Returning from an interrupt will return the CPUINT to the state it had before entering the interrupt.

15.3.4 Configuration Change Protection

This peripheral has registers that are under Configuration Change Protection (CCP). To write to these registers, a given key must first be written to the CPU.CCP register, followed by a write access to the protected bits within four CPU instructions.

Attempting to write to a protected register without following the appropriate CCP unlock sequence leaves it unchanged.

The following registers are under CCP:

Table 15-3. CPUINT - Registers Under Configuration Change Protection

Register	Key
The IVSEL and CVT bit fields in CPUINT.CTRLA	IOREG

15.4 Register Summary

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00	CTRLA	7:0		IVSEL	CVT					LVLORR
0x01	STATUS	7:0	NMIEX						LVL1EX	LVL0EX
0x02	LVLOPRI	7:0		LVLOPRI[7:0]						
0x03	LVL1VEC	7:0		LVL1VEC[7:0]						

15.5 Register Description

15.5.1 Control A

Name:	CTRLA
Offset:	0x00
Reset:	0x00
Property:	Configuration Change Protection

Bit	7	6	5	4	3	2	1	0
		IVSEL	CVT					LVLORR
Access		R/W	R/W	•		•		R/W
Reset		0	0					0

Bit 6 – IVSEL Interrupt Vector Select

When the entire Flash is configured as a BOOT section, this bit will be ignored.

Value	Description
0	The expected location of the interrupt vectors is directly after the BOOT section ⁽¹⁾
1	The expected location of the interrupt vectors is at the start of the BOOT section

Note:

1. A system reset will cause the Program Counter to be reset to 0x0000, regardless of the IVSEL bit value.

Bit 5 – CVT Compact Vector Table

Value	Description
0	Compact Vector Table function is disabled
1	Compact Vector Table function is enabled

Bit 0 – LVLORR Round Robin Priority Enable

This bit is not protected by the Configuration Change Protection mechanism.				
Value	Description			
0	Priority is fixed for priority level 0 interrupt requests: The lowest interrupt vector address has the highest priority.			
1	The round robin priority scheme is enabled for priority level 0 interrupt requests			

15.5.2 Status

STATUS
0x01
0x00
-

Bit	7	6	5	4	3	2	1	0
	NMIEX						LVL1EX	LVLOEX
Access	R	•		•			R	R
Reset	0						0	0

Bit 7 – NMIEX Non-Maskable Interrupt Executing

This flag is set if a non-maskable interrupt is executing. The flag is cleared when returning (RETI) from the interrupt handler.

Bit 1 - LVL1EX Level 1 Interrupt Executing

This flag is set when a priority level 1 interrupt is executing, or when the interrupt handler has been interrupted by an NMI. The flag is cleared when returning (RETI) from the interrupt handler.

Bit 0 – LVL0EX Level 0 Interrupt Executing

This flag is set when a priority level 0 interrupt is executing, or when the interrupt handler has been interrupted by a priority level 1 interrupt or an NMI. The flag is cleared when returning (RETI) from the interrupt handler.

15.5.3 Interrupt Priority Level 0

	Name: Offset: Reset: Property:	LVLOPRI 0x02 0x00 -							
Bit	7	6	5	4	3	2	1	0	
		LVLOPRI[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-
Reset	0	0	0	0	0	0	0	0	

Bits 7:0 - LVLOPRI[7:0] Interrupt Priority Level 0

This register is used to modify the priority of the LVL0 interrupts. See the section Normal-Priority Interrupts for more information.

15.5.4 Interrupt Vector with Priority Level 1

	Name: Offset: Reset: Property:	LVL1VEC 0x03 0x00 -						
Bit	7	6	5	4	3	2	1	0
		·		LVL1VI	EC[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:0 - LVL1VEC[7:0] Interrupt Vector with Priority Level 1

This bit field contains the number of the single vector with increased priority level 1 (LVL1). If this bit field has the value 0×00 , no vector has LVL1. Consequently, the LVL1 interrupt is disabled.

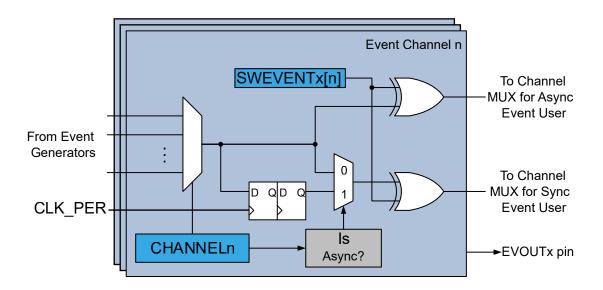
16. EVSYS - Event System

16.1 Features

- System for Direct Peripheral-to-Peripheral Signaling
- Peripherals Can Directly Produce, Use, and React to Peripheral Events
- Short and Predictable Response Time
- Up to 6 Parallel Event Channels Available
- Each Channel Is Driven by One Event Generator and Can Have Multiple Event Users
- Events Can Be Sent and/or Received by Most Peripherals and by Software
- The Event System Works in Active, Idle, and Standby Sleep Modes

16.2 Overview

The Event System (EVSYS) enables direct peripheral-to-peripheral signaling. It allows a change in one peripheral (the event generator) to trigger actions in other peripherals (the event users) through event channels, without using the CPU. It is designed to provide a short and predictable response time between peripherals, allowing for autonomous peripheral control and interaction, and for synchronized timing of actions in several peripheral modules. Thus, the EVSYS peripheral makes it possible to implement Core Independent Peripherals (CIPs). Also, it is a powerful tool for reducing the complexity, size, and execution time of the software.


A change of the event generator's state is referred to as an event and usually corresponds to one of the peripheral's interrupt conditions. Events can be forwarded directly to other peripherals using the dedicated event routing network. The routing of each channel is configured in software, including event generation and use.

Only one event signal can be routed on each channel. Multiple peripherals can use events from the same channel.

The EVSYS can connect peripherals such as ADCs, analog comparators, I/O PORT pins, the real-time counter, timer/counters, and the configurable custom logic peripheral. Events can also be generated from software.

16.2.1 Block Diagram

Figure 16-1. EVSYS Block Diagram


Event User

The block diagram shows the operation of an event channel. A multiplexer controlled by Channel n Generator Selection (EVSYS.CHANNELn) register at the input selects which of the event sources to route onto the event channel. Each event channel has two subchannels: one asynchronous and one synchronous. A synchronous user will listen to the synchronous subchannel, and an asynchronous user will listen to the asynchronous subchannel.

An event signal from an asynchronous source will be synchronized by the Event System before being routed to the synchronous subchannel. An asynchronous event signal to be used by a synchronous consumer must last for at least one peripheral clock cycle to ensure that it will propagate through the synchronizer. The synchronizer will delay such an event between two and three clock cycles, depending on when the event occurs.

Figure 16-2. Example of Event Source, Generator, User, and Action

Event Generator

16.2.2 Signal Description

Signal	Туре	Description	
EVOUTx Digital output		Event output, one output per I/O Port	

16.3 Functional Description

16.3.1 Initialization

To utilize events, the Event System, the generating peripheral, and the peripheral(s) using the event must be set up accordingly:

- 1. Configure the generating peripheral appropriately. For example, if the generating peripheral is a timer, set the prescaling, the Compare register, etc., so that the desired event is generated.
- 2. Configure the event user peripheral(s) appropriately. For example, if the ADC is the event user, set the ADC prescaler, resolution, conversion time, etc., as desired, and configure the ADC conversion to start at the reception of an event.
- 3. Configure the Event System to route the desired source. In this case, the Timer/Compare match to the desired event channel. This may, for example, be Channel 0, which is accomplished by writing to the Channel 0 Generator Selection (EVSYS.CHANNEL0) register.
- 4. Configure the ADC to listen to this channel by writing to the corresponding User x Channel MUX (EVSYS.USERx) register.

16.3.2 Operation

16.3.2.1 Event User Multiplexer Setup

Each event user has one dedicated event user multiplexer selecting which event channel to listen to. The application configures these multiplexers by writing to the corresponding EVSYS.USERx register.

16.3.2.2 Event System Channel

An event channel can be connected to one of the event generators.

The source for each event channel is configured by writing to the respective Channel n Generator Selection (EVSYS.CHANNELn) register.

16.3.2.3 Event Generators

Each event channel has several possible event generators, but only one can be selected at a time. The event generator for a channel is selected by writing to the respective Channel n Generator Selection (EVSYS.CHANNELn) register. By default, the channels are not connected to any event generator. For details on event generation, refer to the documentation of the corresponding peripheral.

A generated event is either synchronous or asynchronous to the device peripheral clock (CLK_PER). Asynchronous events can be generated outside the normal edges of the peripheral clock, making the system respond faster than the selected clock frequency would suggest. Asynchronous events can also be generated while the device is in a sleep mode when the peripheral clock is not running.

Any generated event is classified as either a pulse event or a level event. In both cases, the event can be either synchronous or asynchronous, with properties according to the table below.

Event Type	Sync/Async	Description	
Pulse	Sync	An event generated from CLK_PER that lasts one clock cycle	
	Async	An event generated from a clock other than CLK_PER lasting one clo cycle	
Level	Sync	An event generated from CLK_PER that lasts multiple clock cycles	
	Async	An event generated without a clock (for example, a pin or a comparator), or an event generated from a clock other than CLK_PER that lasts multiple clock cycles	

Table 16-1. Properties of Generated Events

The properties of both the generated event and the intended event user must be considered in order to ensure reliable and predictable operation.

The table below shows the available event generators for this device family.

Generator Name		Description	Event Type	Generating Clock	Length of Event	
Peripheral	Event			Domain		
UPDI	SYNCH	SYNCH character	Async, Level	CLK_PDI	SYNCH character on PDI RX input synchronized to CLK_PDI	
RTC	OVF	Counter Overflow	Async, Pulse	CLK_RTC	One CLK_RTC period	
	CMP	Compare Match				
	EVGEN0	Selectable prescaled RTC event	Async, Level	CLK_RTC	Prescaled RTC period	
	EVGEN1					
CCL	LUTn	LUT output level	Async, Level	Asynchronous	Depends on CCL configuration	
ACn	OUT	Comparator output level	Async, Level	Asynchronous	Given by AC output level	
ADC0	RES	Result ready	Sync, Pulse	CLK_PER	One CLK_PER period	
	SAMP	Sample ready				
	WCMP	Window compare match				

Table 16-2. Event Generators

CO	ntinued	ł				
Generator		Description	Event Type	Generating Clock Domain	Length of Event	
Peripheral						
PORTx	EVGEN0	Pin level	Async, Level	Asynchronous	Given by pin level	
	EVGEN1					
USARTn	ХСК	Clock signal in SPI host mode and synchronous USART host mode	Sync, Level	TXCLK	Minimum two CLK_PER periods	
SPI0	SCK	SPI host clock	Sync, Level	CLK_PER	Minimum two CLK_PER periods	
CM CM	OVF	Overflow/ Low byte timer underflow	Sync, Pulse	CLK_PER	One CLK_PER period	
	CMP0	Compare channel 0 match/Low byte timer compare channel 0 match	Sync, Pulse/Level		One CLK_PER period or WO	
	CMP1	Compare channel 1 match/Low byte timer compare channel 1 match				
	CMP2	Compare channel 2 match/Low byte timer compare channel 2 match				
	CMP3	Compare channel 3 match/Low byte timer compare channel 3 match				
TCBn	CAPT	CAPT interrupt flag set	Sync, Pulse/Level	CLK_PER	One CLK_PER period or WO	
	OVF	Counter overflow	Sync, Pulse		One CLK_PER period	
	OVF	Counter overflow	Async, Pulse	CLK_TCF	One CLK_TCF period	
TCF0	CMP0	Compare channel 0	Async, Pulse/Level		One CLK_TCF period or WO	
	CMP1	Compare channel 1				

16.3.2.4 Event Users

The event channel to listen to is selected by configuring the event user. An event user may require the event signal to be either synchronous or asynchronous to the peripheral clock. An asynchronous event user can respond to events in sleep modes when clocks are not running. Such events can be responded to outside the normal edges of the peripheral clock, making the event user respond faster than the clock frequency would suggest. For details on the requirements of each peripheral, refer to the documentation of the corresponding peripheral.

Most event users implement edge or level detection to trigger actions in the corresponding peripheral based on the incoming event signal. In both cases, a user can either be synchronous, which requires that the incoming event is generated from the peripheral clock (CLK_PER), or asynchronous, if not. Some asynchronous event users do not apply event input detection but use the event signal directly. The different event user properties are described in general in the table below.

Input Detection	Async/Sync	Description	
Edge	Sync	An event user is triggered by an event edge and requires that the incoming event is generated from CLK_PER	
	Async	An event user is triggered by an event edge and has asynchronou detection or an internal synchronizer	
Level	Sync	An event user is triggered by an event level and requires that the incoming event is generated from CLK_PER	
	Async	An event user is triggered by an event level and has asynchronous detection or an internal synchronizer	
No detection	Async	An event user will use the event signal directly	

Table 16-3. Properties of Event Users

The table below shows the available event users for this device family.

USER Name		Description	Input Detection	Async/Sync	
Peripheral	Input				
CCL	LUTnx	LUTn event input x	Level	Async	
ADCn	START	ADC start on event	Edge	Async	
EVSYS	EVOUTx	EVSYS pin output x	No detection	Async	
USARTn	IRDA	USARTn IrDA event input	Level	Sync	
TCEn	CNTA	Count on positive event edge	Edge	Sync	
		Count on any event edge Edge			
		Count while event signal is high	Level		
		Event level controls count direction, up when low and down when high	Level		
	CNTB	Event level controls count direction, up when low and down when high	Level	Sync	
		Restart counter on positive event edge	Edge		
		Restart counter on any event edge	Edge		
		Restart counter while event signal is high	Level		
TCBn	CAPT	Timeout check	Edge	Sync	
		Input capture on event	Edge		
		Input capture frequency measurement	Edge		
		Input capture pulse-width measurement	Edge	-	
		Input capture frequency and pulse-width measurement	Edge		
		Single-shot	Edge	Both	
	COUNT	Count on event	Edge	Sync	
TCFn	COUNT	Count on event	Edge	Async	
	ACTION	Event action	Edge/level	Async	
WEXn	FAULTA	Fault input A	Level	Async	
	FAULTB	Fault input B	Level	Async	
	FAULTC	Fault input C	Level	Async	

Table 16-4. Event Users

16.3.2.5 Synchronization

Events can be either synchronous or asynchronous to the peripheral clock. Each Event System channel has two subchannels: one asynchronous and one synchronous.

The asynchronous subchannel is identical to the event output from the generator. If the event generator generates a signal asynchronous to the peripheral clock, the signal on the asynchronous subchannel will be asynchronous. If the event generator generates a signal synchronous to the peripheral clock, the signal on the asynchronous subchannel will also be synchronous.

The synchronous subchannel is identical to the event output from the generator, if the event generator generates a signal synchronous to the peripheral clock. If the event generator generates a signal asynchronous to the peripheral clock, this signal is first synchronized before being routed onto the synchronous subchannel. Depending on when it occurs, synchronization will delay the event by two to three clock cycles. The Event System automatically performs this synchronization if an asynchronous generator is selected for an event channel.

16.3.2.6 Software Event

The application can generate a software event. Software events on Channel n are issued by writing a '1' to the Software Event Channel Select (CHANNEL[n]) bit in the Software Events (EVSYS.SWEVENTx) register. A software event appears as a pulse on the Event System channel, inverting the current event signal for one clock cycle.

Event users see software events as no different from those produced by event generating peripherals.

16.3.3 Sleep Mode Operation

When configured, the Event System will work in all sleep modes. Software events represent one exception since they require a peripheral clock.

Asynchronous event users are able to respond to an event without their clock running in Standby sleep mode. Synchronous event users require their clock to be running to be able to respond to events. Such users will only work in Idle sleep mode or in Standby sleep mode, if configured to run in Standby mode by setting the RUNSTDBY bit in the appropriate register.

Asynchronous event generators are able to generate an event without their clock running, that is, in Standby sleep mode. Synchronous event generators require their clock to be running to be able to generate events. Such generators will only work in Idle sleep mode or in Standby sleep mode, if configured to run in Standby mode by setting the RUNSTDBY bit in the appropriate register.

16.3.4 Debug Operation

This peripheral is unaffected by entering Debug mode.

16.4 Register Summary

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00	SWEVENTA	7:0				SWEVEN	NTA[7:0]			
0x01										
	Reserved									
0x0F										
0x10	CHANNEL0	7:0				CHANN	EL0[7:0]			
0x11	CHANNEL1	7:0				CHANN	EL1[7:0]			
0x12	CHANNEL2	7:0				CHANN	EL2[7:0]			
0x13	CHANNEL3	7:0				CHANN	EL3[7:0]			
0x14	CHANNEL4	7:0				CHANN	EL4[7:0]			
0x15	CHANNEL5	7:0				CHANN	EL5[7:0]			
0x16										
	Reserved									
0x1F										
0x20	USERCCLLUT0A	7:0				USEF	R[7:0]			
0x38	USERWEX0FAULTC	7:0				USEF	R[7:0]			

16.5 Register Description

16.5.1 Software Events

Name:	SWEVENTx
Offset:	0x00
Reset:	0x00
Property:	-

Write bits in this register to create a software event on the corresponding event channels. Bits 0-7 in the EVSYS.SWEVENTA register correspond to event channels 0-7. If the number of available event channels is between eight and 15, these are available in the EVSYS.SWEVENTB register, where bit n corresponds to event channel 8+n.

Refer to the *Peripheral Overview* section for the available number of Event System channels.

Bit	7	6	5	4	3	2	1	0
	SWEVENTx[7:0]							
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0

Bits 7:0 - SWEVENTx[7:0] Software Event Channel Select

Writing a bit in this bit group to '1' will generate a single-pulse event on the corresponding event channel by inverting the signal on the event channel for one peripheral clock cycle.

16.5.2 Channel n Generator Selection

Name:	CHANNELn
Offset:	0x10 + n*0x01 [n=05]
Reset:	0x00
Property:	-

Each channel can be connected to one event generator. Not all generators can be connected to all channels. Refer to the table below to see which generator sources can be routed onto each channel and the generator value to be written to EVSYS.CHANNELn to achieve this routing. Writing the value 0×00 to EVSYS.CHANNELn turns the channel off.

Refer to the Peripheral Overview section for the available number of Event System channels.

Bit	7	6	5	4	3	2	1	0
	CHANNELn[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:0 - CHANNELn[7:0] Channel Generator Selection

The specific generator name corresponding to each bit group configuration is given by combining *Peripheral* and *Output* from the table below in the following way: PERIPHERAL_OUTPUT.

GENERATOR		Async/Sync	Channel Availability			
Value Name						
	Peripheral Output					
0x01	UPDI	SYNCH	Async	Rising edge of SYNCH character detection	All channels	
0x06	RTC	OVF	Async	Counter overflow	All channels	
0x07		CMP		Compare match		
0x08		EVGEN0		Selectable prescaled RTC event	All channels	
0x09		EVGEN1				
0x10	CCL	LUT0	Async	LUT output level	All channels	
0x11		LUT1				
0x12		LUT2				
0x13		LUT3				
0x20	AC0	OUT	Async Comparator output level		All channels	
0x21	AC1	OUT				
0x24	ADC0	RES	Sync	Result ready	All channels ⁽¹⁾	
0x25		SAMP		Sample ready		
0x26		WCMP		Window compare match		
0x40	PORTA	EVGEN0	Async	Pin level ⁽²⁾	All channels	
0x41		EVGEN1				
0x44	PORTC	EVGEN0	Async Pin level ⁽²⁾		All channels	
0x45		EVGEN1				
0x46	PORTD	EVGEN0	Async	Pin level ⁽²⁾	All channels	
0x47		EVGEN1				
0x4A	PORTF	EVGEN0	Async	Pin level ⁽²⁾	All channels	
0x4B		EVGEN1				
0x60	USART0	ХСК	Sync	Clock signal in SPI host mode and synchronous USART host mode	All channels	
0x68	SPI0	SCK	Sync	SPI host clock signal	All channels	
0x80	TCE0	OVF	Sync	Overflow/Low byte timer underflow	All channels	
0x84		CMP0	Sync	Sync Compare channel 0 match		
0x85		CMP1	SyncCompare channel 1 matchSyncCompare channel 2 match			
0x86		CMP2				
0x87		CMP3	Sync	Compare channel 3 match		

••••••	continued						
GENE	RATOR		Async/Sync Description		Channel Availability		
Value	Name						
	Peripheral	Output					
0xA0	TCB0	CAPT	Sync	CAPT interrupt flag set ⁽³⁾	All channels		
0xA1		OVF		Counter overflow			
0xA2	TCB1	CAPT	Sync	CAPT interrupt flag set ⁽³⁾	All channels		
0xA3		OVF		Counter overflow			
0xB8	TCF0	OVF	Sync	Counter overflow	All channels		
0xB9		CMP0		Compare channel 0			
0xBA		CMP1		Compare channel 1			

Notes:

- 1. Not all peripheral instances are available for all pin counts. Refer to the Peripherals and Architecture section for details.
- 2. An event from the PORT pin will be zero if the input driver is disabled.
- 3. The operational mode of the timer decides when the CAPT flag is raised. Refer to the TCB section for details.

16.5.3 User Channel MUX

Name:	USER
Offset:	0x20 + n*0x01 [n=024]
Reset:	0x00
Property:	-

Each event user can be connected to one channel and several users can be connected to the same channel. The following table lists all Event System users with their corresponding user ID number and name. The user name is given by combining USER with Peripheral and Input from the table below in the following way: USERPERIPHERALINPUT.

USER		Async/Sync	Description	
#	# Name			
	Peripheral	Input		
0		LUT0A	Async	CCL LUT0 event input A
1		LUT0B		CCL LUT0 event input B
2		LUT1A		CCL LUT1 event input A
3	CCI	LUT1B		CCL LUT1 event input B
4	CCL	LUT2A		CCL LUT2 event input A
5		LUT2B		CCL LUT2 event input B
6		LUT3A ⁽¹⁾		CCL LUT3 event input A
7		LUT3B ⁽¹⁾		CCL LUT3 event input B
8	ADC0	START	Async	ADC start on event
9		EVOUTA	-	EVSYS pin output A
10	EVSYS	EVOUTC		EVSYS pin output C
11	EVSIS	EVOUTD		EVSYS pin output D
12		EVOUTF ⁽¹⁾		EVSYS pin output F
13	USART0	IRDA	Sync	USART0 IrDA event input
14		CNTA	Sync	Count on positive event edge
				Count on any event edge
				Count while event signal is high
	TCE0			Event level controls count direction
15	TCLO	CNTB	Sync	Event level controls count direction
				Restart counter on any event edge
				Restart counter on any event edge
				Restart counter while event signal is high
16		CAPT	Sync	Timeout check
				Input capture on event
				Input capture frequency measurement
	TCB0			Input capture pulse-width Measurement
				Input capture frequency and pulse width measurement
			Both	Single shot
17		COUNT	Sync	Count on event

•••••	continued						
USI	USER		Async/Sync	Description			
#	Name						
	Peripheral	Input					
18		CAPT	Sync	Timeout check			
				Input capture on event			
				Input capture frequency measurement			
	TCB1			Input capture pulse-width Measurement			
				Input capture frequency and pulse width measurement			
			Both	Single shot			
19		COUNT	Sync	Count on event			
20	TCF0	COUNT	Async	Event as clock source			
21	ICFU	ACTION	Async	Event action			
22		FAULTA	Async	Fault input A			
23	WEX0	FAULTB	Async	Fault input B			
24		FAULTC	Async	Fault input C			

Note:

1. Not all peripheral instances are available for all pin counts. Refer to the *Peripherals and Architecture* section for details.

Bit	7	6	5	4	3	2	1	0
	USER[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:0 - USER[7:0] User Channel Selection

Configures which Event System channel the user is connected to.

Value	Description
0	OFF, no channel is connected to this Event System user
n	The event user is connected to CHANNEL(n-1)

17. PORTMUX - Port Multiplexer

17.1 Overview

The Port Multiplexer (PORTMUX) can either enable or disable the functionality of the pins or change between default and alternative pin positions. Available options are described in detail in the PORTMUX register map and depend on the actual pin and its properties.

For available pins and functionality, refer to the *I/O Multiplexing and Considerations* section.

17.2 Register Summary

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00	EVSYSROUTEA	7:0			EVOUTF		EVOUTD	EVOUTC		EVOUTA
0x01	CCLROUTEA	7:0						LUT2		LUT0
0x02	USARTROUTEA	7:0							USART0[2:0]	
0x03										
	Reserved									
0x04										
0x05	SPIROUTEA	7:0							SPI0[2:0]	
0x06	TWIROUTEA	7:0							TWIC	[1:0]
0x07	TCEROUTEA	7:0						TCE	0[3:0]	
0x08	TCBROUTEA	7:0							TCB1	TCB0
0x09										
	Reserved									
0x0B										
0x0C	TCFROUTEA	7:0							TCF0	[1:0]

17.3 Register Description

17.3.1 EVSYS Pin Position

Name:	EVSYSROUTEA
Offset:	0x00
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
			EVOUTF		EVOUTD	EVOUTC		EVOUTA
Access			R/W	•	R/W	R/W		R/W
Reset			0		0	0		0

Bit 5 - EVOUTF Event Output F

This bit controls the pin position for event output F.

Value	Name	Description
0	DEFAULT	EVOUT on PF2
1	ALT1	EVOUT on PF7

Bit 3 - EVOUTD Event Output D

This bit controls the pin position for event output D.

Value	Name	Description
0	DEFAULT	EVOUT on PD2
1	ALT1	EVOUT on PD7

Bit 2 - EVOUTC Event Output C

This bit controls the pin position for event output C.

Value	Name	Description
0	DEFAULT	EVOUT on PC2
1	ALT1	EVOUT on PC7

Bit 0 - EVOUTA Event Output A

This bit controls the pin position for event output A.

Value	Name	Description
0	DEFAULT	EVOUT on PA2
1	ALT1	EVOUT on PA7

17.3.2 CCL LUTn Pin Position

Name:	CCLROUTEA				
Offset:	0x01				
Reset:	0x00				
Property:	-				

Bit	7	6	5	4	3	2	1	0
						LUT2		LUT0
Access						R/W		R/W
Reset						0		0

Bit 2 - LUT2 CCL LUT 2 Signals

This bit field controls the pin positions for CCL LUT 2 signals.

Value	Name	Description					
		OUT	INO	IN1	IN2		
0	DEFAULT	PD3	PD0	PD1	PD2		
1	ALT1	PD6	PD0	PD1	PD2		

Bit 0 - LUT0 CCL LUT 0 Signals

This bit field controls the pin positions for CCL LUT 0 signals.

Value	Name	Description					
		OUT	INO	IN1	IN2		
0	DEFAULT	PA3	PA0	PA1	PA2		
1	ALT1	PA6	PA0	PA1	PA2		

17.3.3 USARTn Pin Position

Offset: 0		USARTROUTE 0x02 0x00 -	ĒA					
Bit	7	6	5	4	3	2	1	0
							USART0[2:0]	
Access			•	•	•	R/W	R/W	R/W
Reset						0	0	0

Bits 2:0 – USART0[2:0] USART 0 Signals This bit field controls the pin positions for USART 0 signals.

Value	Name		Description					
		TxD	RxD	ХСК	XDIR			
0x0	DEFAULT	PAO	PA1	PA2	PA3			
0x1	ALT1	PA4	PA5	PA6	PA7			
0x2	ALT2	PA2	PA3	-	-			
0x3	ALT3	PD4	PD5	PD6	PD7			
0x4	ALT4	PC1	PC2	PC3	-			
0x5	-	Reserved						
0x6	ALT6	PF7	PF6	-	-			
0x7	NONE	Not connected to any	Not connected to any pins					

17.3.4 SPIn Pin Position

	Name: Offset: Reset: Property:	SPIROUTEA 0x05 0x00 -						
Bit	7	6	5	4	3	2	1	0
							SPI0[2:0]	
Access		· · ·	•	•	•	R/W	R/W	R/W
Reset						0	0	0

Bits 2:0 – SPI0[2:0] SPI 0 Signals This bit field controls the pin positions for SPI 0 signals.

Value	Name		Description					
		MOSI	MISO	SCK	SS			
0x0	DEFAULT	PA4	PA5	PA6	PA7			
0x1 - 0x2	-	Reserved	Reserved					
0x3	ALT3	PAO	PA1	PC0	PC1			
0x4	ALT4	PD4	PD5	PD6	PD7			
0x5	ALT5	PC0	PC1	PC2	PC3			
0x6	ALT6	PC1	PC2	PC3	PF7			
0x7	NONE	Not connected to any	Not connected to any pins Set to 1					

17.3.5 TWIn Pin Position

	Name: Offset: Reset: Property:	TWIROUTEA 0x06 0x00 -						
Bit	7	6	5	4	3	2	1	0
							TWIC	[1:0]
Access							R/W	R/W
Reset							0	0

Bits 1:0 – TWI0[1:0] TWI 0 Signals This bit field controls the pin positions for TWI 0 signals.

Value	Name	Description				
		Host	′Client	Dual Mode (Client)		
		SDA	SCL	SDA	SCL	
0x0	DEFAULT	PA2	PA3	PC2	PC3	
0x1	-		Rese	erved		
0x2	ALT2	PC2	PC3	-	-	
0x3	ALT3	PA0	PA1	PC2	PC3	

17.3.6 TCE0 Pin Position

	Name: Offset: Reset: Property:	TCEROUTEA 0x07 0x00 -						
Bit	7	6	5	4	3	2	1	0
						TCEC)[3:0]	
Access			•	•	R/W	R/W	R/W	R/W
Reset					0	0	0	0

Bits 3:0 – TCE0[3:0] TCE0 Signals This bit field controls the pin positions for TCE0 signals.

Value	Name		Description						
		WO0	WO1	WO2	WO3	WO4	WO5	WO6	WO7
0x0	PORTA	PA0	PA1	PA2	PA3	PA4	PA5	PA6	PA7
0x1	-		Reserved						
0x2	PORTC	PC0	PC1	PC2	PC3	-	-	-	-
0x3	PORTD	PD0	PD1	PD2	PD3	PD4	PD5	PD6	PD7
0x4	-				Rese	erved			
0x5	PORTF	PF0	PF1	PF2	PF3	PF4	PF5	-	-
0x6 - 0x7	-				Rese	erved			
0x8	PORTC2	PA0	PA1	PC0	PC1	PC2	PC3	-	-
0x9	PORTA2	PA2	PA3	PA4	PA5	PA6	PA7	-	-
Others	-				Rese	erved			

17.3.7 TCBn Pin Position

	Name: Offset: Reset: Property:	TCBROUTEA 0x08 0x00 -						
Bit	7	6	5	4	3	2	1	0
							TCB1	TCB0
Access			•	•	•	•	R/W	R/W
Reset							0	0

Bit 1 - TCB1 TCB1 Output

This bit controls the pin position for TCB1 output.

Value	Name	Description
0	DEFAULT	WO on PA3
1	ALT1	WO on PF5

Bit 0 – TCB0 TCB0 Output This bit controls the pin position for TCB0 output.

Value	Name	Description
0	DEFAULT	WO on PA2
1	ALT1	WO on PF4

17.3.8 TCFn Pin Position

	Name: Offset: Reset: Property:	TCFROUTEA 0x0C 0x00 -						
Bit	7	6	5	4	3	2	1	0
							TCF0	[1:0]
Access				•			R/W	R/W
Reset							0	0

Bits 1:0 – TCF0[1:0] TCF0 Signals This bit field controls the pin positions for TCF0 signals.

Value	Name	Desc	ription		
		WO0	WO1		
0x0	DEFAULT	PAO	PA1		
0x1	ALT1	PA6	PA7		
0x2	ALT2	PF4	PF5		
Other	-	Res	Reserved		

18. PORT - I/O Pin Configuration

18.1 Features

- General Purpose Input and Output Pins with Individual Configuration:
 - Pull-up
 - Inverted I/O
 - Input voltage threshold
- Interrupts and Events:
 - Sense both edges
 - Sense rising edges
 - Sense falling edges
 - Sense low level
- Optional Slew Rate Control per I/O Port
- Asynchronous Pin Change Sensing That Can Wake the Device From All Sleep Modes
- Efficient and Safe Access to Port Pins
 - Hardware Read-Modify-Write (RMW) through dedicated toggle/clear/set registers
 - Mapping of often-used PORT registers into bit-accessible I/O memory space (virtual ports)

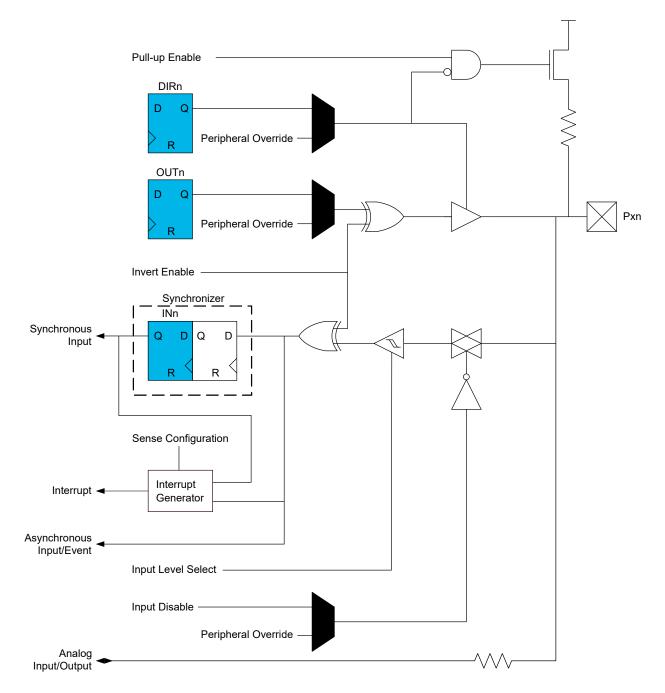
18.2 Overview

The device's I/O pins are controlled by instances of the PORT peripheral registers. Each PORT instance has up to eight I/O pins. The PORTs are named PORTA, PORTB, PORTC, etc. Refer to the *I/O Multiplexing and Considerations* section to see which pins are controlled by what instance of PORT. The base addresses of the PORT instances and the corresponding Virtual PORT instances are listed in the *Peripherals and Architecture* section.

Each PORT pin has a corresponding bit in the Data Direction (PORTx.DIR) and Data Output Value (PORTx.OUT) registers to enable that pin as an output and define the output state. For example, DIR[3] and OUT[3] of the PORTA instance controls pin PA3.

The input value of a PORT pin is synchronized to the Peripheral Clock (CLK_PER) and then made accessible as the data input value (PORTx.IN). The pin value can be read whether the pin is configured as input or output.

The PORT also supports asynchronous input sensing with interrupts and events for selectable pin change conditions. Asynchronous pin change sensing means that a pin change can trigger an interrupt and wake the device from sleep, including sleep modes where CLK_PER is stopped.


All pin functions are individually configurable per pin. The pins have hardware RMW functionality for a safe and correct change of the drive values and/or input and sense configuration.

The PORT pin configuration controls the input and output selection of other device functions.

18.2.1 Block Diagram

Figure 18-1. PORT Block Diagram

18.2.2 Signal Description

Signal	Туре	Description
Pxn	I/O pin	I/O pin n on PORTx

18.3 Functional Description

18.3.1 Initialization

After Reset, all outputs are tri-stated, and digital input buffers enabled even if there is no clock running.

The following steps are all optional when initializing PORT operation:

- Enable or disable the output driver for pin Pxn by respectively writing '1' to bit n in the PORTx.DIRSET or PORTx.DIRCLR register
- Set the output driver for pin Pxn to high or low level respectively by writing '1' to bit n in the PORTx.OUTSET or PORTx.OUTCLR register
- Read the input of pin Pxn by reading bit n in the PORTx.IN register
- Configure the individual pin configurations and interrupt control for pin Pxn in PORTx.PINnCTRL

Important: For the lowest possible power consumption, disable the digital input buffer of unused pins and pins used as analog inputs or outputs. For pins with the digital input buffer enabled it is recommended to transition between the high and low voltage thresholds as quickly as possible.

Specific pins, such as those used to connect a debugger, may be configured differently, as required by their special function.

18.3.2 Operation

18.3.2.1 Basic Functions

Each pin group x has its own set of PORT registers. I/O pin Pxn can be controlled by the registers in PORTx.

To use pin number n as an output, write bit n of the PORTx.DIR register to '1'. This can be done by writing bit n in the PORTx.DIRSET register to '1', which will avoid disturbing the configuration of other pins in that group. The nth bit in the PORTx.OUT register must be written to the desired output value.

Similarly, writing a PORTx.OUTSET bit to '1' will set the corresponding bit in the PORTx.OUT register to '1'. Writing a bit in PORTx.OUTCLR to '1' will clear that bit in PORTx.OUT to '0'. Writing a bit in PORTx.OUTTGL or PORTx.IN to '1' will toggle that bit in PORTx.OUT.

To use pin n as an input, bit n in the PORTx.DIR register must be written to '0' to disable the output driver. This can be done by writing bit n in the PORTx.DIRCLR register to '1', which will avoid disturbing the configuration of other pins in that group. The input value can be read from bit n in the PORTx.IN register as long as the ISC bit is not set to INPUT_DISABLE.

Writing a bit to '1' in PORTx.DIRTGL will toggle that bit in PORTx.DIR and toggle the direction of the corresponding pin.

18.3.2.2 Port Configuration

The Port Control (PORTx.PORTCTRL) register controls the slew rate limitation for all the PORTx pins.

The slew rate limitation is enabled by writing a '1' to the Slew Rate Limit Enable (SLR) bit in PORTx.PORTCTRL. Refer to the *Electrical Characteristics* section for further details.

18.3.2.3 Pin Configuration

The Pin n Control (PORTx.PINnCTRL) register is used to configure inverted I/O, pull-up, and input sensing of a pin. The control register for pin n is at the byte address PORTx + 0x10 + n.

All input and output on the respective pin n can be inverted by writing a '1' to the Inverted I/O Enable (INVEN) bit in PORTx.PINnCTRL. When INVEN is '1', the PORTx.IN/OUT/OUTSET/OUTTGL registers will have inverted operation for this pin.

Toggling the INVEN bit causes an edge on the pin, which can be detected by all peripherals using this pin and is seen by interrupts or events if enabled.

The Input Level Select (INLVL) bit controls the input voltage threshold for pin n in PORTx.PINnCTRL. A selection of Schmitt trigger thresholds derived from the supply voltage or TTL levels is available.

The input threshold is important in determining the value of bit n in the PORTx.IN register and also the level at which an interrupt condition occurs if that feature is enabled.

The input pull-up of pin n is enabled by writing a '1' to the Pull-up Enable (PULLUPEN) bit in PORTx.PINnCTRL. The pull-up is disconnected when the pin is configured as an output, even if PULLUPEN is '1'.

Pin interrupts can be enabled for pin n by writing to the Input/Sense Configuration (ISC) bit field in PORTx.PINnCTRL. Refer to 18.3.3. Interrupts for further details.

The digital input buffer for pin n can be disabled by writing the INPUT_DISABLE setting to ISC. This can reduce power consumption and may reduce noise if the pin is used as analog input. While configured to INPUT_DISABLE, bit n in PORTx.IN will not change since the input synchronizer is disabled.

18.3.2.4 Multi-Pin Configuration

The multi-pin configuration function can configure multiple port pins in one operation. The wanted pin configuration is first written to the PORTX.PINCONFIG register, followed by a register write with the selected pins to modify, allowing changing the configuration (PORTX.PINnCTRL) for up to eight pins in one write.

Tip: The PORTx.PINCONFIG register is mirrored on all ports, allowing the use of a single setting across multiple ports. The PORTx.PINCTRLUPD/SET/CLR registers are not mirrored and configurations must be written for each port.

For the multi-pin configuration, port pins can be configured and modified by writing to the following registers.

Table 18-1. Multi-Pin Configuration Registers

Register	Description
PORTx.PINCONFIG	PINnCTRL (ISC, PULLUPEN, INLVL and INVEN) setting to prepare simultaneous configuration of multiple PINnCTRL registers
PORTx.PINCTRLUPD	Writing a '1' to bit n in the PINCTRLUPD register will copy the PINCONFIG register content to the PINnCTRL register
PORTx.PINCTRLSET ⁽¹⁾	Writing a '1' to bit n in the PINCTRLSET register will set the individual bits in the PINnCTRL register, according to the bits set to '1' in the PINCONFIG register
PORTx.PINCTRLCLR ⁽²⁾	Writing a '1' to bit n in the PINCTRLCLR register will clear the individual bits in the PINnCTRL register, according to the bits set to '1' in the PINCONFIG register

Notes:

- 1. Using PINCTRLSET to configure nonzero ISC bit fields will result in a bitwise OR with the PINCONFIG and PINnCTRL registers and may give an unexpected setting.
- 2. Using PINCTRLCLR to configure nonzero ISC bit fields will result in a bitwise inverse AND with the PINCONFIG and PINnCTRL registers and may give an unexpected setting.

The following code snippet demonstrates how to configure multiple PINnCTRL registers of several ports. Note that, because the PINCONFIG register is mirrored across all the ports, it is enough to only write it once, for PORT A, in this example.

```
PORTA.PINCONFIG = PORT_ISC_INPUT_DISABLE_gc; /* The setting to load to the PINnCTRL registers
*/
PORTA.PINCTRLUPD = 0xff;
PORTB.PINCTRLUPD = 0xff;
PORTC.PINCTRLUPD = 0xff;
PORTE.PINCTRLUPD = 0xff;
```

18.3.2.5 Virtual Ports

The Virtual PORT registers map the most frequently used regular PORT registers into the I/O Register space with single-cycle bit access. Access to the Virtual PORT registers has the same outcome as access to the regular registers allowing for memory-specific instructions, such as bit manipulation instructions, which cannot be used in the extended I/O Register space where the regular PORT registers reside. The following table shows the mapping between the PORT and VPORT registers.

Table 18-2. Virtual Port Mapping

Regular PORT Register	Mapped to Virtual PORT Register
PORTx.DIR	VPORTx.DIR
PORTx.OUT	VPORTx.OUT
PORTx.IN	VPORTx.IN
PORTx.INTFLAGS	VPORTx.INTFLAGS

Note: Avoid accessing the mapped VPORT register using the single-cycle I/O instructions immediately after accessing the regular PORT register. This may cause a memory collision since the single-cycle I/O access to VPORT is faster than the regular PORT register access.

18.3.2.6 Peripheral Override

Peripherals, such as USARTs, ADCs and timers, may be connected to I/O pins. Such peripherals will usually have a primary and, optionally, one or more alternate I/O pin connections, selectable by PORTMUX or a multiplexer inside the peripheral. By configuring and enabling such peripherals, the general purpose I/O pin behavior normally controlled by PORT will be overridden in a peripheral-dependent way. Some peripherals may not override all the PORT registers, leaving the PORT module to control some aspects of the I/O pin operation.

Refer to the description of each peripheral for information on the peripheral override. Any pin in a PORT that is not overridden by a peripheral will continue to operate as a general purpose I/O pin.

18.3.3 Interrupts

Table 18-3. Available Interrupt Vectors and Sources

Name Vector Description	Conditions
PORTx PORT interrupt	INTn in PORTx.INTFLAGS is raised as configured by the Input/Sense Configuration (ISC) bit in PORTx.PINnCTRL

Each PORT pin n can be configured as an interrupt source. Each interrupt can be individually enabled or disabled by writing to ISC in PORTx.PINnCTRL.

When an interrupt condition occurs, the corresponding interrupt flag is set in the Interrupt Flags register of the peripheral (*peripheral*.INTFLAGS).

An interrupt request is generated when the corresponding interrupt source is enabled and the interrupt flag is set. The interrupt request remains active until the interrupt flag is cleared. See the peripheral's INTFLAGS register for details on how to clear interrupt flags.

When setting or changing interrupt settings, consider these points:

- If an Inverted I/O Enable (INVEN) bit is toggled in the same cycle as ISC is changed, the edge caused by the inversion toggling may not cause an interrupt request
- Changing INLVL for a pin must be performed while relevant interrupts and peripheral modules are disabled. Changing the threshold while a module is active may generate a temporary state transition on the input, regardless of the actual voltage level on that pin.
- If disabling an input by writing to ISC while synchronizing an interrupt, that specific interrupt may be requested on re-enabling the input, even if it is re-enabled with a different interrupt setting
- If the interrupt setting is changed by writing to ISC while synchronizing an interrupt, that interrupt may not be requested

18.3.3.1 Asynchronous Sensing Pin Properties

All PORT pins support fully asynchronous input sensing with interrupts for selectable pin change conditions. Fully asynchronous pin change sensing can trigger an interrupt and wake the device from all sleep modes, including modes where the Peripheral Clock (CLK_PER) is stopped. The pulse width needed to trigger an interrupt is less than one CLK_PER cycle.

18.3.4 Events

PORT can generate the following events:

Table 18-4. Event Generators in PORTx

Generator Name		Description		Constating Clask Domain	Longth of Event	
Peripheral	Event	Description	Event Type	Generating Clock Domain	Length of Event	
PORTx	EVGEN0SEL	Pin input level	Level	Asynchronous	Given by pin level	
PORTx	EVGEN1SEL	Pin input level	Level	Asynchronous	Given by pin level	

All PORT pins can be configured as asynchronous Event System generators. Two event generators are available for each port. The output from PORT to the Event System is the value present on the corresponding pin if the digital input buffer is enabled. If a pin input buffer is disabled, the corresponding output to the Event System is zero.

PORT has no event inputs. Refer to the *Event System (EVSYS)* section for more details regarding event types and Event System configuration.

18.3.5 Sleep Mode Operation

Except for interrupts and input synchronization, all pin configurations are independent of sleep modes. All pins can wake the device from sleep. See the *PORT Interrupt* section for further details.

Peripherals connected to the PORTs can be affected by sleep modes, described in the respective peripherals' data sheet section.

Important: The PORTs will always use the Peripheral Clock (CLK_PER). Input synchronization will halt when this clock stops.

18.3.6 Debug Operation

The PORT continues ordinary operation when halting the CPU in Debug mode. If configuring the PORT in a way that requires it to be periodically serviced by the CPU through interrupts or similar, improper operation or data loss may occur during debugging.

18.4 Register Summary - PORTx

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00	DIR	7:0				DIR	[7:0]			
0x01	DIRSET	7:0		DIRSET[7:0]						
0x02	DIRCLR	7:0				DIRCL	_R[7:0]			
0x03	DIRTGL	7:0				DIRTO	GL[7:0]			
0x04	OUT	7:0				OUT	[7:0]			
0x05	OUTSET	7:0				OUTSI	ET[7:0]			
0x06	OUTCLR	7:0				OUTCI	LR[7:0]			
0x07	OUTTGL	7:0				OUTTO	GL[7:0]			
0x08	IN	7:0				IN[7:0]			
0x09	INTFLAGS	7:0				INT	[7:0]			
0x0A	PORTCTRL	7:0								SRL
0x0B	PINCONFIG	7:0	INVEN	INLVL			PULLUPEN		ISC[2:0]	
0x0C	PINCTRLUPD	7:0				PINCTRL	.UPD[7:0]			
0x0D	PINCTRLSET	7:0				PINCTRL	LSET[7:0]			
0x0E	PINCTRLCLR	7:0				PINCTRL	_CLR[7:0]			
0x0F	Reserved									
0x10	PINOCTRL	7:0	INVEN	INLVL			PULLUPEN		ISC[2:0]	
0x11	PIN1CTRL	7:0	INVEN	INLVL			PULLUPEN		ISC[2:0]	
0x12	PIN2CTRL	7:0	INVEN	INLVL			PULLUPEN		ISC[2:0]	
0x13	PIN3CTRL	7:0	INVEN	INLVL			PULLUPEN		ISC[2:0]	
0x14	PIN4CTRL	7:0	INVEN	INLVL			PULLUPEN		ISC[2:0]	
0x15	PIN5CTRL	7:0	INVEN	INLVL			PULLUPEN		ISC[2:0]	
0x16	PIN6CTRL	7:0	INVEN	INLVL			PULLUPEN		ISC[2:0]	
0x17	PIN7CTRL	7:0	INVEN	INLVL			PULLUPEN		ISC[2:0]	
0x18	EVGENCTRLA	7:0			EVGEN1SEL[2:0	0]		E	VGEN0SEL[2:0]

18.5 Register Description - PORTx

18.5.1 Data Direction

O Re	ame: ffset: eset: roperty:	DIR 0x00 0x00 -							
Bit	7	6	5	4	3	2	1	0	
				DIR	[7:0]]
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-
Reset	0	0	0	0	0	0	0	0	

Bits 7:0 - DIR[7:0] Data Direction

This bit field controls the output driver for each PORTx pin.

This bit field does not control the digital input buffer. The digital input buffer for pin n (Pxn) can be configured in the Input/Sense Configuration (ISC) bit field in the Pin n Control (PORTx.PINnCTRL) register.

The table below shows the available configuration for each bit n in this bit field	ł.

Value	Description
0	Pxn is configured as an input-only pin, and the output driver is disabled
1	Pxn is configured as an output pin, and the output driver is enabled

18.5.2 Data Direction Set

	Name: Offset: Reset: Property:	DIRSET 0x01 0x00 -							
Bit	7	6	5	4	3	2	1	0	
	DIRSET[7:0]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-
Reset	0	0	0	0	0	0	0	0	

Bits 7:0 - DIRSET[7:0] Data Direction Set

This bit field controls the output driver for each PORTx pin without using a read-modify-write operation.

Writing a '0' to bit n in this bit field has no effect.

Writing a '1' to bit n in this bit field will set the corresponding bit in PORTx.DIR, which will configure pin n (Pxn) as an output pin and enable the output driver.

Reading this bit field will return the value of PORTx.DIR.

18.5.3 Data Direction Clear

	Name: Offset: Reset: Property:	DIRCLR 0x02 0x00 -							
Bit	7	6	5	4	3	2	1	0	
	DIRCLR[7:0]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 7:0 - DIRCLR[7:0] Data Direction Clear

This bit field controls the output driver for each PORTx pin without using a read-modify-write operation.

Writing a '0' to bit n in this bit field has no effect.

Writing a '1' to bit n in this bit field will clear the corresponding bit in PORTx.DIR, which will configure pin n (Pxn) as an input-only pin and disable the output driver.

Reading this bit field will return the value of PORTx.DIR.

18.5.4 Data Direction Toggle

	Name: Offset: Reset: Property:	DIRTGL 0x03 0x00 -							
Bit	7	6	5	4	3	2	1	0	
				DIRTO	GL[7:0]				7
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	_
Reset	0	0	0	0	0	0	0	0	

Bits 7:0 - DIRTGL[7:0] Data Direction Toggle

This bit field controls the output driver for each PORTx pin without using a read-modify-write operation.

Writing a '0' to bit n in this bit field has no effect.

Writing a '1' to bit n in this bit field will toggle the corresponding bit in PORTx.DIR.

Reading this bit field will return the value of PORTx.DIR.

18.5.5 Output Value

	Name: Offset: Reset: Property:	OUT 0x04 0x00 -						
Bit	7	6	5	4	3	2	1	0
				OUT	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:0 - OUT[7:0] Output Value

This bit field controls the output driver level for each PORTx pin.

This configuration only affects the output when the output driver (PORTx.DIR) is enabled for the corresponding pin.

The table below shows the available configuration for each bit n in this bit field.

Value	Description
0	The pin n (Pxn) output is driven low
1	The Pxn output is driven high

18.5.6 Output Value Set

	Name: Offset: Reset: Property:	OUTSET 0x05 0x00 -							
Bit	7	6	5	4	3	2	1	0	
				OUTSE	T[7:0]				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 7:0 – OUTSET[7:0] Output Value Set

This bit field controls the output driver level for each PORTx pin without using a read-modify-write operation.

Writing a '0' to bit n in this bit field has no effect.

Writing a '1' to bit n in this bit field will set the corresponding bit in PORTx.OUT, which will configure the output for pin n (Pxn) to be driven high.

Reading this bit field will return the value of PORTx.OUT.

18.5.7 Output Value Clear

	Name: Offset: Reset: Property:	OUTCLR 0x06 0x00 -							
Bit	7	6	5	4	3	2	1	0	
				OUTCL	_R[7:0]				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 7:0 - OUTCLR[7:0] Output Value Clear

This bit field controls the output driver level for each PORTx pin without using a read-modify-write operation.

Writing a '0' to bit n in this bit field has no effect.

Writing a '1' to bit n in this bit field will clear the corresponding bit in PORTx.OUT, which will configure the output for pin n (Pxn) to be driven low.

Reading this bit field will return the value of PORTx.OUT.

18.5.8 Output Value Toggle

	Name: Offset: Reset: Property:	OUTTGL 0x07 0x00 -						
Bit	7	6	5	4	3	2	1	0
				OUTTO	GL[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:0 - OUTTGL[7:0] Output Value Toggle

This bit field controls the output driver level for each PORTx pin without using a read-modify-write operation.

Writing a '0' to bit n in this bit field has no effect.

Writing a '1' to bit n in this bit field will toggle the corresponding bit in PORTx.OUT.

Reading this bit field will return the value of PORTx.OUT.

18.5.9 Input Value

C R	lame: Offset: eset: roperty:	IN 0x08 0x00 -						
Bit	7	6	5	4	3	2	1	0
				IN[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:0 - IN[7:0] Input Value

This bit field shows the state of the PORTx pins when the digital input buffer is enabled. Writing a '0' to bit n in this bit field has no effect.

Writing a '1' to bit n in this bit field will toggle the corresponding bit in PORTx.OUT.

If the digital input buffer is disabled, the input is not sampled, and the bit value will not change. The digital input buffer for pin n (Pxn) can be configured in the Input/Sense Configuration (ISC) bit field in the Pin n Control (PORTx.PINnCTRL) register.

The table below shows the available states of each bit n in this bit field.

Value	Description
0	The voltage level on Pxn is low
1	The voltage level on Pxn is high

18.5.10 Interrupt Flags

C R	lame: offset: eset: roperty:	INTFLAGS 0x09 0x00 -						
Bit	7	6	5	4	3	2	1	0
				INT[[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:0 - INT[7:0] Pin Interrupt Flag

Pin Interrupt Flag n is cleared by writing a '1' to it.

Pin Interrupt Flag n is set when the change or state of pin n (Pxn) matches the pin's Input/Sense Configuration (ISC) in PORTx.PINnCTRL.

Writing a '0' to bit n in this bit field has no effect.

Writing a '1' to bit n in this bit field will clear Pin Interrupt Flag n.

18.5.11 Port Control

 Name:
 PORTCTRL

 Offset:
 0x0A

 Reset:
 0x00

 Property:

This register contains the slew rate limit enable bit for this port.

Bit	7	6	5	4	3	2	1	0
								SRL
Access		•		•	•		· · · · ·	R/W
Reset								0

Bit 0 – SRL Slew Rate Limit Enable

This bit controls the slew rate limitation for all pins in PORTx.

Value	Description
0	Slew rate limitation is disabled for all pins in PORTx
1	Slew rate limitation is enabled for all pins in PORTx

18.5.12 Multi-Pin Configuration

Name:	PINCONFIG
Offset:	0x0B
Reset:	0x00
Property:	-

For faster configuration of the port module, the multi-pin configuration write enables the configuration of several port pins in a single cycle. Especially with large pin count devices, this function can significantly speed up PORT pin configuration operations.

Writing to this register may be followed by a write to either of the Multi-Pin Control (PORTx.PINCTRLUPD/SET/CLR) registers to update the Pin n Control (PORTx.PINnCTRL) registers for PORTx.

This register is mirrored across all PORTx modules.

Bit	7	6	5	4	3	2	1	0
	INVEN	INLVL			PULLUPEN		ISC[2:0]	
Access	R/W	R/W			R/W	R/W	R/W	R/W
Reset	0	0			0	0	0	0

Bit 7 – INVEN Inverted I/O Enable

This bit controls whether the input and output for pin n are inverted or not.

Value	Description
0	Input and output values are not inverted
1	Input and output values are inverted

Bit 6 – INLVL Input Level Select

This bit controls the input voltage threshold for pin n, used for port input reads and interrupt conditions.

Value	Name	Description	
0	ST	Schmitt Trigger derived from supply level	
1	TTL	TTL Levels	

Bit 3 – PULLUPEN Pull-Up Enable

This bit controls whether the internal pull-up of pin n is enabled or not when the pin is configured as input-only.

Value	Description
0	Pull-up disabled
1	Pull-up enabled

Bits 2:0 – ISC[2:0] Input/Sense Configuration

This bit field controls the input and sense configuration of pin n. The sense configuration determines the pin conditions that will trigger a port interrupt.

Value	Name	Description
0x0	INTDISABLE	Interrupt disabled but digital input buffer enabled
0x1	BOTHEDGES	Interrupt enabled with sense on both edges
0x2	RISING	Interrupt enabled with sense on rising edge
0x3	FALLING	Interrupt enabled with sense on falling edge
0x4	INPUT_DISABLE	Interrupt and digital input buffer disabled ⁽¹⁾
0x5	LEVEL	Interrupt enabled with sense on low level ⁽²⁾
other	—	Reserved

Notes:

- 1. If the digital input buffer for pin n is disabled, bit n in the Input Value (PORTx.IN) register will not be updated.
- 2. The LEVEL interrupt will keep triggering continuously as long as the pin stays low.

18.5.13 Multi-Pin Control Update Mask

Name:	PINCTRLUPD
Offset:	0x0C
Reset:	0x00
Property:	-

For faster configuration of the port module, the multi-pin configuration write enables the configuration of several port pins in a single cycle. Especially with large pin count devices, this function can significantly speed up PORT pin configuration operations.

Bit	7	6	5	4	3	2	1	0
	PINCTRLUPD[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:0 – PINCTRLUPD[7:0] Multi-Pin Control Update Mask

This bit field controls the copy of the Multi-Pin Configuration (PORTx.PINCONFIG) register content to the individual Pin n Control (PORTx.PINnCTRL) registers without using an individual write operation for each register.

Writing a '0' to bit n in this bit field has no effect.

Writing a '1' to bit n in this bit field will copy the PORTx.PINCONFIG register content to the corresponding PORTx.PINnCTRL register.

Reading this bit field will always return zero.

18.5.14 Multi-Pin Control Set Mask

Name:	PINCTRLSET
Offset:	0x0D
Reset:	0x00
Property:	-

For faster configuration of the port module, the multi-pin configuration write enables the configuration of several port pins in a single cycle. Especially with large pin count devices, this function can significantly speed up PORT pin configuration operations.

Bit	7	6	5	4	3	2	1	0
	PINCTRLSET[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:0 – PINCTRLSET[7:0] Multi-Pin Control Set Mask

This bit field controls the setting of bits in the individual Pin n Control (PORTx.PINnCTRL) registers without using an individual read-modify-write operation for each register. Writing a '0' to bit n in this bit field has no effect.

Writing a '1' to bit n in this bit field will set the individual bits in the PORTx.PINnCTRL register, according to the bits set to '1' in the Multi-Pin Configuration (PORTx.PINCONFIG) register. Reading this bit field will always return zero.

18.5.15 Multi-Pin Control Clear Mask

Name:	PINCTRLCLR
Offset:	0x0E
Reset:	0x00
Property:	-

For faster configuration of the port module, the multi-pin configuration write enables the configuration of several port pins in a single cycle. Especially with large pin count devices, this function can significantly speed up PORT pin configuration operations.

Bit	7	6	5	4	3	2	1	0
	PINCTRLCLR[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:0 – PINCTRLCLR[7:0] Multi-Pin Control Clear Mask

This bit field controls the clearing of bits in the individual Pin n Control (PORTx.PINnCTRL) registers without using an individual read-modify-write operation for each register. Writing a '0' to bit n in this bit field has no effect.

Writing a '1' to bit n in this bit field will clear the individual bits in the PORTx.PINnCTRL register, according to the bits set to '1' in the Multi-Pin Configuration (PORTx.PINCONFIG) register. Reading this bit field will always return zero.

18.5.16 Pin n Control

Name:	PINnCTRL
Offset:	0x10 + n*0x01 [n=07]
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
	INVEN	INLVL			PULLUPEN		ISC[2:0]	
Access	R/W	R/W		•	R/W	R/W	R/W	R/W
Reset	0	0			0	0	0	0

Bit 7 – INVEN Inverted I/O Enable

This bit controls whether the input and output for pin n are inverted or not.

	Value	Description				
0 Input and output values are not inverted						
	1	Input and output values are inverted				

Bit 6 – INLVL Input Level Select

This bit controls the input voltage threshold for pin n, used for port input reads and interrupt conditions.

Value	Name	Description
0	ST	Schmitt Trigger derived from supply level
1	TTL	TTL Levels

Bit 3 – PULLUPEN Pull-Up Enable

This bit controls whether the internal pull-up of pin n is enabled or not when the pin is configured as input-only.

Value	Description
0	Pull-up disabled
1	Pull-up enabled

Bits 2:0 – ISC[2:0] Input/Sense Configuration

This bit field controls the input and sense configuration of pin n. The sense configuration determines the pin conditions that will trigger a port interrupt.

		I
Value	Name	Description
0x0	INTDISABLE	Interrupt disabled but digital input buffer enabled
0x1	BOTHEDGES	Interrupt enabled with sense on both edges
0x2	RISING	Interrupt enabled with sense on rising edge
0x3	FALLING	Interrupt enabled with sense on falling edge
0x4	INPUT_DISABLE	Interrupt and digital input buffer disabled ⁽¹⁾
0x5	LEVEL	Interrupt enabled with sense on low level ⁽²⁾
other	_	Reserved

Notes:

- 1. If the digital input buffer for pin n is disabled, bit n in the Input Value (PORTx.IN) register will not be updated.
- 2. The LEVEL interrupt will keep triggering continuously as long as the pin stays low.

18.5.17 Event Generator Control A

Name:	EVGENCTRLA
Offset:	0x18
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
		EVGEN1SEL[2:0]				E	VGEN0SEL[2:0)]
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		0	0	0		0	0	0

Bits 0:2, 4:6 – EVGENnSEL Event Generator n Select

This bit field controls which pin is connected to Event Generator n.

Value	Name	Description
0x0	PIN0	Pin 0 used as event generator
0x1	PIN1	Pin 1 used as event generator
0x2	PIN2	Pin 2 used as event generator
0x3	PIN3	Pin 3 used as event generator
0x4	PIN4	Pin 4 used as event generator
0x5	PIN5	Pin 5 used as event generator
0x6	PIN6	Pin 6 used as event generator
0x7	PIN7	Pin 7 used as event generator

18.6 Register Summary - VPORTx

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0	
0x00	DIR	7:0		DIR[7:0]							
0x01	OUT	7:0		OUT[7:0]							
0x02	IN	7:0		IN[7:0]							
0x03	INTFLAGS	7:0		INT[7:0]							

18.7 Register Description - VPORTx

18.7.1 Data Direction

Name:	DIR
Offset:	0x00
Reset:	0x00
Property:	-

Access to the Virtual PORT registers has the same outcome as access to the regular registers allowing for memory-specific instructions, such as bit manipulation instructions, which cannot be used in the extended I/O Register space where the regular PORT registers reside.

Bit	7	6	5	4	3	2	1	0	
	DIR[7:0]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 7:0 - DIR[7:0] Data Direction

This bit field controls the output driver for each PORTx pin.

This bit field does not control the digital input buffer. The digital input buffer for pin n (Pxn) can be configured in the Input/Sense Configuration (ISC) bit field in the Pin n Control (PORTx.PINnCTRL) register.

The table below shows the available configuration for each bit n in this bit field.

Value	Description
0	Pxn is configured as an input-only pin, and the output driver is disabled
1	Pxn is configured as an output pin, and the output driver is enabled

18.7.2 Output Value

Name:	OUT
Offset:	0x01
Reset:	0x00
Property:	-

Access to the Virtual PORT registers has the same outcome as access to the regular registers allowing for memory-specific instructions, such as bit manipulation instructions, which cannot be used in the extended I/O Register space where the regular PORT registers reside.

Bit	7	6	5	4	3	2	1	0	
	OUT[7:0]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 7:0 - OUT[7:0] Output Value

This bit field controls the output driver level for each PORTx pin.

This configuration only affects the output when the output driver (PORTx.DIR) is enabled for the corresponding pin.

The table below shows the available configuration for each bit n in this bit field.

Value	Description
0	The pin n (Pxn) output is driven low
1	The Pxn output is driven high

18.7.3 Input Value

Name:	IN
Offset:	0x02
Reset:	0x00
Property:	-

Access to the Virtual PORT registers has the same outcome as access to the regular registers allowing for memory-specific instructions, such as bit manipulation instructions, which cannot be used in the extended I/O Register space where the regular PORT registers reside.

Bit	7	6	5	4	3	2	1	0	
	IN[7:0]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 7:0 - IN[7:0] Input Value

This bit field shows the state of the PORTx pins when the digital input buffer is enabled. Writing a '0' to bit n in this bit field has no effect.

Writing a '1' to bit n in this bit field will toggle the corresponding bit in PORTx.OUT.

If the digital input buffer is disabled, the input is not sampled, and the bit value will not change. The digital input buffer for pin n (Pxn) can be configured in the Input/Sense Configuration (ISC) bit field in the Pin n Control (PORTx.PINnCTRL) register.

The table below shows the available states of each bit n in this bit field.

Value	Description
0	The voltage level on Pxn is low
1	The voltage level on Pxn is high

18.7.4 Interrupt Flags

Name:	INTFLAGS
Offset:	0x03
Reset:	0x00
Property:	-

Access to the Virtual PORT registers has the same outcome as access to the regular registers allowing for memory-specific instructions, such as bit manipulation instructions, which cannot be used in the extended I/O Register space where the regular PORT registers reside.

Bit	7	6	5	4	3	2	1	0
				INT[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:0 - INT[7:0] Pin Interrupt Flag

Pin Interrupt Flag n is cleared by writing a '1' to it.

Pin Interrupt Flag n is set when the change or state of pin n (Pxn) matches the pin's Input/Sense Configuration (ISC) in PORTx.PINnCTRL.

Writing a '0' to bit n in this bit field has no effect.

Writing a '1' to bit n in this bit field will clear Pin Interrupt Flag n.

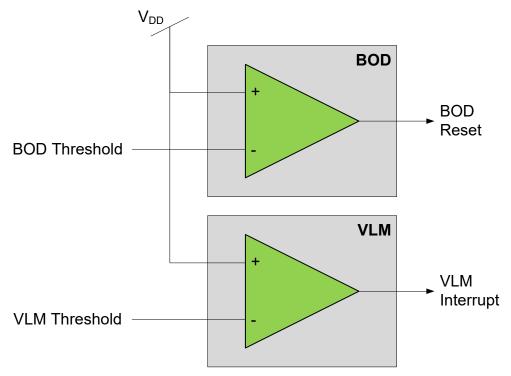
19. BOD - Brown-out Detector

19.1 Features

- Brown-out Detector Monitors the Power Supply to Avoid Operation Below a Programmable Level
- Three Available Modes:
 - Enabled mode (continuously active)
 - Sampled mode
 - Disabled
- Separate Selection of Mode for Active and Sleep Modes
- Voltage Level Monitor (VLM) with Interrupt
- Programmable VLM Level Relative to the BOD Level

19.2 Overview

The Brown-out Detector (BOD) monitors the power supply and compares the supply voltage with the programmable brown-out threshold level. The brown-out threshold level defines when to generate a System Reset. The Voltage Level Monitor (VLM) monitors the power supply and compares it to a threshold higher than the BOD threshold. The VLM can then generate an interrupt as an "early warning" when the supply voltage is approaching the BOD threshold. The VLM threshold level is expressed as a percentage above the BOD threshold level.


The BOD is controlled mainly by fuses and has to be enabled by the user. The mode used in Standby sleep mode and Power-Down sleep mode can be altered in normal program execution. The VLM is controlled by I/O registers as well.

When activated, the BOD can operate in Enabled mode, where the BOD is continuously active, or in Sampled mode, where the BOD is activated briefly at a given period to check the supply voltage level.

19.2.1 Block Diagram

Figure 19-1. BOD Block Diagram

19.3 Functional Description

19.3.1 Initialization

The BOD settings are loaded from fuses during Reset. The BOD level and operating mode in Active mode and Idle sleep mode are set by fuses and cannot be changed by software. The operating mode in Standby and Power-Down sleep mode is loaded from fuses and can be changed by software.

The Voltage Level Monitor function can be enabled by writing a '1' to the VLM Interrupt Enable (VLMIE) bit in the Interrupt Control (BOD.INTCTRL) register. The VLM interrupt is configured by writing the VLM Configuration (VLMCFG) bits in BOD.INTCTRL. An interrupt is requested when the supply voltage crosses the VLM threshold from either above or below.

The VLM functionality will follow the BOD mode. If the BOD is disabled, the VLM will not be enabled, even if the VLMIE is '1'. If the BOD is using the Sampled mode, the VLM will also be sampled. When enabling the VLM interrupt, the interrupt flag will always be set if VLMCFG equals 0x2, and may be set if VLMCFG is configured to 0x0 or 0x1.

The VLM threshold is defined by writing the VLM Level (VLMLVL) bits in the VLM Control (BOD.VLMCTRLA) register.

19.3.2 Interrupts

 Table 19-1.
 Available Interrupt Vectors and Sources

Name	Vector Description	Conditions
VLM	5	Supply voltage crossing the VLM threshold as configured by the VLM Configuration (VLMCFG)
		bit field in the Interrupt Control (BOD.INTCTRL) register

The VLM interrupt will not be executed if the CPU is halted in Debug mode.

When an interrupt condition occurs, the corresponding interrupt flag is set in the peripheral's Interrupt Flags (*peripheral*.INTFLAGS) register.

An interrupt source is enabled or disabled by writing to the corresponding enable bit in the peripheral's Interrupt Control (*peripheral*.INTCTRL) register.

An interrupt request is generated when the corresponding interrupt source is enabled, and the interrupt flag is set. The interrupt request remains active until the interrupt flag is cleared. See the peripheral's INTFLAGS register for details on how to clear interrupt flags.

19.3.3 Sleep Mode Operation

The BOD configuration in the different sleep modes is defined by fuses. The mode used in Active mode and Idle sleep mode is defined by the ACTIVE fuses in FUSE.BODCFG, which is loaded into the ACTIVE bit field in the Control A (BOD.CTRLA) register. The mode used in Standby sleep mode and Power-Down sleep mode is defined by SLEEP in FUSE.BODCFG, which is loaded into the SLEEP bit field in the Control A (BOD.CTRLA) register.

The operating mode in Active mode and Idle sleep mode (i.e., ACTIVE in BOD.CTRLA) cannot be altered by software. The operating mode in Standby sleep mode and Power-Down sleep mode can be altered by writing to the SLEEP bit field in the Control A (BOD.CTRLA) register.

When the device is going into Standby or Power-Down sleep mode, the BOD will change the operation mode as defined by SLEEP in BOD.CTRLA. When the device is waking up from Standby or Power-Down sleep mode, the BOD will operate in the mode defined by the ACTIVE bit field in the Control A (BOD.CTRLA) register.

19.3.4 Configuration Change Protection

This peripheral has registers that are under Configuration Change Protection (CCP). To write to these registers, a given key must first be written to the CPU.CCP register, followed by a write access to the protected bits within four CPU instructions.

Attempting to write to a protected register without following the appropriate CCP unlock sequence leaves it unchanged.

The following registers are under CCP:

Table 19-2. Registers Under Configuration Change Protection

Register	Key
The SLEEP bit is in the BOD.CTRLA register	IOREG

19.4 Register Summary

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00	CTRLA	7:0				SAMPFREQ	ACTIV	'E[1:0]	SLEE	P[1:0]
0x01	CTRLB	7:0							LVL[2:0]	
0x02										
	Reserved									
0x07										
0x08	VLMCTRLA	7:0							VLML	VL[1:0]
0x09	INTCTRL	7:0						VLMC	FG[1:0]	VLMIE
0x0A	INTFLAGS	7:0								VLMIF
0x0B	STATUS	7:0								VLMS

19.5 Register Description

19.5.1 Control A

Name:	CTRLA
Offset:	0x00
Reset:	0x00
Property:	Configuration Change Protection

Bit	7	6	5	4	3	2	1	0
				SAMPFREQ	ACTIV	'E[1:0]	SLEE	P[1:0]
Access		•		R	R	R	R/W	R/W
Reset				0	0	0	0	0

Bit 4 – SAMPFREQ Sample Frequency

This bit controls the BOD sample frequency.

The Reset value is loaded from the SAMPFREQ bit in FUSE.BODCFG.

Value	Description
0x0	The sampling frequency is 128 Hz
0x1	The sampling frequency is 32 Hz

Bits 3:2 - ACTIVE[1:0] Active

These bits select the BOD operation mode when the device is in Active mode or Idle sleep mode. The Reset value is loaded from the ACTIVE bits in FUSE.BODCFG.

Value	Name	Description
0x0	DISABLE	Disabled
0x1	ENABLED	Enabled in Continuous mode
0x2	SAMPLE	Enabled in Sampled mode
0x3	ENABLEWAIT	Enabled in Continuous mode. Execution is halted at wake-up until BOD is running.

Bits 1:0 - SLEEP[1:0] Sleep

These bits select the BOD operation mode when the device is in Standby or Power-Down sleep mode.

The Reset value is loaded from the SLEEP bits in FUSE.BODCFG.

	This bit is under	Configuration	Change	Protection	(CCP).
--	-------------------	---------------	--------	------------	--------

Value	Name	Description
0x0	DISABLE	Disabled
0x1	ENABLED	Enabled in Continuous mode
0x2	SAMPLED	Enabled in Sampled mode
0x3	-	Reserved

19.5.2 Control B

Name: Offset:	CTRLB 0x01
Reset:	Loaded from fuse
Property:	-

Bit	7	6	5	4	3	2	1	0
							LVL[2:0]	
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	х	х	х

Bits 2:0 - LVL[2:0] BOD Level

This bit field controls the BOD threshold level.

The Reset value is loaded from the BOD Level (LVL) bits in the BOD Configuration Fuse (FUSE.BODCFG).

Value	Name	Typical Values
0x0	BODLEVEL0	1.75V
0x1	BODLEVEL1	1.90V
0x2	BODLEVEL2	2.60V
0x3	BODLEVEL3	4.30V
Other	—	Reserved

Notes:

- Refer to the *Reset, WDT, Oscillator, Start-up Timer, Power-up Timer, Brown-out Detector Specifications* section for BOD level characterization
- BODLEVELO will only be enabled during chip erase. In ordinary operation, writing 0×0 to this bit field will be the same as disabling the BOD
- Values in the Description column are typical values. Refer to the *Electrical Characteristics* section for further details

19.5.3 VLM Control

Offset: 0x0		VLMCTRLA 0x08 0x00 -						
Bit	7	6	5	4	3	2	1	0
							VLML	/L[1:0]
Access							R/W	R/W
Reset							0	0

Bits 1:0 - VLMLVL[1:0] VLM Level

These bits select the VLM threshold relative to the BOD threshold (LVL in BOD.CTRLB).

Value	Name	Description
0x00	OFF	VLM disabled
0x01	5ABOVE	VLM threshold 5% above the BOD threshold
0x02	15ABOVE	VLM threshold 15% above the BOD threshold
0x03	25ABOVE	VLM threshold 25% above the BOD threshold

19.5.4 Interrupt Control

Name:	INTCTRL
Offset:	0x09
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
						VLMCF	G[1:0]	VLMIE
Access				•		R/W	R/W	R/W
Reset						0	0	0

Bits 2:1 – VLMCFG[1:0] VLM Configuration

These bits select which incidents will trigger a VLM interrupt.

Value	Name	Description
0x0	FALLING	V _{DD} falls below VLM threshold
0x1	RISING	V _{DD} rises above VLM threshold
0x2	BOTH	V _{DD} crosses VLM threshold
Other	-	Reserved

Bit 0 – VLMIE VLM Interrupt Enable

Writing a '1' to this bit enables the VLM interrupt.

19.5.5 VLM Interrupt Flags

	Name: Offset: Reset: Property:	INTFLAGS 0x0A 0x00 -						
Bit	7	6	5	4	3	2	1	0
								VLMIF
Access		· ·	·		•	•	•	R/W
Reset								0

Bit 0 – VLMIF VLM Interrupt Flag

This flag is set when a trigger from the VLM is given, as configured by the VLMCFG bit in the BOD.INTCTRL register. The flag is only updated when the BOD is enabled.

19.5.6 VLM Status

	Name: Offset: Reset: Property:	STATUS 0x0B 0x00 -						
Bit	7	6	5	4	3	2	1	0
								VLMS
Access				•				R/W
Reset								0
Bit 0 – Vl	LMS VLM S	tatus						

This bit is only valid when the BOD is enabled.

Value	Name	Description
0	ABOVE	The voltage is above the VLM threshold level
1	BELOW	The voltage is below the VLM threshold level

20. VREF - Voltage Reference

20.1 Features

- Programmable Voltage Reference Sources:
 - One reference shared between all Analog Comparators (ACs)
- Each Reference Source Supports the Following Voltages:
 - 1.024V
 - 2.048V
 - 4.096V
 - 2.500V
 - VDD
 - VREFA

20.2 Overview

The Voltage Reference (VREF) peripheral provides control registers for the voltage reference sources used by several peripherals. The user can select the reference voltages for the ACs by writing to the appropriate registers in the VREF peripheral.

A voltage reference source is automatically enabled when requested by a peripheral. The user can enable the reference voltage sources and override the automatic disabling of unused sources by writing to the respective ALWAYSON bit in VREF.ACREF, decreasing the start-up time at the cost of increased power consumption.

20.2.1 Block Diagram

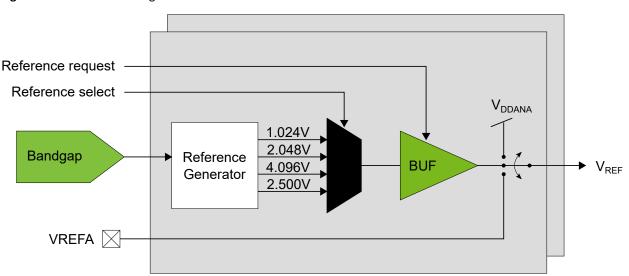


Figure 20-1. VREF Block Diagram

20.3 Functional Description

20.3.1 Initialization

The default configuration will enable the respective source when any ACs request a reference voltage. The default reference voltage is 1.024V but can be configured by writing to the respective Reference Select (REFSEL) bit field in the Analog Comparators (ACREF) registers.

20.4 Register Summary

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00										
	Reserved									
0x03										
0x04	ACREF	7:0	ALWAYSON						REFSEL[2:0]	

20.5 Register Description

20.5.1 Analog Comparator Reference

Name:	ACREF
Offset:	0x04
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
	ALWAYSON						REFSEL[2:0]	
Access	R/W			•		R/W	R/W	R/W
Reset	0					0	0	0

Bit 7 - ALWAYSON Reference Always On

THIS DIL	This bit controls whether the ACS reference is always on.			
Value	Description			
0	The reference is automatically enabled when needed			
1	The reference is always on			

Bits 2:0 - REFSEL[2:0] Reference Select

This bit field controls the reference voltage level for ACs.

Value	Name	Description
0x0	1V024	Internal 1.024V reference ⁽¹⁾
0x1	2V048	Internal 2.048V reference ⁽¹⁾
0x2	4V096	Internal 4.096V reference ⁽¹⁾
0x3	2V500	Internal 2.500V reference ⁽¹⁾
0x4	-	Reserved
0x5	VDD	VDD as reference
0x6	VREFA	External reference from the VREFA pin
0x7	-	Reserved

Note:

1. The values given for internal references are only typical. Refer to the *Electrical Characteristics* section for further details.

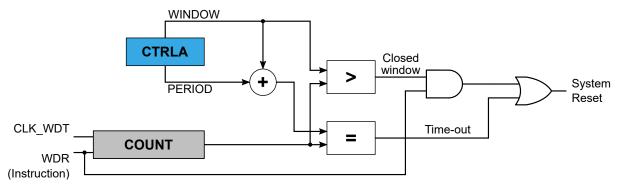
21. WDT - Watchdog Timer

21.1 Features

- Issues a System Reset if the Watchdog Timer Is Not Cleared Before Its Time-Out Period
- Operates Asynchronously from the Peripheral Clock Using an Independent Oscillator
- Uses the 1.024 kHz Output of the 32.768 kHz Ultra-Low Power Oscillator (OSC32K)
- 11 Selectable Time-Out Periods, from 8 ms to 8s
- Two Operation Modes:
 - Normal mode
 - Window mode
- Configuration Lock to Prevent Unwanted Changes

21.2 Overview

The Watchdog Timer (WDT) is a system function for monitoring the correct program operation. When enabled, the WDT is a constantly running timer with a configurable time-out period. If the WDT is not reset within the time-out period, it will issue a system Reset, which allows the system to recover from situations such as runaway or deadlocked code. The WDT is reset by executing the WDR (Watchdog Timer Reset) instruction from software.


In addition to the Normal mode as described above, the WDT has a Window mode. The Window mode defines a time slot or "window" inside the time-out period during which the WDT must be reset. If the WDT is reset outside this window, either too early or too late, a system Reset will be issued. Compared to the Normal mode, the Window mode can catch situations where a code error causes constant WDR execution.

When enabled, the WDT will run in Active mode and all sleep modes. Since it is asynchronous (running from a CPU-independent clock source), it will continue to operate and be able to issue a system Reset, even if the main clock fails.

The WDT has a Configuration Change Protection (CCP) mechanism and a lock functionality, ensuring the WDT settings cannot be changed by accident.

21.2.1 Block Diagram

Figure 21-1. WDT Block Diagram

21.3 Functional Description

21.3.1 Initialization

1. The WDT is enabled when a non-zero value is written to the Period (PERIOD) bit field in the Control A (WDT.CTRLA) register.

2. Optional: Write a non-zero value to the Window (WINDOW) bit field in WDT.CTRLA to enable the Window mode operation.

All bits in the Control A register and the Lock (LOCK) bit in the Status (WDT.STATUS) register are write-protected by the Configuration Change Protection (CCP) mechanism.

A fuse (FUSE.WDTCFG) defines the Reset value of the WDT.CTRLA register. If the value of the PERIOD bit field in the FUSE.WDTCFG fuse is different than zero, the WDT is enabled, and the LOCK bit in the WDT.STATUS register is set at boot time.

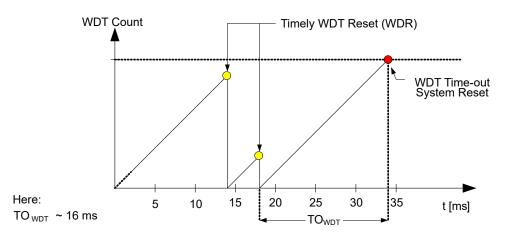
21.3.2 Clocks

A 1.024 kHz clock (CLK_WDT) is sourced from the internal Ultra-Low Power Oscillator, OSC32K. Due to the ultra-low power design, the oscillator is less accurate than other oscillators featured in the device, and hence, the exact time-out period may vary from device to device. This variation must be considered when designing software that uses the WDT to ensure that the time-out periods used are valid for all devices. Refer to the *Electrical Characteristics* section for more specific information.

The WDT clock (CLK_WDT) is asynchronous to the peripheral clock. Due to this asynchronicity, writing to the WDT Control A (WDT.CTRLA) register will require synchronization between the clock domains. Refer to 21.3.6. Synchronization for further details.

21.3.3 Operation

21.3.3.1 Normal Mode


In the Normal mode operation, a single time-out period is set for the WDT. If the WDT is not reset from software using the WDR instruction during the defined time-out period, the WDT will issue a system Reset.

Each time the WDT is reset by software using the WDR instruction, a new WDT time-out period starts.

There are 11 possible WDT time-out periods (TO_{WDT}), selectable from 8 ms to 8s by writing to the Period (PERIOD) bit field in the Control A (WDT.CTRLA) register.

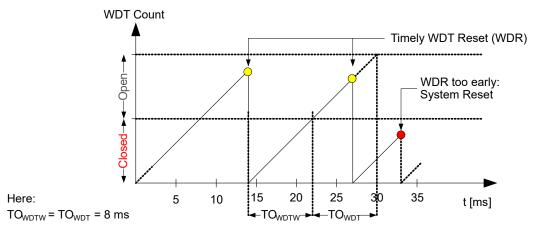
The figure below shows a typical timing scheme for the WDT operating in Normal mode.

Figure 21-2. Normal Mode Operation

The Normal mode is enabled as long as the Window (WINDOW) bit field in the WDT.CTRLA register is ' $0 \times 0'$.

21.3.3.2 Window Mode

In Window mode operation, the WDT uses two different time-out periods: A closed window time-out period (TO_{WDTW}) and an open window time-out period (TO_{WDT}):



- TO_{WDTW} defines a duration from 8 ms to 8s, where the WDT should not be reset. If the WDT is
 reset during this period, the WDT will issue a system Reset.
- TO_{WDT}, which is also 8 ms to 8s, defines the duration of the open period during which the WDT can (and needs to) be reset. The open period will always follow the closed period, so the total duration of the time-out period is the sum of the closed window and the open window time-out periods.

When enabling the Window mode or going out of the Debug mode, the window is activated after the first wDR instruction.

The figure below shows a typical timing scheme for the WDT operating in Window mode.

Figure 21-3. Window Mode Operation

The Window mode is enabled by writing a non-zero value to the WINDOW bit field in the Control A (WDT.CTRLA) register and disabled by writing it to 0×0 .

21.3.3.3 Preventing Unintentional Changes

The WDT provides two security mechanisms to avoid unintentional changes to the WDT settings:

- The CCP mechanism, employing a timed write procedure for changing the WDT control registers. Refer to 21.3.7. Configuration Change Protection for further details.
- Locking the configuration by writing a '1' to the Lock (LOCK) bit in the Status (WDT.STATUS) register. When this bit is '1', the Control A (WDT.CTRLA) register cannot be changed. The LOCK bit can only be written to '1' in software, while the device needs to be in Debug mode to be able to write it to '0'. Consequently, the WDT cannot be disabled from the software.

Note: The WDT configuration is loaded from fuses after Reset. If the PERIOD bit field is set to a non-zero value, the LOCK bit is automatically set in WDT.STATUS.

21.3.4 Sleep Mode Operation

The WDT will continue to operate in any sleep mode where the source clock is active.

21.3.5 Debug Operation

When run-time debugging, this peripheral will continue normal operation. Halting the CPU in Debugging mode will halt the normal operation of the peripheral.

When halting the CPU in Debug mode, the WDT counter is reset.

When starting the CPU and when the WDT is operating in Window mode, the first closed window time-out period will be disabled, and a Normal mode time-out period is executed.

21.3.6 Synchronization

The Control A (WDT.CTRLA) register is synchronized when written, due to the asynchronicity between the WDT clock domain and the peripheral clock domain. The Synchronization Busy (SYNCBUSY) flag in the STATUS (WDT.STATUS) register indicates if there is an ongoing synchronization.

Writing to WDT.CTRLA while SYNCBUSY = 1 is not allowed.

The following bit fields must be synchronized when written:

- The Period (PERIOD) bit field in Control A (WDT.CTRLA) register
- The Window (WINDOW) bit field in Control A (WDT.CTRLA) register

The WDR instruction will need two to three cycles of the WDT clock to be synchronized.

21.3.7 Configuration Change Protection

This peripheral has registers that are under Configuration Change Protection (CCP). To write to these registers, a given key must first be written to the CPU.CCP register, followed by a write access to the protected bits within four CPU instructions.

Attempting to write to a protected register without following the appropriate CCP unlock sequence leaves it unchanged.

The following registers are under CCP:

Table 21-1. WDT - Registers Under Configuration Change Protection

Register	Кеу
WDT.CTRLA	IOREG
LOCK bit in WDT.STATUS	IOREG

21.4 Register Summary

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00	CTRLA	7:0	WINDOW[3:0]				PERIC	D[3:0]		
0x01	STATUS	7:0	LOCK							SYNCBUSY

21.5 Register Description

21.5.1 Control A

Name:	CTRLA
Offset:	0x00
Reset:	From FUSE.WDTCFG
Property:	Configuration Change Protection

Bit	7	6	5	4	3	2	1	0
		WINDO	DW[3:0]			PERIO	D[3:0]	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	х	х	х	х	х	х	х	х

Bits 7:4 - WINDOW[3:0] Window

Writing a non-zero value to these bits enables the Window mode and selects the duration of the closed period accordingly.

The bits are optionally lock-protected:

- If the LOCK bit in WDT.STATUS is '1', all bits are change-protected (Access = R)
- If the LOCK bit in WDT.STATUS is '0', all bits can be changed (Access = R/W)

Value	Name	Description
0x0	OFF	-
0x1	8CLK	7.8125 ms
0x2	16CLK	15.625 ms
0x3	32CLK	31.25 ms
0x4	64CLK	62.5 ms
0x5	128CLK	0.125s
0x6	256CLK	0.250s
0x7	512CLK	0.500s
0x8	1KCLK	1.0s
0x9	2KCLK	2.0s
0xA	4KCLK	4.0s
0xB	8KCLK	8.0s
Other	-	Reserved

Note: Refer to the *Electrical Characteristics* section for specific information regarding the 32.768 kHz Ultra-Low Power Oscillator (OSC32K) accuracy.

Bits 3:0 - PERIOD[3:0] Period

Writing a non-zero value to this bit enables the WDT and selects the time-out period in the Normal mode accordingly. In the Window mode, these bits select the duration of the open window. The bits are optionally lock-protected:

- If the LOCK bit in WDT.STATUS is '1', all bits are change-protected (Access = R)
- If the LOCK bit in WDT.STATUS is '0', all bits can be changed (Access = R/W)

Value	Name	Description
0x0	OFF	-
0x1	8CLK	7.8125 ms
0x2	16CLK	15.625 ms
0x3	32CLK	31.25 ms
0x4	64CLK	62.5 ms
0x5	128CLK	0.125s
0x6	256CLK	0.250s
0x7	512CLK	0.500s
0x8	1KCLK	1.0s

Value	Name	Description
0x9	2KCLK	2.0s
0xA	4KCLK	4.0s
0xB	8KCLK	8.0s
Other	-	Reserved

Note: Refer to the *Electrical Characteristics* section for specific information regarding the 32.768 kHz Ultra-Low Power Oscillator (OSC32K) accuracy.

21.5.2 Status

Name:	STATUS
Offset:	0x01
Reset:	0x00
Property:	Configuration Change Protection

Bit	7	6	5	4	3	2	1	0
	LOCK							SYNCBUSY
Access	R/W	•		•	•		•	R
Reset	0							0

Bit 7 - LOCK Lock

Writing this bit to '1' write-protects the WDT.CTRLA register.

It is only possible to write this bit to '1'. This bit can be cleared in Debug mode only. If the PERIOD value in the WDTCFG fuse is different from zero, the lock will be automatically set. This bit is under CCP.

Bit 0 – SYNCBUSY Synchronization Busy

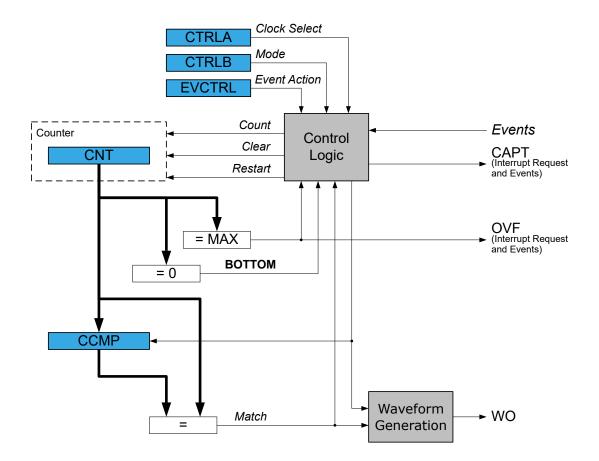
This bit is set after writing to the WDT.CTRLA register, while the data is being synchronized from the peripheral clock domain to the WDT clock domain. This bit is cleared after finishing the synchronization.

This bit is not under CCP.

22. TCB - 16-Bit Timer/Counter Type B

22.1 Features

- 16-bit Counter Operation Modes:
 - Periodic interrupt
 - Time-out check
 - Input capture
 - On event
 - Frequency measurement
 - Pulse-width measurement
 - Frequency and pulse-width measurement
 - 32-bit capture
 - Single-Shot
 - 8-bit Pulse-Width Modulation (PWM)
- Noise Canceler on Event Input
- Synchronize Operation with TCEn


22.2 Overview

The capabilities of the 16-bit Timer/Counter type B (TCB) include frequency and waveform generation and input capture on event with time and frequency measurement of digital signals. The TCB consists of a base counter and control logic that can be set in one of eight different modes, each mode providing unique functionality. The base counter is clocked by the peripheral clock with optional prescaling.

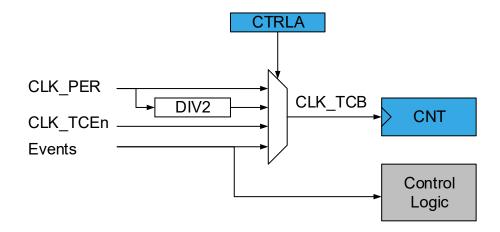

22.2.1 Block Diagram

Figure 22-1. TCB Block Diagram

The timer/counter can be clocked from the Peripheral Clock (CLK_PER), from a 16-bit Timer/Counter type E (CLK_TCEn), or the Event System (EVSYS).

The Clock Select (CLKSEL) bit field in the Control A (TCBn.CTRLA) register selects one of the prescaler outputs directly or an event channel as the clock (CLK_TCB) input.

Setting the timer/counter to use the clock from a TCEn allows the timer/counter to run in sync with that TCEn.

Using the EVSYS, any event source, such as an external clock signal on any I/O pin, may be used as the counter clock input or a control logic input. When using an event action controlled operation, set the clock selection to use an event channel as the counter input.

22.2.2 Signal Description

Signal	Description	Туре
WO	Digital Asynchronous Output	Waveform Output

22.3 Functional Description

22.3.1 Definitions

The following definitions are used throughout the documentation:

Table 22-1.	Timer/Counter Definitions
-------------	---------------------------

Name	Description		
BOTTOM	The counter reaches BOTTOM when it becomes 0x0000		
MAX	The counter reaches the maximum when it becomes 0xFFFF		
ТОР	The counter reaches TOP when it becomes equal to the highest value in the count sequence		
CNT	Count (TCBn.CNT) register value		
CCMP	Capture/Compare (TCBn.CCMP) register value		

Note: In general, the term 'timer' is used when the timer/counter is counting periodic clock ticks. The term 'counter' is used when the input signal has sporadic or irregular ticks.

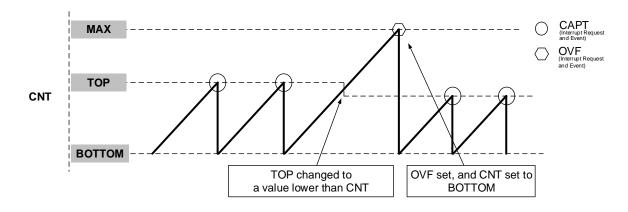
22.3.2 Initialization

By default, the TCB is in Periodic Interrupt mode. Follow these steps to start using it:

1. Write a TOP value to the Compare/Capture (TCBn.CCMP) register.

- 2. Optional: Write the Compare/Capture Output Enable (CCMPEN) bit in the Control B (TCBn.CTRLB) register to '1'. This will make the waveform output available on the corresponding pin, overriding the value in the corresponding PORT output register.
- 3. Enable the counter by writing a '1' to the ENABLE bit in the Control A (TCBn.CTRLA) register. The counter will start counting clock ticks according to the prescaler setting in the Clock Select (CLKSEL) bit field in the Control A (TCBn.CTRLA) register.
- 4. The counter value can be read from the Count (TCBn.CNT) register. The peripheral will generate a CAPT interrupt and event when the CNT value reaches TOP.
 - a. If the Compare/Capture register is modified to a value lower than the current CNT, the peripheral will count to MAX and wrap around.
 - b. At MAX, an OVF interrupt and event will be generated.

22.3.3 Operation


22.3.3.1 Modes

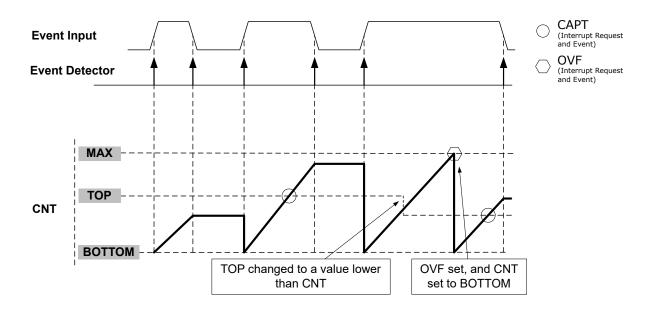
The timer can be configured to run in one of the eight different modes described in the sections below. The event pulse needs to be longer than one system clock cycle to ensure edge detection.

22.3.3.1.1 Periodic Interrupt Mode

In the Periodic Interrupt mode, the counter counts to the capture value and restarts from BOTTOM. A CAPT interrupt and event is generated when the CNT is equal to TOP. If TOP is updated to a value lower than CNT, upon reaching MAX, an OVF interrupt and event is generated, and the counter restarts from BOTTOM.

Figure 22-3. Periodic Interrupt Mode

22.3.3.1.2 Time-Out Check Mode

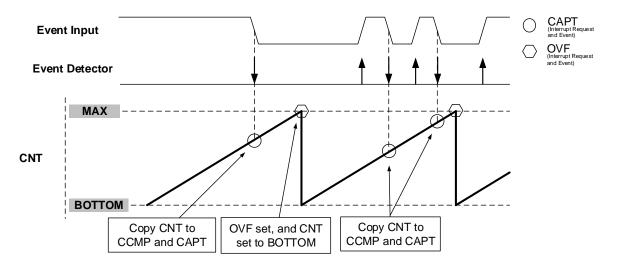

In the Time-Out Check mode, the peripheral starts counting on the first signal edge and stops on the next signal edge detected on the event input channel. CNT remains stationary after the Stop edge (Freeze state). In Freeze state, the counter will restart on a new Start edge.

This mode requires TCB to be configured as an event user and is explained in the Events section.

Start or Stop edge is determined by the Event Edge (EDGE) bit in the Event Control (TCBn.EVCTRL) register. If CNT reaches TOP before the second edge, a CAPT interrupt and event will be generated. If TOP is updated to a value lower than the CNT upon reaching MAX, an OVF interrupt and the simultaneous event is generated, and the counter restarts from BOTTOM. In Freeze state, reading the Count (TCBn.CNT) register or Compare/Capture (TCBn.CCMP) register, or writing the Run (RUN) bit in the Status (TCBn.STATUS) register has no effect.

Figure 22-4. Time-Out Check Mode

22.3.3.1.3 Input Capture on Event Mode


In the Input Capture on Event mode, the counter will count from BOTTOM to MAX. When an event is detected, the Count (TCBn.CNT) register value is transferred to the Compare/Capture (TCBn.CCMP) register, and a CAPT interrupt and event are generated. The Event edge detector can be configured to trigger a capture on either rising or falling edges.

This mode requires TCB to be configured as an event user and is explained in the Events section.

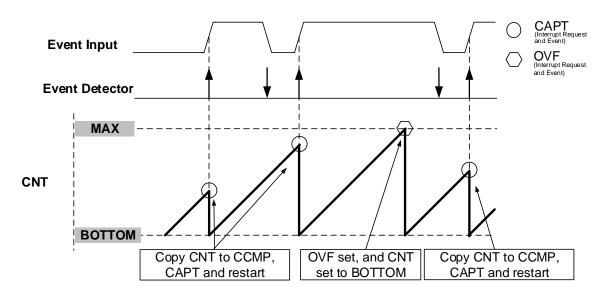
The figure below shows the input capture unit configured to capture the falling edge of the event input signal. The CAPT interrupt flag is cleared automatically after reading the low byte of the Compare/Capture (TCBn.CCMP) register. An OVF interrupt and event are generated when the CNT is MAX.

Figure 22-5. Input Capture on Event

Important: It is recommended to write 0×0000 to the Count (TCBn.CNT) register when entering this mode from any other mode.

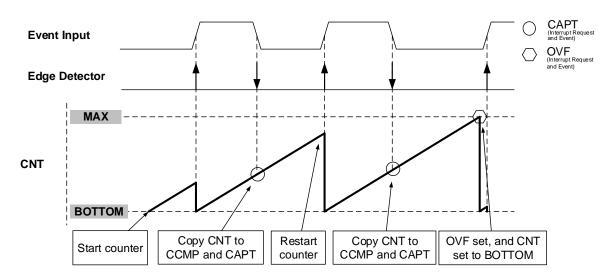
22.3.3.1.4 Input Capture Frequency Measurement Mode

In the Input Capture Frequency Measurement mode, the TCB captures the counter value and restarts on either a positive or negative edge of the event input signal.


The CAPT interrupt flag is cleared automatically after reading the low byte of the Compare/Capture (TCBn.CCMP) register. An OVF interrupt and event is generated when the CNT value is MAX.

This mode requires TCB to be configured as an event user and is explained in the Events section.

The figure below illustrates this mode when configured to act on a rising edge.



22.3.3.1.5 Input Capture Pulse-Width Measurement Mode

In the Input Capture Pulse-Width Measurement mode, the input capture pulse-width measurement will restart the counter on a positive edge and capture the next falling edge before an interrupt request is generated. The CAPT interrupt flag is cleared automatically after reading the low byte of the Compare/Capture (TCBn.CCMP) register. An OVF interrupt and event are generated when the CNT is MAX. The timer will automatically switch between rising and falling edge detection, but a minimum edge separation of two clock cycles is required for correct behavior.

This mode requires TCB to be configured as an event user and is explained in the Events section.

Figure 22-7. Input Capture Pulse-Width Measurement

22.3.3.1.6 Input Capture Frequency and Pulse-Width Measurement Mode

In the Input Capture Frequency and Pulse-Width Measurement mode, the timer will start counting when a positive edge is detected on the event input signal. The count value is captured on the

following falling edge. The counter stops when the second rising edge of the event input signal is detected and will set the CAPT interrupt flag.

This mode requires TCB to be configured as an event user and is explained in the Events section.

The CAPT interrupt flag is cleared automatically after reading the low byte of the Compare/Capture (TCBn.CCMP) register and the timer/counter is ready for a new capture sequence. Therefore, read the Count (TCBn.CNT) register before the Compare/Capture (TCBn.CCMP) register since it is reset to BOTTOM at the next positive edge of the event input signal. An OVF interrupt and event are generated when the CNT value is MAX.

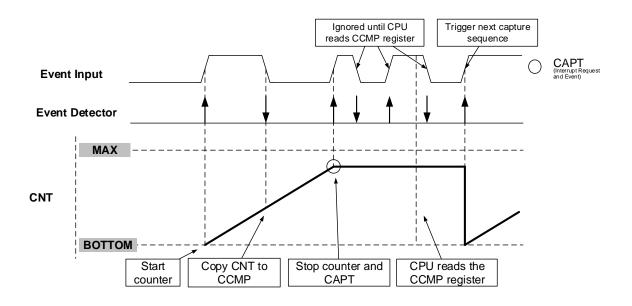
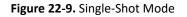


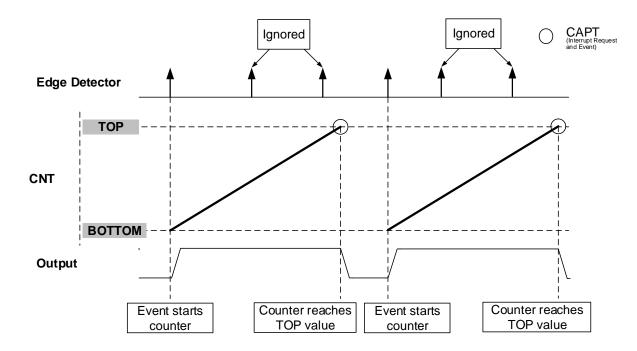
Figure 22-8. Input Capture Frequency and Pulse-Width Measurement

22.3.3.1.7 Single-Shot Mode

Use the Single-Shot mode to generate a pulse with a duration defined by the Compare (TCBn.CCMP) register every time a rising or falling edge is observed on a connected event channel.

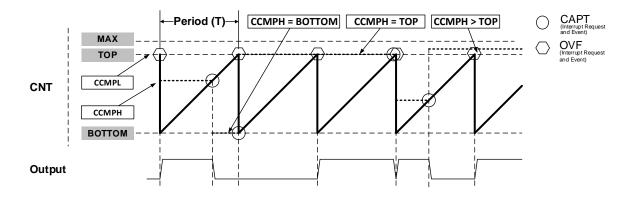
This mode requires TCB to be configured as an event user and is explained in the Events section.


When the counter stops, the output pin is set low. If an event is detected on the connected event channel, the timer will reset and start counting from BOTTOM to TOP while driving its output high. Read the Status (TCBn.STATUS) register RUN bit to see if the counter is counting. Once the value of CNT reaches the CCMP register, the counter will cease counting. Simultaneously, the output pin will transition to a low state for at least one counterclock cycle (TCB_CLK). During this period, any new event that occurs will be disregarded. Following this, there is a two peripheral clock cycles (PER_CLK) delay before the output is set high after receiving a new event. When the EDGE bit of the TCB.EVCTRL register is written to '1', and any edge can trigger the start of the counter. Only positive edges trigger the start if the EDGE bit is '0'.


The counter will start counting as soon as the peripheral is enabled, even without triggering by an event or if the Event Edge (EDGE) bit in the Event Control (TCBn.EVCTRL) register is modified while the peripheral is enabled, which is prevented by writing TOP to the Counter register. A similar behavior is seen if the Event Edge (EDGE) bit in the Event Control (TCBn.EVCTRL) register is '1' while the module is enabled. Writing TOP to the Counter register prevents this as well.

If the Event Asynchronous (ASYNC) bit in the Control B (TCBn.CTRLB) register is written to '1', the timer will react asynchronously to an incoming event. An edge on the event will immediately cause

the output signal to be set. The counter will still start counting two complete clock cycles after receiving the event, resulting in an observed delay of two to three clock cycles.


22.3.3.1.8 8-bit PWM Mode

The TCB can be configured to run in 8-bit PWM mode, where each register pair in the 16bit Compare/Capture (TCBn.CCMPH and TCBn.CCMPL) register are used as individual Compare registers. CCMPL controls the period (T), while CCMPH controls the waveform duty cycle. The counter will continuously count from BOTTOM to CCMPL, and the output will be set at BOTTOM and cleared when the counter reaches CCMPH.

CCMPH is the number of cycles for which the output will be driven high. CCMPL+1 is the output pulse period, the +1 resulting in an observed delay of one clock cycle.

Figure 22-10. 8-bit PWM Mode

22.3.3.2 Output

Timer synchronization and output logic level depend on the selected Timer Mode (CNTMODE) bit field in the Control B (TCBn.CTRLB) register. In Single-Shot mode, the timer/counter can be configured so that the signal generation happens asynchronously to an incoming event (ASYNC = 1 in TCBn.CTRLB). Then, the output signal is set immediately at the incoming event instead of being synchronized to the TCB clock. Due to synchronization delay for the counter, the waveform output will be set high three to four CLK_TCB cycles more than what is defined by the TOP value.

Writing the Compare/Capture Output Enable (CCMPEN) bit in TCBn.CTRLB to '1' enables the waveform output, making the waveform output available on the corresponding pin, overriding the value in the corresponding PORT output register.

The table below lists the different configurations and their impact on the output.

CCMPEN	CNTMODE	ASYNC	Output
	Single-Shot mode	0	The output is high when the counter starts and low when the counter stops
	Single-Shot mode	1	The output is high when the event arrives and low when the counter stops
1	8-bit PWM mode	Not applicable	8-bit PWM mode
	Other modes	Not applicable	The Compare/Capture Pin Initial Value (CCMPINIT) bit in the Control B (TCBn.CTRLB) register selects the initial output level
0	Not applicable	Not applicable	No output

Table 22-2. Output Configuration

Changing modes while the peripheral is enabled is not recommended, as this can produce an unpredictable output. There is a possibility that an interrupt flag is set during the timer configuration. It is recommended to clear the Timer/Counter Interrupt Flags (TCBn.INTFLAGS) register after configuring the peripheral.

22.3.3.3 32-Bit Input Capture

To work as a true 32-bit input capture, the two 16-bit Timer/Counter Type B (TCBn) can be combined.

One TCB is counting the two LSBs. Once this counter reaches MAX, an overflow (OVF) event is generated, and the counter wraps around. The second TCB is configured to count these OVF events and thus provides the two MSBs. The 32-bit counter value is concatenated from the two counter values.

To function as a 32-bit counter, set up the two TCBs and the system as described in the following paragraphs.

System Configuration

- Configure a source (TCE, events, CLK_PER) for the count input for the LSB TCB according to the application requirements
- Configure the Event System to route the OVF events from the LSB TCB (event generator) to the MSB TCB (event user)
- Configure the Event System to route the same capture event (CAPT) generator to both TCBs

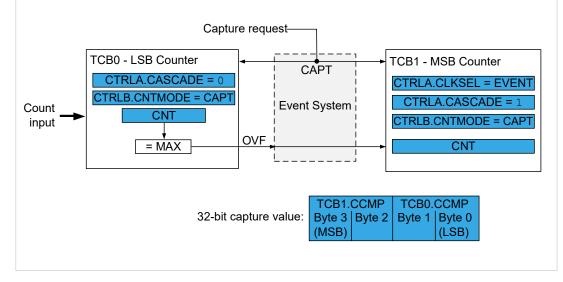
Configuration of the LSB Counter

- Select the configured count input by writing the Clock Select (CLKSEL) bit field in the Control A (CTRLA) register
- Write the Timer Mode (CNTMODE) bit field in the Control B (CTRLB) register to select one of the Input Capture modes
- The Cascade Two Timer/Counters (CASCADE) bit in CTRLA must be '0'

Configuration of the MSB Counter

- Enable the 32-bit mode by writing the Cascade Two Timer/Counters (CASCADE) bit in CTRLA to '1'
- Select events as clock input by writing to the Clock Select (CLKSEL) bit field in the Control A (CTRLA) register
- Write the Timer Mode (CNTMODE) bit field in the Control B (CTRLB) register to select the same Input Capture mode as the LSB TCB

Capturing a 32-Bit Counter Value


To acquire a 32-bit counter value, send a CAPT event to both TCBs. Both TCBs are running in the same Capture mode, so each will capture the current counter value (CNT) in the respective Capture/Compare (CCMP) register. The 32-bit capture value is formed by concatenating the two CCMP registers.

Example 22-1. Using TCBO as LSB Counter and TCB1 as MSB Counter

TCB0 is counting the count input, and TCB1 is counting the OVF signals from TCB0. Both TCBs are in Input Capture on Event mode.

A CAPT event is generated and causes both TCB0 and TCB1 to copy their current CNT values to their respective CCMP registers. The two different CASCADE bit values allow a correct timing of the CAPT event.

The captured 32-bit value is concatenated from TCB1.CCMP (MSB) and TCB0.CCMP (LSB).

22.3.3.4 Noise Canceler

The Noise Canceler improves the noise immunity by using a simple digital filter scheme. When the Noise Filter (FILTER) bit in the Event Control (TCBn.EVCTRL) register is enabled, the peripheral monitors the event channel and keeps a record of the last four observed samples. If four consecutive samples are equal, the input is considered to be stable, and the signal is fed to the edge detector.

When enabled, the Noise Canceler introduces an additional delay of four peripheral clock cycles between a change applied to the input and the update of the Input Compare register.

The Noise Canceler uses the peripheral clock and is, therefore, not affected by the prescaler.

22.3.3.5 Synchronized with Timer/Counter Type E

The TCB can be configured to use the clock (CLK_TCE) of a Timer/Counter type E (TCEn) by writing to the Clock Select (CLKSEL) bit field in the Control A (TCBn.CTRLA) register. In this setting the TCB will count on the same clock source selected in TCEn.

When the Synchronize Update (SYNCUPD) bit in the Control A (TCBn.CTRLA) register is written to '1', the TCB counter will restart when the TCEn counter restarts.

22.3.3.6 Port Override

Writing the Compare/Capture Output Enable (CCMPEN) bit in TCBn.CTRLB to '1' enables the waveform output making the waveform output available on the corresponding pin, overriding the value in the corresponding PORT output register.

22.3.4 Events

The TCB can generate the events described in the following table:

Generator Name		Description	Event Turne	Generating Clock Domain	Longth of Event	
Peripheral	Event	Description	Event Type		Length of Event	
TCBn	CAPT	CAPT flag set	Pulse		One CLK_PER period	
ГСВП	OVF	OVF flag set	Fulse	CLK_PER		

 Table 22-3.
 Event Generators in TCB

The conditions for generating the CAPT and OVF events are identical to those that will raise the corresponding interrupt flags in the Timer/Counter Interrupt Flags (TCBn.INTFLAGS) register. Refer to the *EVSYS - Event System* section for more details regarding event users and Event System configuration.

The TCB can receive the events described in the following table:

Table 22-4. Event Users and Available Event Actions in TCB

User N	ame	Description	Input Detection	Acune/Euroc	
Peripheral	Input	Description	input Detection	ASync/Sync	
		Time-Out Check Count mode			
		Input Capture on Event Count mode			
	CAPT	Input Capture Frequency Measurement Count mode		Sync	
TCBn	CAPT	Input Capture Pulse-Width Measurement Count mode	Edge		
		Input Capture Frequency and Pulse-Width Measurement Count mode			
		Single-Shot Count mode		Both	
	COUNT	Event as clock source in combination with a count mode		Sync	

CAPT and COUNT are TCB event users that detect and act upon input events.

The COUNT event user is enabled on the peripheral by modifying the Clock Select (CLKSEL) bit field in the Control A (TCBn.CTRLA) register to EVENT and setting up the Event System accordingly.

If the Capture Event Input Enable (CAPTEI) bit in the Event Control (TCBn.EVCTRL) register is written to '1', incoming events will result in an event action as defined by the Event Edge (EDGE) bit in Event Control (TCBn.EVCTRL) register, and the Timer Mode (CNTMODE) bit field in Control B (TCBn.CTRLB) register. The event must last for at least one CLK_PER cycle to be recognized.

If the Asynchronous mode is enabled for Single-Shot mode, the event is edge-triggered and will capture changes on the event input shorter than one peripheral clock cycle.

22.3.5 Interrupts

Table 22-5. Available Interrupt Vectors and Sources

Name	Vector Description	Conditions
CAPT	TCB interrupt	Depending on the operating mode. See the description of the CAPT bit in the TCBn.INTFLAG register
OVF		The timer/counter overflows from MAX to BOTTOM

When an interrupt condition occurs, the corresponding interrupt flag is set in the peripheral's Interrupt Flags (*peripheral*.INTFLAGS) register.

An interrupt source is enabled or disabled by writing to the corresponding enable bit in the peripheral's Interrupt Control (*peripheral*.INTCTRL) register.

An interrupt request is generated when the corresponding interrupt source is enabled, and the interrupt flag is set. The interrupt request remains active until the interrupt flag is cleared. See the peripheral's INTFLAGS register for details on how to clear interrupt flags.

22.3.6 Sleep Mode Operation

TCBn is, by default, disabled in Standby sleep mode. It will be halted as soon as the sleep mode is entered.

The module can stay fully operational in the Standby sleep mode if the Run Standby (RUNSTDBY) bit in the TCBn.CTRLA register is written to '1'.

All operations are halted in Power-Down sleep mode.

22.4 Register Summary

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00	CTRLA	7:0		RUNSTDBY	CASCADE	SYNCUPD		CLKSEL[2:0]		ENABLE
0x01	CTRLB	7:0	EVGEN	ASYNC	CCMPINIT	CCMPEN			CNTMODE[2:0]	
0x02	CTRLC	7:0							CNTSIZE[2:0]	
0x03	Reserved									
0x04	EVCTRL	7:0		FILTER		EDGE				CAPTEI
0x05	INTCTRL	7:0							OVF	CAPT
0x06	INTFLAGS	7:0							OVF	CAPT
0x07	STATUS	7:0								RUN
0x08	DBGCTRL	7:0								DBGRUN
0x09	TEMP	7:0		TEMP[7:0]						
0x0A	CNIT	7:0	CNT[7:0]							
UXUA	CNT	15:8	CNT[15:8]							
0x0C	CCMP	7:0	CCMP[7:0]							
UXUC	CCIMIP	15:8				CCMF	P[15:8]			

22.5 Register Description

22.5.1 Control A

Name:	CTRLA
Offset:	0x00
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
		RUNSTDBY	CASCADE	SYNCUPD		CLKSEL[2:0]		ENABLE
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0

Bit 6 – RUNSTDBY Run Standby

Writing a '1' to this bit will enable the peripheral to run in Standby sleep mode.

Bit 5 - CASCADE Cascade Two Timer/Counters

Writing this bit to '1' enables cascading two 16-bit Timer/Counters type B (TCBn) for 32-bit operation using the Event System. This bit must be '1' for the timer/counter used for the two Most Significant Bytes (MSBs). When this bit is '1', the selected event source for capture (CAPT) is delayed by one peripheral clock cycle, compensating for the carry propagation delay when cascading two counters via the Event System.

Bit 4 – SYNCUPD Synchronize Update

When this bit is written to '1', the TCB will restart whenever TCEn is restarted or overflows, which can synchronize the capture with the PWM period. If TCEn is selected as the clock source, the TCB will restart when that TCEn is restarted. For other clock selections, it will restart together with TCE0.

Bits 3:1 – CLKSEL[2:0] Clock Select

Writing these bits selects the clock source for this peripheral.

Value	Name	Description
0x0	DIV1	Peripheral clock
0x1	DIV2	Peripheral clock divided by 2
0x2	TCE0	CLK_TCE from TCE0
0x03-0x06	-	Reserved
0x7	EVENT	Positive edge on event input

Bit 0 – ENABLE Enable

Writing this bit to '1' enables the Timer/Counter type B peripheral.

22.5.2 Control B

Name:	CTRLB
Offset:	0x01
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
Γ	EVGEN	ASYNC	CCMPINIT	CCMPEN			CNTMODE[2:0]
Access	R/W	R/W	R/W	R/W		R/W	R/W	R/W
Reset	0	0	0	0		0	0	0

Bit 7 – EVGEN Event Generation

Writing this bit to '1' will output the waveform output on the event line instead of the compare match. The CCMPEN bit is ignored for the event output.

Value	Name	Description
0	PULSE	An event pulse is generated when there is a compare match or capture
1	WAVEFORM	The event output is equal to the waveform output for modes where there is waveform output

Bit 6 – ASYNC Asynchronous Enable

Writing this bit to '1' will allow asynchronous updates of the TCB output signal in Single-Shot mode.

value	Description
0	The output will go HIGH when the counter starts after synchronization
1	The output will go HIGH when an event arrives

Bit 5 - CCMPINIT Compare/Capture Pin Initial Value

This bit is used to set the initial output value of the pin when a pin output is used. This bit has no effect in 8-bit PWM mode and Single-Shot mode.

Value	Description
0	Initial pin state is LOW
1	Initial pin state is HIGH

Bit 4 – CCMPEN Compare/Capture Output Enable

This bit controls whether the waveform output on the pin corresponding to WO is enabled or not.

Value	Description
0	Waveform output is not enabled on the corresponding pin
1	Waveform output is enabled and will be available on the pin corresponding to WO, which will override the configuration in the <i>I/O Configuration (PORT</i>) peripheral, and automatically set the direction of the corresponding pin to output.

Bits 2:0 - CNTMODE[2:0] Timer Mode

Writing to this bit field selects the Timer mode.

Value	Name	Description
0x0	INT	Periodic Interrupt mode
0x1	TIMEOUT	Time-Out Check mode
0x2	CAPT	Input Capture on Event mode
0x3	FRQ	Input Capture Frequency Measurement mode
0x4	PW	Input Capture Pulse-Width Measurement mode
0x5	FRQPW	Input Capture Frequency and Pulse-Width Measurement mode
0x6	SINGLE	Single-Shot mode
0x7	PWM8	8-bit PWM mode

22.5.3 Control C

	Name: Offset: Reset: Property:	CTRLC 0x02 0x00 -						
Bit	7	6	5	4	3	2	1	0
							CNTSIZE[2:0]	
Access		•	•			R/W	R/W	R/W
Reset						0	0	0

Bits 2:0 - CNTSIZE[2:0] Counter Size

This bit field controls the size of the Timer/Counter. Bits in the Counter (TCBn.CNT) register and in the Capture/Compare (TCBn.CCMP) register exceeding the selected size are treated as if being '0'. Value Name Description 16BITS The Counter and Capture/Compare registers are 16 bits registers, with a maximum value of 0xFFFF 0x0 0x1 15BITS The Counter and Capture/Compare registers are 15 bits registers, with a maximum value of 0x7FFF 0×2 14BITS The Counter and Capture/Compare registers are 14 bits registers, with a maximum value of 0x3FFF 0x3 13BITS The Counter and Capture/Compare registers are 13 bits registers, with a maximum value of 0x1FFF 0x4 12BITS The Counter and Capture/Compare registers are 12 bits registers, with a maximum value of 0x0FFF 0x5 11BITS The Counter and Capture/Compare registers are 11 bits registers, with a maximum value of 0x07FF 0x6 10BITS The Counter and Capture/Compare registers are 10 bits registers, with a maximum value of 0x03FF 0x7 9BITS The Counter and Capture/Compare registers are 9 bits registers, with a maximum value of 0x01FF

22.5.4 Event Control

Name:	EVCTRL
Offset:	0x04
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
		FILTER		EDGE				CAPTEI
Access		R/W		R/W				R/W
Reset		0		0				0

Bit 6 – FILTER Input Capture Noise Cancellation Filter

Writing this bit to '1' enables the Input Capture Noise Cancellation unit.

Bit 4 – EDGE Event Edge

This bit is used to select the event edge. The effect of this bit is dependent on the selected Count Mode (CNTMODE) bit field in TCBn.CTRLB. "—" means that an event or edge has no effect in this mode.

Count Mode	EDGE	Positive Edge	Negative Edge		
Periodic Interrupt mode	0	—	_		
renouic interrupt mode	1	—	—		
Timeout Check mode		Start counter	Stop counter		
Timeout check mode	1	Stop counter	Start counter		
Input Capture on Event mode	0	Input Capture, interrupt	—		
input capture on Event mode	1	—	Input Capture, interrupt		
Input Capture Frequency Measurement	0	Input Capture, clear and restart counter, interrupt	_		
mode	1	-	Input Capture, clear and restart counter, interrupt		
Input Capture Pulse-Width	0	Clear and restart counter	Input Capture, interrupt		
Measurement mode	1	Input Capture, interrupt	Clear and restart counter		
		On the 1 st Positive: Clear and restart counter			
	0	On the following Negative: Input Capture			
Input Capture Frequency and Pulse		• On the 2 nd Positive: Stop counter, interrupt			
Width Measurement mode		On the 1 st Negative: Clear and restart counter			
	1	On the following Positive: Input Ca	apture		
		• On the 2 nd Negative: Stop counter	, interrupt		
Cingle Chat made	0	Start counter			
Single-Shot mode	1	Start counter	Start counter		
8-bit PWM mode	0	_	—		
	1	—	_		

Bit 0 - CAPTEI Capture Event Input Enable

Writing this bit to '1' enables the input capture event.

22.5.5 Interrupt Control

Name:	INTCTRL
Offset:	0x05
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
							OVF	CAPT
Access							R/W	R/W
Reset							0	0

Bit 1 – OVF Overflow Interrupt Enable Writing this bit to '1' enables interrupt on overflow.

Bit 0 – CAPT Capture Interrupt Enable

Writing this bit to '1' enables interrupt on capture.

22.5.6 Interrupt Flags

Name:	INTFLAGS
Offset:	0x06
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
							OVF	CAPT
Access				•			R/W	R/W
Reset							0	0

Bit 1 – OVF Overflow Interrupt Flag

This bit is set when an overflow interrupt occurs. The flag is set whenever the timer/counter wraps from MAX to BOTTOM.

The bit is cleared by writing a '1' to the bit position.

Bit 0 – CAPT Capture Interrupt Flag

This bit is set when a capture interrupt occurs. The interrupt conditions are dependent on the Counter Mode (CNTMODE) bit field in the Control B (TCBn.CTRLB) register. This bit is cleared by writing a '1' to it or when the Capture register is read in Capture mode.

Table 22-6.	Interrupt Source	s Set Conditions b	v Counter Mode
	interrupt Source	5 Set contaitions b	y counter moue

Counter Mode	Interrupt Set Condition	TOP Value	САРТ	
Periodic Interrupt mode	Set when the counter reaches TOP			
Timeout Check mode	Set when the counter reaches TOP	CCMP	CNT == TOP	
Single-Shot mode	Set when the counter reaches TOP			
Input Capture Frequency Measurement mode	Set on edge when the Capture register is loaded and the counter restarts; the flag clears when the capture is read		On Event, copy CNT to CCMP, and restart counting (CNT == BOTTOM)	
Input Capture on Event mode	Set when an event occurs and the Capture register is loaded; the flag clears when the capture is read			
Input Capture Pulse-Width Measurement mode	Capture Pulse-Width Set on edge when the Capture register is loaded;		On Event, copy CNT to CCMI and continue counting	
Input Capture Frequency and Pulse-Width Measurement mode	Set on the second edge (positive or negative) when the counter is stopped; the flag clears when the capture is read			
8-bit PWM mode	Set when the counter reaches CCMH	CCML	CNT == CCMH	

22.5.7 Status

Name:	STATUS
Offset:	0x07
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
								RUN
Access							•	R
Reset								0

Bit 0 - RUN Run

When the counter is running, this bit is set to '1'. When the counter is stopped, this bit is cleared to '0'.

The bit is read-only and cannot be set by UPDI.

22.5.8 Debug Control

(Name: Offset: Reset: Property:	DBGCTRL 0x08 0x00 -						
Bit	7	6	5	4	3	2	1	0
								DBGRUN
Access		•		•		•		R/W
Reset								0

Bit 0 – DBGRUN Debug Run

Value	Description
0	The peripheral is halted in Break Debug mode and ignores events
1	The peripheral will continue to run in Break Debug mode when the CPU is halted

22.5.9 Temporary Value

Name:	TEMP
Offset:	0x09
Reset:	0x00
Property:	-

The Temporary register is used by the CPU for 16-bit single-cycle access to the 16-bit registers of this peripheral. The register is common for all the 16-bit registers of this peripheral and can be read and written by software. For more details on reading and writing 16-bit registers, refer to *Accessing 16-Bit Registers* in the *Memories* section.

Bit	7	6	5	4	3	2	1	0
	TEMP[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:0 - TEMP[7:0] Temporary Value

22.5.10 Count

Name:	CNT
Offset:	0x0A
Reset:	0x00
Property:	-

The TCBn.CNTL and TCBn.CNTH register pair represents the 16-bit value TCBn.CNT. The low byte [7:0] (suffix L) is accessible at the original offset. The high byte [15:8] (suffix H) can be accessed at offset + 0×01 .

CPU and UPDI write access has priority over internal updates of the register.

Bit	15	14	13	12	11	10	9	8
				CNT[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	CNT[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:8 - CNT[15:8] Count Value High

These bits hold the MSB of the 16-bit Counter register.

Bits 7:0 - CNT[7:0] Count Value Low

These bits hold the LSB of the 16-bit Counter register.

22.5.11 Capture/Compare

Name:	CCMP
Offset:	0x0C
Reset:	0x00
Property:	-

The TCBn.CCMPL and TCBn.CCMPH register pair represents the 16-bit value TCBn.CCMP. The low byte [7:0] (suffix L) is accessible at the original offset. The high byte [15:8] (suffix H) can be accessed at offset + 0×01 .

This register has different functions depending on the mode of operation:

- For Capture operation, these registers contain the captured value of the counter at the time the capture occurs
- In Periodic Interrupt, Time-Out Check and Single-Shot mode, this register acts as the TOP value
- In 8-bit PWM mode, TCBn.CCMPL and TCBn.CCMPH act as two independent registers: The period of the waveform is controlled by CCMPL, while CCMPH controls the duty cycle.

Bit	15	14	13	12	11	10	9	8
				CCMP	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	CCMP[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:8 – CCMP[15:8] Capture/Compare Value High Byte

These bits hold the MSB of the 16-bit compare, capture and top value.

Bits 7:0 – CCMP[7:0] Capture/Compare Value Low Byte

These bits hold the LSB of the 16-bit compare, capture and top value.

23. TCE - 16-Bit Timer/Counter Type E

23.1 Features

- 16-Bit Timer/Counter
- Four Compare Channels
- Double-Buffered Timer Period Setting
- Double-Buffered Compare Channels
- Waveform Generation:
 - Frequency generation
 - Single-Slope PWM (Pulse-Width Modulation)
 - Dual-Slope PWM
- Count on Event
- Timer Overflow Interrupts/Events
- One Compare Match per Compare Channel
- Increase Waveform Generator Resolution up to 8x (three bits)

23.2 Overview

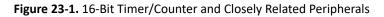
The flexible 16-Bit PWM Timer/Counter type E (TCE) provides accurate program execution timing, frequency and waveform generation, and command execution.

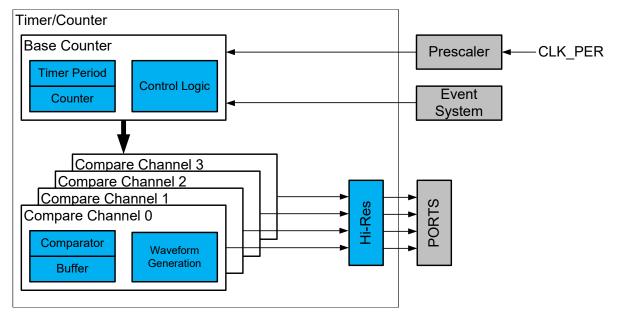
The Timer/Counter consists of a base counter and compare channels. The base counter can be used to count clock cycles or events or let events control how it counts clock cycles. The counting direction and period setting control is used for accurate timing. The compare channels can be used with the base counter for compare match control, frequency generation, and pulse width waveform modulation.

Depending on the mode of operation, the counter is cleared, reloaded, incremented, or decremented at each timer/counter clock or event input.

A timer/counter can be clocked and timed from the peripheral clock, with optional prescaling, or from the Event System. The Event System can also be used for direction control or synchronize operations.

The counter register (TCEn.CNT), period registers with buffer (TCEn.PER and TCEn.PERBUF), and compare registers with buffers (TCEn.CMPn and TCEn.CMPBUFn) are 16-bit registers. All buffer registers have a buffer valid (BV) flag that indicates when the buffer contains a new value.


During normal operation, the counter value is compared continuously to zero and the period (PER) value to determine whether the counter has reached TOP or BOTTOM.


The counter includes a high-resolution option that can increase the duty cycle resolution by up to eight times the input clock.

The counter value is also compared to the TCEn.CMPn registers. These comparisons can be used to generate interrupt requests. The Waveform Generator modes use these comparisons to set the waveform period or pulse width.

To control the counter, use a prescaled peripheral clock and events from the Event System.

23.3 Functional Description

23.3.1 Definitions

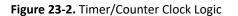
The following definitions are used throughout the documentation:

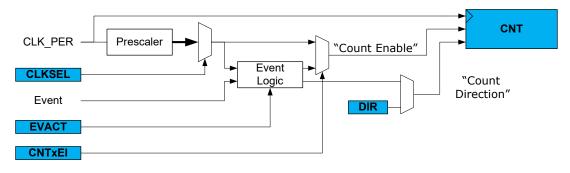
Table 23-1.	Timer/Counter	Definitions
-------------	---------------	-------------

Name	Description
BOTTOM	The counter reaches BOTTOM when it becomes all zeros
MAX	The counter reaches MAXimum when it becomes all ones
TOP	The counter reaches TOP when it becomes equal to the highest value in the count sequence
UPDATE	The update condition is met when the timer/counter reaches BOTTOM or TOP, depending on the Waveform Generator mode. Buffered registers with valid buffer values will be updated unless the Lock Update (LUPD) bit in the Control E (TCEn.CTRLE) register has been set.
CNT	Counter register value
CMP	Compare register value
PER	Period register value

In general, the term timer is used when the timer/counter is counting periodic clock ticks. The term counter is used when the input signal has sporadic or irregular ticks. The latter can be the case when counting events.

23.3.2 Initialization


To start using the timer/counter in a basic mode, follow these steps:


- 1. Write a TOP value to the Period (TCEn.PER) register.
- 2. Enable the peripheral by writing a '1' to the ENABLE bit in the Control A (TCEn.CTRLA) register. The counter will start counting clock ticks according to the prescaler setting in the Clock Select (CLKSEL) bit field in TCEn.CTRLA.
- 3. Optional: By writing a '1' to the Enable Counter Event Input A (CNTAEI) bit in the Event Control (TCEn.EVCTRL) register, events are counted instead of clock ticks.
- 4. The counter value can be read from the Counter (CNT) bit field in the Counter (TCEn.CNT) register.

23.3.3 Clock Generation

CLK_TCE is either a prescaled peripheral clock or an event from the Event System, as shown in the figure below.

23.3.4 Operation

23.3.4.1 Normal Operation

In normal operation the counter counts clock ticks in the direction selected by the Direction (DIR) bit in the Control E (TCEn.CTRLE) register until it reaches TOP or BOTTOM. The clock ticks are given by the peripheral clock (CLK_PER), prescaled according to the Clock Select (CLKSEL) bit field in the Control A (TCEn.CTRLA) register. Alternatively, the Timer/Counter can count on event input.

When reaching TOP while the counter is counting up, the counter will wrap to '0' at the next clock tick. When counting down, the counter is reloaded with the Period (TCEn.PER) register value when the BOTTOM is reached.

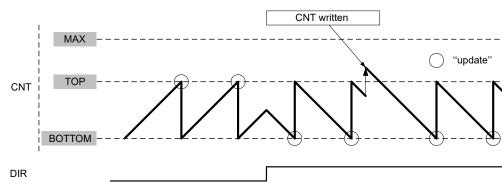
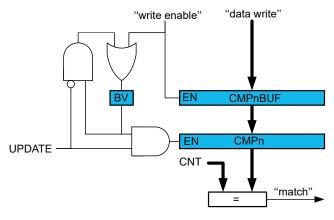


Figure 23-3. Normal Operation

The counter value in the Counter (TCEn.CNT) register can be changed while the counter is running. The write access to the TCEn.CNT register has higher priority than count, clear or reload and will be immediate. The direction of the counter can also be changed during normal operation by writing to the Direction (DIR) bit in the Control E (TCEn.CTRLE) register.

23.3.4.2 Double Buffering

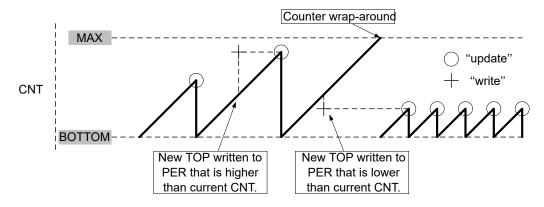

The Period (TCEn.PER) and the Compare n (TCEn.CMPn) registers are all double-buffered (TCEn.PERBUF and TCEn.CMPnBUF).

Each buffer register has a Buffer Valid (BV) flag (PERBV, CMPnBV) in the Control F (TCEn.CTRLF) register, which indicates that the buffer register contains a valid (new) value that can be copied into the corresponding Period or Compare register. When using the TCEn.PER and TCEn.CMPn registers for a compare operation, the BV flag is automatically set when data are written to the buffer register

and cleared on an UPDATE condition. The figure below shows the steps when writing to the Compare (CMPn) register using Double Buffering.

Figure 23-4. Compare Double Buffering

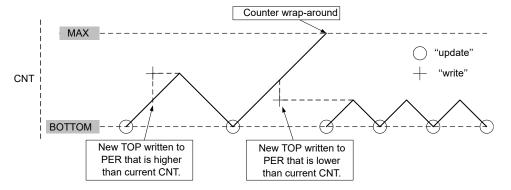
The TCEn.CMPn and TCEn.CMPnBUF registers are available as I/O registers, allowing the initialization and bypassing of the buffer register and the double-buffering function.


23.3.4.3 Changing the Period

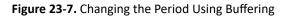
The Counter period is changed by writing a new TOP value to the Period (TCEn.PER) register.

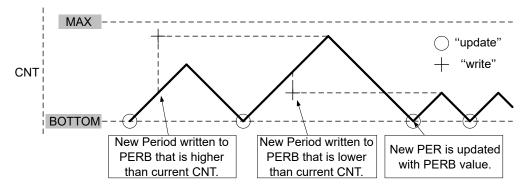
Changing the Period Without Buffering

When not using Double Buffering, any period update is immediate.


Figure 23-5. Changing the Period Without Buffering

A counter wraparound can occur in any mode of operation when up-counting without buffering. This happens because the TCEn.CNT and TCEn.PER registers are continuously compared. If a new TOP value is written to TCEn.PER that is lower than current TCEn.CNT, the counter will wrap first before a compare match happens.




Figure 23-6. Unbuffered Dual-Slope Operation

Changing the Period Using Buffering

When using Double Buffering, the buffer can be written at any time and maintain the correct operation. The TCEn.PER is always updated on the UPDATE condition, as shown for dual-slope operation in the figure below, preventing wrap-around and the generation of odd waveforms.

23.3.4.4 Compare Channel

Each Compare Channel n continuously compares the Counter (TCEn.CNT) register with the Compare n (TCEn.CMPn) register. If TCEn.CNT equals TCEn.CMPn, the Comparator n signals a match. The match will set the Compare Channel's interrupt flag at the next timer clock cycle, generating the optional interrupt.

The Compare n Buffer (TCEn.CMPnBUF) register provides a double-buffer capability equivalent to that for the period buffer. The double-buffering synchronizes the update of the TCEn.CMPn register with the buffer value to either the TOP or BOTTOM of the counting sequence, according to the UPDATE condition. The synchronization prevents the occurrence of odd-length, non-symmetrical pulses for glitch-free output.

The value in CMPnBUF is moved to CMPn at the UPDATE condition and compared to the Counter (TCEn.CNT) register from the next count. If the CMPnBUF contains the same value as TCEn.CNT, a match event will not occur.

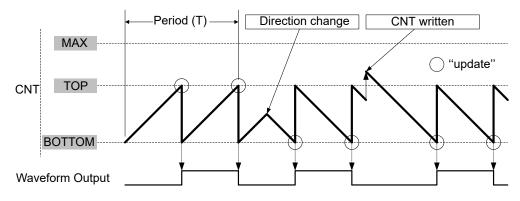
23.3.4.4.1 Waveform Generation

The compare channels can be used for waveform generation on the corresponding port pins. The following requirements are mandatory to make the waveform visible on the connected port pin:

1. Select a Waveform Generation mode by writing the Waveform Generation Mode (WGMODE) bit field in the TCEn.CTRLB register.

- 2. Enable the used compare channels (CMPnEN = '1' in TCEn.CTRLB), thus overriding the output value for the corresponding pin. An alternative pin can be selected by configuring the Port Multiplexer (PORTMUX). Refer to the *PORTMUX Port Multiplexer* section for details.
- 3. Optional: Enable the inverted waveform output for the associated port pin n. Refer to the *PORT I/O Pin Configuration* section for details.

WGMODE[2:0]	Group Configuration	Mode of Operation	Тор	Update	OVF
000	NORMAL	Normal	PER	TOP/BOTTOM ⁽¹⁾	TOP/BOTTOM ⁽¹⁾
001	FRQ	Frequency	CMP0	TOP/BOTTOM ⁽¹⁾	TOP/BOTTOM ⁽¹⁾
010	-	Reserved	-	-	-
011	SINGLESLOPE	Single-Slope PWM	PER	BOTTOM	BOTTOM
100	-	Reserved	-	-	-
101	DSTOP	Dual-Slope PWM	PER	BOTTOM	ТОР
110	DSBOTH	Dual-Slope PWM	PER	BOTTOM	TOP and BOTTOM
111	DSBOTTOM	Dual-Slope PWM	PER	BOTTOM	BOTTOM


Table 23-2. Timer Waveform Generation Mode

Note: TOP for up-count and BOTTOM for down-count.

23.3.4.4.2 Frequency Waveform Generation (FRQ)

In Frequency Generation mode, the TCEn.CMP0 register controls the period time (T), instead of the Period (TCEn.PER) register. The corresponding waveform generator output is toggled on each compare match between the TCEn.CNT and TCEn.CMPn registers.

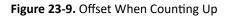
Figure 23-8. Frequency Waveform Generation

The following equation defines the waveform frequency (f_{FRQ}):

$$f_{FRQ} = \frac{f_{CLK_PER}}{2N(CMP0 + 1)}$$

where N represents the prescaler divider used (see the CLKSEL bit field in the TCEn.CTRLA register), and f_{CLK PER} is the peripheral clock frequency.

The maximum frequency of the waveform generated is half of the peripheral clock frequency ($f_{CLK_PER}/2$) when TCEn.CMP0 is written to 0×0000 , and no prescaling is used (N = 1, CLKSEL = 0×0 in TCEn.CTRLA).


Use the TCEn.CMP1 and TCEn.CMP2 registers to get additional waveform outputs WOn. The waveforms WOn can either be identical or offset to WO0. The offset can be influenced by TCEn.CMPn, TCEn.CNT and the count direction. Use the equations shown in the table below to calculate the offset in seconds (T_{offset}). The equations are only valid when CMPn < CMP0.

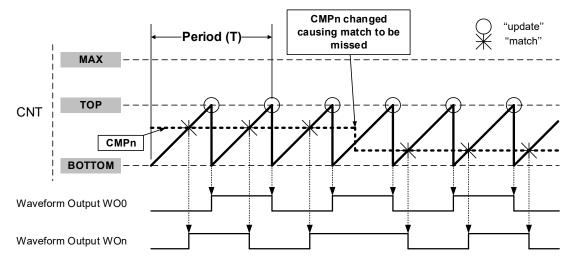
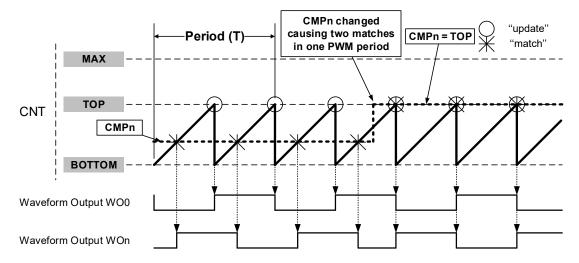


Table 23-3. Offset Equation Overview

Equation	Count Direction	CMPn vs. CNT State	Offset
	UP	CMPn ≥ CNT	WOn leading WO0
$T_{offset} = \left(\frac{CMP0 - CMPn}{CMP0 + 1}\right) \left(\frac{T}{2}\right)$	DOWN	CMP0 ≤ CNT	WOn trailing WO0
· · · · · · · · · · · · · · · · · · ·		CMP0 > CNT and CMPn > CNT	WOn trailing WO0
$T_{offset} = \left(\frac{CMPn+1}{CMP0+1}\right)\left(\frac{T}{2}\right)$	UP	CMPn < CNT	WOn trailing WO0
$T_{offset} = \left(\frac{1}{CMP0 + 1}\right)\left(\frac{1}{2}\right)$	DOWN	CMPn ≤ CNT	WOn leading WO0


The figure below shows the leading and trailing offset for WOn, where both equations can be used. The correct equation is determined by count direction and the state of CMPn vs. CNT when the timer is enabled or the CMPn is changed.

The figure below shows how the waveform can be inverted by changing the CMPn during run-time.

23.3.4.4.3 Single-Slope PWM Generation

For Single-Slope Pulse-Width Modulation (PWM) generation, the period (T) is controlled by the TCEn.PER register, while the values of the TCEn.CMPn registers control the duty cycles of the generated waveforms. The figure below shows how the counter counts from BOTTOM to TOP and

then restarts from BOTTOM. The waveform generator output is set at BOTTOM and cleared on the compare match between the TCEn.CNT and TCEn.CMPn registers.

CMPn = BOTTOM will produce a static low signal on WOn, while CMPn > TOP will generate a static high signal on WOn.

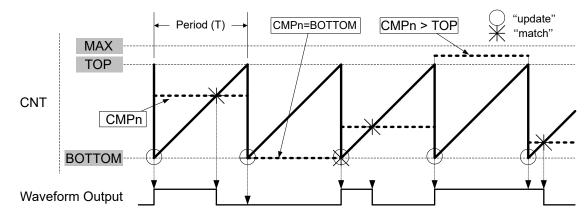


Figure 23-11. Single-Slope Pulse-Width Modulation

The TCEn.PER register defines the PWM resolution. The minimum resolution is two bits (TCEn.PER = 0×0002), and the maximum is 16 bits (TCEn.PER = MAX-1).

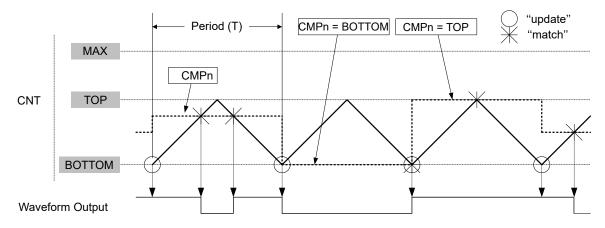
The following equation calculates the exact resolution in bits for Single-Slope PWM (R_{PWM_SS}):

$$R_{PWM_SS} = \frac{\log(PER+1)}{\log(2)}$$

The Single-Slope PWM frequency (f_{PWM_SS}) depends on the period setting (TCEn.PER), the peripheral clock frequency f_{CLK_PER} , and the TCE prescaler (the CLKSEL bit field in the TCEn.CTRLA register). It is calculated by the following equation, where N represents the prescaler divider used:

$$f_{PWM_SS} = \frac{f_{CLK_PER}}{N(PER+1)}$$

23.3.4.4.4 Dual-Slope PWM


For the Dual-Slope PWM generation, the period (T) is controlled by TCEn.PER, while the values of TCEn.CMPn control the duty cycle of the WG output.

The figure below shows how, for Dual-Slope PWM, the counter repeatedly counts from BOTTOM to TOP and then from TOP to BOTTOM. The waveform generator output is set at BOTTOM, cleared on compare match when up-counting, and set on compare match when down-counting.

CMPn = BOTTOM produces a static low signal on WOn, while CMPn = TOP produces a static high signal on WOn.

Figure 23-12. Dual-Slope Pulse-Width Modulation

The Period (TCEn.PER) register defines the PWM resolution. The minimum resolution is two bits (TCEn.PER = 0×0003), and the maximum is 16 bits (TCEn.PER = MAX).

The following equation calculates the exact resolution in bits for Dual-Slope PWM (R_{PWM DS}):

$$R_{PWM_DS} = \frac{\log(PER+1)}{\log(2)}$$

The PWM frequency depends on the period setting in the TCEn.PER register, the peripheral clock frequency ($f_{CLK_{PER}}$), and the prescaler divider selected in the CLKSEL bit field in the TCEn.CTRLA register. It is calculated by the following equation:

$$f_{PWM_DS} = \frac{f_{CLK_PER}}{2N \times PER}$$

N represents the prescaler divider used.

Using Dual-Slope PWM results in approximately half the maximum operation frequency compared to Single-Slope PWM operation due to twice the number of timer increments per period.

23.3.4.4.5 Port Override for Waveform Generation

The TCEn will override the port pin values when the compare channel is enabled (CMPnEN = 1 in the TCEn.CTRLB register) and a Waveform Generation mode is selected.

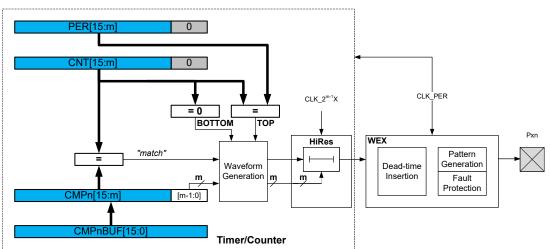
The timer/counter compare channel will override the port pin output value (OUT) on the corresponding port pin. Enabling inverted I/O on the port pin (INVEN = 1 in the PORTx.PINn register) inverts the corresponding WG output.

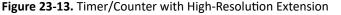
23.3.4.5 Timer/Counter Commands

The software can issue a command set to change the peripheral state immediately. These commands give direct control of the UPDATE, RESTART and RESET signals. A command is issued by writing the respective value to the Command (CMD) bit field in the Control E (TCEn.CTRLESET) register.

An UPDATE command has the same effect as when an UPDATE condition occurs, except that the UPDATE command is not affected by the state of the Lock Update (LUPD) bit in the Control E (TCEn.CTRLE) register.

The software can force a restart of the current waveform period by issuing a RESTART command. In this case, the counter, and all waveform outputs are set to '0' .


A RESET command will set all timer/counter registers to their initial values. A RESET command can be issued only when the timer/counter is not running (ENABLE = 0 in the TCEn.CTRLA register).



23.3.4.6 High Resolution

The high resolution can be used to increase the resolution of the waveform generation output from a timer/counter by four or eight. It can be used for a timer/counter doing frequency, Single-Slope PWM, or Dual-Slope PWM generation. It can also be used with the WEX if used for the same timer/ counter.

The high-resolution extension uses a clock source of 4x: In 4x mode, the rising edges are counted, and to obtain 8x, both edges are counted.

When the high-resolution extension is enabled, the timer/counter must run from a non-prescaled peripheral clock.

For full utilization of high-resolution, a clock running at 4x the desired CPU speed must be available. If the desired system speed is 20 MHz, then Phase Locked Loop (PLL) must be enabled for the system (PLL must be selected in MCLKCTRL.CLKSEL to obtain an 80 MHz source) and enable PRESCB (MCLKCTRL.PBDIV). This results in an 80 MHz source for high-resolution and 20 MHz for the system clock/peripheral clock.

The Timer/Counter will ignore its least significant bits (LSb) in the counter, according to selection in the High Resolution Enable (HREN[1:0]) bit field in the Control D (TCEn.CTRLD) register. Overflow/ underflow and compare match of the most significant bits (MSb) is done in the timer/counter. Count and compare the LSb is handled and compared in the hi-res extension running from the clock operating at 4x or 8x the system clock.

Figure 23-14 shows that only one edge of the PWM is affected when high resolution is enabled, and it is the LSbs of the compare register that define the fraction of CLK_PER:

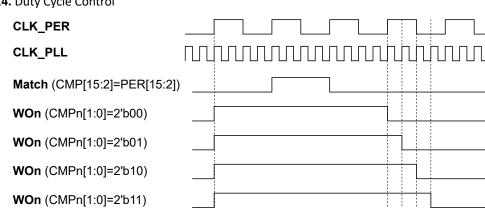


Figure 23-14. Duty Cycle Control

Since the LSbs are unused for the period, the PWM frequency will change when high resolution is enabled. See Table 23-4.

HREN	LSbs used for Hi-Res	Counter inc/dec	f _{FRQ}	f _{ss}	f _{DS}
OFF	0	±1	$\frac{f_{CLK_PER}}{2N(CMP0+1)}$	$\frac{f_{CLK_PER}}{N(PER+1)}$	$\frac{f_{CLK_PER}}{2N(PER)}$
4X	2	±4	$\frac{4f_{CLK_PER}}{2N(CMP0+4)}$	$\frac{4f_{CLK_PER}}{N(PER+4)}$	$\frac{4f_{CLK_PER}}{2N(PER)}$
8X	3	±8	$\frac{8f_{CLK_PER}}{2N(CMP0+8)}$	$\frac{8f_{CLK_PER}}{N(PER+8)}$	$\frac{8f_{CLK_PER}}{2N(PER)}$

The LSbs of the timer/counter period register must be set to zero to ensure correct operation. If the count register is read from the application code, the LSb will always be read as zero since the timer/counter runs from the peripheral clock. The LSbs are also ignored when generating events.

The TCE in High Resolution mode will not output any pulse shorter than one peripheral clock cycle; i.e., a compare value lower than four will have no visible output.

23.3.4.7 Amplitude, Offset and Fractional Compare Value

Instead of writing an absolute value to the compare registers (TCEn.CMPn, TCEn.CMPnBUF and TCEn.AMP), it is possible to write these as a fractional value between 0 and 2. The fractional value is in UQ1.15 format, ranging from 0 to 2 - 2⁻¹⁵. The actual compare value is calculated based on the Period (TCEn.PER), Amplitude (TCEn.AMP), and Offset (TCEn.OFFSET) registers.

The UQ1.15 format will cause up to one-bit loss in precision for high period or amplitude values (> 0×8000) but allows multiplication >1, needed for Single slope where 100% duty cycle is achieved when CMPn > PER.

The Amplitude and Offset registers are used to set the range for the compare registers. The amplitude is calculated automatically from the TCEn.PER register if scaling (SCALE in TCEn.CTRLD) is enabled. The calculation occurs when the AMP register is written.

When the AMP register is written, the value is multiplied by the existing PER value and then stored in the AMP register. The multiplication is triggered when the high byte is written (TCEn.AMPH).

The data read from the AMP register are the value after the multiplication. The offset is automatically calculated based on the selected SCALEMODE for the following clock cycle.

Rewrite the TCEn.AMP register to ensure the identical relationship between the two registers if changing the period.

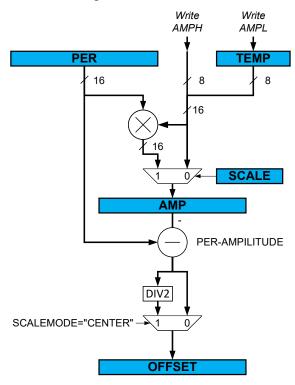
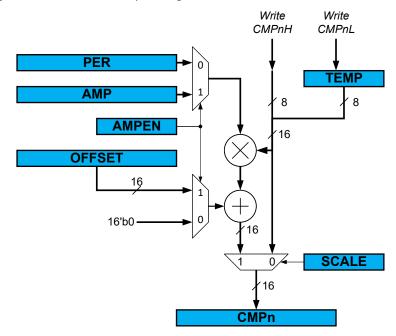


Figure 23-15. Write to Amplitude and Offset Registers

Table 23-5. Effective Amplitude and Offset in Scaled Mode

SCALEMODE	Amplitude ^(1,2)	Offset ⁽³⁾						
CENTER	AMP _{frac} * PER	(PER - AMP)/2						
BOTTOM	AMP _{frac} * PER	0						
TOP	AMP _{frac} * PER	(PER - AMP)						
TOPBOTTOM	AMP _{frac} * PER	(PER - AMP)						
Notes: 1. If multiplication gives result > 0xFFFF, AMP is set to 0xFFFF.								

- 2. AMP_{frac} is the value written to the AMP register when scaling is enabled.
- 3. Offset is never negative, even if AMP > PER.


When writing a fractional value to the TCEn.CMPn or TCEn.CMPnBUF registers, they are multiplied first with the amplitude (TCEn.AMP) register, and then the offset (TCEn.OFFSET) is added. The multiplication is triggered when the high byte is written (TCEn.CMPnH or TCEn.CMPnBUFH) and completes as the data are written. The figure below shows the functionality for the CMPn registers, which works identically for the CMPnBUF registers.

The data read from the compare and compare buffer register are the value after the multiplication.

When changing the Period or Amplitude registers, the TCEn.CMPn or TCEn.CMPnBUF registers must be rewritten to ensure the same relationship to the period and amplitude.

Figure 23-16. Writing Fractional Value to Compare Register

The effective stored CMPn values are shown in the table below.

SCALEMODE	Scaled CMPn Value (AMPEN = 0)	Scaled CMPn Value (AMPEN = 1)					
CENTER	CMP _{frac} * PER	CMP _{frac} * AMP + OFFSET					
BOTTOM	CMP _{frac} * PER	CMP _{frac} * AMP					
TOP	CMP _{frac} * PER	CMP _{frac} * AMP + OFFSET					
TOPBOTTOM	CMP _{frac} * PER	$CMP_{frac} = 0 \times 0000 : BOTTOM$ $CMP_{frac} \ge 0 \times 8000 : PER$ $CMP_{frac} \ge 0 \times 4000 : CMP_{frac} * AMP$ $CMP_{frac} < 0 \times 4000 : CMP_{frac} * AMP + OFFSET$					
Notes:							
1. If multiplication gives result > 0xFFFF, CMPn is set to 0xFFFF.							

Table 23-6. Effective Compare Value in Scaled Mode⁽¹⁾⁽²⁾

2. CMP_{frac} is the value written to the CMPn register when scaling is enabled.

Waveform Range with SCALE Enabled

When the scaled write is enabled, the values written to the TCEn.CMPn and TCEn.CMPnBUF are between 0 and 1, giving a duty cycle range between 0% and 100% of the PWM period. When using amplitude reduction, the compare registers are multiplied with the amplitude (TCEn.AMP) register as the range for the fractional value, and the generated compare values are adjusted with the offset (TCEn.OFFSET) register.

Examples below show the effective compare value in percentage of the period for the different scale modes where the amplitude is set to 90% of the period. The offsets are calculated according to Table 23-6. The black lines show the written compare value, identical for all cases, and the red line shows the effective compare value as a percentage of the period (PER).

TOP/100% TOP/100% 90% 90% 50% 509 10% 10% BOTTOM / 0% TOM / 0% SCALEMODE = CENTER SCALEMODE = BOTTOM TOP/100% TOP/1009 90% 90% 10% BOTTOM / 0% BOTTOM / 0% SCALEMODE = TOP SCALEMODE = TOPBOTTOM

Figure 23-17. Scaled Writes (Amplitude = 90%)

23.3.4.8 Interfacing with Waveform Extension

The TCEn can be interfaced with the Waveform Extension (WEX) peripheral to provide extra functions to the Timer/Counter in Waveform Generation modes.

Note: The TCEn waveform outputs are inputs to the WEX peripheral, and the WOn outputs pins are overridden by the WEX module when WEX functionalities are enabled. For more details, refer to the *WEX - Waveform Extension* section.

23.3.5 Events

The TCE can generate the events described in the table below.

Generat	Generator Name		Description	Event Type	Generating	Length of Event
Peripheral	Event	EVGEN	Description	Evenciype	Clock Domain	Length of Event
	OVF		Overflow	Pulse		One CLK_PER period
	CMP0	PULSE	Compare Channel 0 match	Pulse		
	CIVIPU	WAVEFORM	Waveform Output 0	Level		One CLK_PER period
	CMP1	PULSE	Compare Channel 1 match	Pulse		
TCEn		WAVEFORM	Waveform Output 1	Level	CLK_PER	One CLK_PER period
	CMP2	PULSE	Compare Channel 2 match	Pulse		
		WAVEFORM	Waveform Output 2	Level		One CLK_PER period
	CMD2	PULSE	Compare Channel 3 match	Pulse		
	CMP3	WAVEFORM	Waveform Output 3	Level		One CLK_PER period

Table 23-7. Event Generators in TCE

User Name		Description	Input Detection	Async/Sync		
Peripheral	Input	Description	input Detection	Async/sync		
		Count on a positive event edge	Edge			
		Count on any event edge	Edge			
	CNTA	Count with the CLKSEL setting while the event signal is high	Level			
TCEn		Count with the CLKSEL setting. The event input controls the direction.	Level	Sync		
	CNTB	Count with the CNTA or CLKSEL setting. The event controls the count direction.	Level	-		
		Restart the counter on a positive event edge	Edge			
		Restart the counter on any event edge	Edge			
		Restart the counter while the event signal is high	Level			

Table 23-8. Event User in TCE

23.3.6 Interrupts

Table 23-9. Available Interrupt Vectors and Sources

Name	Vector Description	Conditions
OVF	Overflow or underflow interrupt	The counter has reached the TOP or BOTTOM
CMP0	Compare Channel 0 interrupt	Match between the counter value and the Compare 0 register
CMP1	Compare Channel 1 interrupt	Match between the counter value and the Compare 1 register
CMP2	Compare Channel 2 interrupt	Match between the counter value and the Compare 2 register
CMP3	Compare Channel 3 interrupt	Match between the counter value and the Compare 3 register

When an interrupt condition occurs, the corresponding interrupt flag is set in the peripheral's Interrupt Flags (*peripheral*.INTFLAGS) register.

An interrupt source is enabled or disabled by writing to the corresponding enable bit in the peripheral's InterruptControl (*peripheral*.INTCTRL) register.

23.3.7 Sleep Mode Operation

The TCE is, by default, disabled in Standby sleep mode and will halt when entering the sleep mode.

The module can stay fully operational in Standby sleep mode if the Run Standby (RUNSTDBY) bit in the TCEn.CTRLA register is written to '1'.

All operations are halted in Power-Down sleep mode.

23.4 Register Summary

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0	
0x00	CTRLA	7:0	RUNSTDBY					CLKSEL[2:0]		ENABLE	
0x01	CTRLB	7:0	CMP3EN	CMP2EN	CMP1EN	CMP0EN	ALUPD		WGMODE[2:0]		
0x02	CTRLC	7:0	CMP3POL	CMP2POL	CMP1POL	CMP0POL	CMP3OV	CMP2OV	CMP10V	CMP00V	
0x03	CTRLD	7:0	HREN	N[1:0]	SCALEM	ODE[1:0]	AMPEN	SCALE	-		
0x04	CTRLECLR	7:0					CM	D[1:0]	LUPD	DIR	
0x05	CTRLESET	7:0					CM	D[1:0]	LUPD	DIR	
0x06	CTRLFCLR	7:0				CMP3BV	CMP2BV	CMP1BV	CMP0BV	PERBV	
0x07	CTRLFSET	7:0				CMP3BV	CMP2BV	CMP1BV	CMP0BV	PERBV	
0x08	EVGENCTRL	7:0	CMP3EV	CMP2EV	CMP1EV	CMP0EV					
0x09	EVCTRL	7:0		EVACTB[2:0]		CNTBEI		EVACTA[2:0]		CNTAEI	
0x0A	INTCTRL	7:0	CMP3	CMP2	CMP1	CMP0				OVF	
0x0B	INTFLAGS	7:0	CMP3	CMP2	CMP1	CMP0				OVF	
0x0C											
 0x0D	Reserved										
0x0E	DBGCTRL	7:0								DBGRUN	
0x0E 0x0F	TEMP	7:0				TEM	P[7·0]			DEGRON	
0x10	1 Elvii	7.0					[7:0]				
0x16	Reserved										
0,20	CNT	7:0				CNT	[7:0]				
0x20	CNT	15:8	CNT[15:8]								
0,422		7:0				AMP	P[7:0]				
0x22	AMP	15:8				AMP	[15:8]				
0x24	OFFSET	7:0	OFFSET[7:0]								
0XZ4	OFFSET	15:8		OFFSET[15:8]							
0x26	PER	7:0				PER	[7:0]				
0X26	PER	15:8				PER[15:8]				
0x28	CMP0	7:0	CMP[7:0]								
0820	CIVIPU	15:8				CMP	[15:8]				
0x2A	CMP1	7:0				CMP	?[7:0]				
UXZA	CIVIPI	15:8	CMP[15:8]								
0x2C	CMP2	7:0				CMP	?[7:0]				
UXZC	CIVIF 2	15:8				CMP	[15:8]				
0x2E	CMP3	7:0				CMP	?[7:0]				
UXZL	CIVIES	15:8				CMP	[15:8]				
0x30 0x35	Reserved										
0,26	DEDDUE	7:0				PERBL	JF[7:0]				
0x36	PERBUF	15:8				PERBU	F[15:8]				
0,20	CMDODUIS	7:0				CMPBL	JFL[7:0]				
0x38	CMP0BUF	15:8				CMPBU	FH[15:8]				
0x3A	CMP1BUF	7:0				CMPBL	JFL[7:0]				
UX3A	CIVIPIBUE	15:8				CMPBU	FH[15:8]				
0x3C	CMD2DUE	7:0				CMPBL	JFL[7:0]				
UX3C	CMP2BUF	15:8					FH[15:8]				
0x3E	CMP3BUF	7:0				CMPBL	JFL[7:0]				
UXSE	CIVIFSDUF	15:8				CMPBU	FH[15:8]				

23.5 Register Description

23.5.1 Control A

Name:	CTRLA
Offset:	0x00
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
	RUNSTDBY					CLKSEL[2:0]		ENABLE
Access	R/W				R/W	R/W	R/W	R/W
Reset	0				0	0	0	0

Bit 7 – RUNSTDBY Run Standby

Writing a '1' to this bit will enable the peripheral to run in Standby sleep mode.

Bits 3:1 - CLKSEL[2:0] Clock Select

These bits select the clock frequency for the timer/counter.

Value	Name	Description
0x0	DIV1	f _{TCE} = f _{CLK_PER} (no prescaling)
0x1	DIV2	$f_{TCE} = f_{CLK_PER}/2$
0x2	DIV4	$f_{TCE} = f_{CLK_PER}/4$
0x3	DIV8	$f_{TCE} = f_{CLK_PER}/8$
0x4	DIV16	$f_{TCE} = f_{CLK_PER}/16$
0x5	DIV64	$f_{TCE} = f_{CLK_PER}/64$
0x6	DIV256	$f_{TCE} = f_{CLK_PER}/256$
0x7	DIV1024	$f_{TCE} = f_{CLK_PER}/1024$

Bit 0 - ENABLE Enable

Value	Name	Description
0	DISABLED	Peripheral disabled
1	ENABLED	Peripheral enabled

23.5.2 Control B

Name:	CTRLB
Offset:	0x01
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
Γ	CMP3EN	CMP2EN	CMP1EN	CMP0EN	ALUPD		WGMODE[2:0]]
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 4, 5, 6, 7 – CMPnEN Compare n Enable

In the FRQ and PWM Waveform Generation modes, the Compare n Enable (CMPnEN) bits will make the TCEn waveform output available on the pin corresponding to WOn, overriding the value in the corresponding PORT output register.

Note: If Waveform Extension (WEX) is enabled, the WEX outputs override the TCEn waveform outputs.

Value	Description
0	Waveform output WOn will not be available on the corresponding pin
1	Waveform output WOn will override the output value of the corresponding pin in FRQ and PWM Waveform Generation mode

Bit 3 – ALUPD Auto-Lock Update

The Auto-Lock Update bit controls the Lock Update (LUPD) bit in the TCEn.CTRLE register. When writing ALUPD to '1', the LUPD bit will be set to '1' until the Buffer Valid (CMPnBV) bits of all enabled compare channels are '1'. This condition will clear the LUPD bit.

It will remain clear until the following UPDATE condition, where the CMPnBUF registers will be transferred to the CMPn registers, and the LUPD bit will be set to '1' again, making sure that the CMPnBUF register values are not transferred to the CMPn registers until all enabled compare buffers are written.

Value	Description
0	LUPD bit in the TCEn.CTRLE register is not altered by the system
1	LUPD bit in the TCEn.CTRLE register is set and cleared automatically

Bits 2:0 - WGMODE[2:0] Waveform Generation Mode

This bit field selects the Waveform Generation mode and controls the counting sequence of the counter, TOP value, UPDATE condition, interrupt condition, and the type of waveform generated. No waveform generation is performed in the Normal mode of operation. For all other modes, the waveform generator output will only be directed to the port pins if the corresponding CMPnEN bit has been set. The port pin direction must be set as output.

Value	Name	Description
0x0	NORMAL	Normal operation mode
0x1	FRQ	Frequency mode
0x2	-	Reserved
0x3	SINGLESLOPE	Single-Slope PWM mode
0x4	-	Reserved
0x5	DSTOP	Dual-Slope PWM mode with overflow on TOP
0x6	DSBOTH	Dual-Slope PWM mode with overflow on TOP and BOTTOM
0x7	DSBOTTOM	Dual-Slope PWM mode with overflow on BOTTOM

23.5.3 Control C

Name:	CTRLC
Offset:	0x02
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
	CMP3POL	CMP2POL	CMP1POL	CMP0POL	CMP3OV	CMP2OV	CMP10V	CMP00V
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 4, 5, 6, 7 – CMPnPOL Compare n Polarity

Setting these bits inverts the polarity of the waveform output.

Bits 0, 1, 2, 3 - CMPnOV Compare n Output Value

The CMPnOV bits allow direct access to the waveform generator's output value when the timer/ counter is not enabled, which is used to set or clear the Waveform Generator output value when the timer/counter is not running.

23.5.4 Control D

Name:	CTRLD
Offset:	0x03
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
Γ	HRE	N[1:0]	SCALEM	ODE[1:0]	AMPEN	SCALE		
Access	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0		

Bits 7:6 – HREN[1:0] High Resolution Enable

This bit field enables high resolution. High resolution increased the duty cycle resolution.

Value	Name	Description
0x0	OFF	High Resolution disabled
0x1	4X	Resolution increased by four (two bits)
0x2	8X	Resolution increased by eight (three bits)
0x3	-	Reserved

Bits 5:4 - SCALEMODE[1:0] Scale mode

This bit field defines how OFFSET is generated and used when writing to compare registers when scaling is enabled.

Value	Name	Description
0x0	CENTER	Offset generated so written compare values are scaled from center, 50% duty cycle
0x1	BOTTOM	Offset generated so written compare values are scaled from BOTTOM, 0% duty cycle
0x2	TOP	Offset generated so written compare values are scaled from TOP, 100% duty cycle
0x3	TOPBOTTOM	Written compare values < 50% are scaled from TOP, and written compare values > 50% are scaled from BOTTOM. 0% values give compare value 0, and 100% values give compare value equal to TOP.

Bit 3 - AMPEN Amplitude Control Enable

Setting this bit to '1' enabled the use of amplitude and offset registers. Setting this bit to '1' has only a function if the SCALE bit is written to '1'.

Bit 2 – SCALE Scale Enable

Setting this bit to '1' allows writing fractional value to the Compare, Compare Buffer and Amplitude registers. If scaling is enabled, a write to the Compare (TCEn.CMPn) or Compare Buffer (TCEn.CMPnBUF) register is multiplied with the Amplitude (TCEn.AMP) or Period (TCEn.PER) register. A write to the Amplitude (TCEn.AMP) register is multiplied with the period (TCEn.PER) register. The written value must be of format UQ1.15 providing a range between 0 and 2 - 2⁻¹⁵.

Value	Name	Description
0	NORMAL	An absolute value is used when writing to the AMP and CMPn registers
1	FRACTIONAL	A fractional value is used when writing to the AMP and CMPn registers

23.5.5 Control Register E Clear

Name:	CTRLECLR
Offset:	0x04
Reset:	0x00
Property:	-

Note: Use this register instead of a Read-Modify-Write (RMW) to clear individual bits by writing a '1' to its bit location.

Bit	7	6	5	4	3	2	1	0
					CMD	[1:0]	LUPD	DIR
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0

Bits 3:2 - CMD[1:0] Command

This bit field is used for software control of updating, restarting, and resetting the timer/counter. The command bit field always reads as '0'.

Value	Name	Description
0x0	NONE	No command
0x1	UPDATE	Force update
0x2	RESTART	Force restart
0x3	RESET	Force hard Reset (ignored if the timer/counter is enabled)

Bit 1 – LUPD Lock Update

Before performing an update, use the lock update to ensure all buffers are valid. Writing a '1' to this bit will clear Lock Update.

Value	Description
0	The buffered registers are updated as soon as an UPDATE condition has occurred
1	No update of the buffered registers is performed, even though an UPDATE condition has occurred. This setting will not prevent an update issued by the Command bit field.

Bit 0 – DIR Counter Direction

Usually, this bit is controlled in hardware by the Waveform Generation mode or by event actions but can also be changed from the software. Writing a '1' to this bit will clear the DIR bit, and the counter will count up.

Value	Description
0	The counter is counting up (incrementing)
1	The counter is counting down (decrementing)

23.5.6 Control Register E Set

Name:	CTRLESET
Offset:	0x05
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
					CMD	0[1:0]	LUPD	DIR
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0

Bits 3:2 - CMD[1:0] Command

This bit field is used to send software commands to the TCEn. The command bit field clears automatically by hardware after command execution and always reads as '0'.

Value	Name	Description
0x0	NONE	No command
0x1	UPDATE	Force update
0x2	RESTART	Force restart
0x3	RESET	Force hard Reset (ignored if the timer/counter is enabled)

Bit 1 – LUPD Lock Update

Locking the update ensures that all buffers are valid before performing an update. Writing a '1' to this bit will cause the LUPD to be set, and the Update is locked.

Value	Description
0	The buffered registers are updated as soon as an UPDATE condition has occurred
1	No update of the buffered registers is performed, even though an UPDATE condition has occurred. This setting will not prevent an update issued by the Command bit field.

Bit 0 – DIR Counter Direction

Usually, this bit is controlled in hardware by the Waveform Generation mode or by event actions, but can also be changed from the software. Writing a '1' to this bit will set the DIR bit, and the counter will count down.

Value	Description
0	The counter is counting up (incrementing)
1	The counter is counting down (decrementing)

23.5.7 Control Register F Clear

Name:	CTRLFCLR
Offset:	0x06
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
				CMP3BV	CMP2BV	CMP1BV	CMP0BV	PERBV
Access		·		R/W	R/W	R/W	R/W	R/W
Reset				0	0	0	0	0

Bits 1, 2, 3, 4 - CMPnBV Compare n Buffer Valid

The CMPnBV bits are set when a new value is written to the corresponding TCEn.CMPnBUF register. These bits automatically clear on an UPDATE condition.

Bit 0 - PERBV Period Buffer Valid

This bit is set when a new value is written to the TCEn.PERBUF register. This bit automatically clears on an UPDATE condition.

23.5.8 Control Register F Set

Name:	CTRLFSET
Offset:	0x07
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
				CMP3BV	CMP2BV	CMP1BV	CMP0BV	PERBV
Access		•	•	R	R	R	R	R/W
Reset				0	0	0	0	0

Bits 1, 2, 3, 4 - CMPnBV Compare n Buffer Valid

The CMPnBV bits are set when a new value is written to the corresponding TCEn.CMPnBUF register. These bits automatically clear on an UPDATE condition.

Bit 0 - PERBV Period Buffer Valid

This bit is set when a new value is written to the TCEn.PERBUF register. This bit automatically clears on an UPDATE condition.

23.5.9 Event Generation Control

Name:	EVGENCTRL
Offset:	0x08
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
	CMP3EV	CMP2EV	CMP1EV	CMP0EV				
Access	R/W	R/W	R/W	R/W	•	•		
Reset	0	0	0	0				

Bits 4, 5, 6, 7 - CMPEV Compare n Event Generation

This bit selects the waveform available on the event output. **Note:** The CMPnEN in TCEn.CTRLB does not need to be set to generate the event.

Value	Name	Description
0	PULSE	Event pulse generated at each compare match
1	WAVEFORM	Event output is the Waveform Output signal

Note: Generated event equals Waveform Output before output enable, but after POLARITY selection.

23.5.10 Event Control

Name:	EVCTRL
Offset:	0x09
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
	EVACTB[2:0]			CNTBEI	EVACTA[2:0]			CNTAEI
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:5 - EVACTB[2:0] Event Action B

These bits define what action the counter will take upon certain event conditions.

Value	Name	Description
0x0	NONE	No action
0x1	-	Reserved
0x2	-	Reserved
0x3	UPDOWN	Count on the prescaled clock or according to the setting for event input A. The event controls the count direction:
		up-counting when the event line is 0
		down-counting when the event line is 1
0x4	RESTART_POSEDGE	Restart counter on positive event edge
0x5	RESTART_ANYEDGE	Restart counter on any event edge
0x6	RESTART_HIGHLVL	Restart counter while the event signal is high
0x7	-	Reserved

Bit 4 - CNTBEI Enable Counter Event Input B

Value	Description
0	Counter Event input B is disabled
1	Counter Event input B is enabled according to EVACTB bit field

Bits 3:1 - EVACTA[2:0] Event Action A

These bits define what action the counter will take upon certain event conditions.

Value	Name	Description
0x0	CNT_POSEDGE	Count on positive event edge
0x1	CNT_ANYEDGE	Count on any event edge
0x2	CNT_HIGHLVL	Count prescaled clock cycles while the event signal is high
0x3	UPDOWN	 Count on the prescaled clock. The event controls the count direction: up-counting when the event line is 0 down-counting when the event line is 1
0x4 - 0	x7 -	Reserved

Bit 0 - CNTAEI Enable Counter Event Input A

Value	Description
0	Counter Event input A is disabled
1	Counter Event input A is enabled according to EVACTA bit field

23.5.11 Interrupt Control Register

Name: Offset: Reset: Property:	INTCTRL 0x0A 0x00 -			
	G	F	4	Э

Bit	7	6	5	4	3	2	1	0
	CMP3	CMP2	CMP1	CMP0				OVF
Access	R/W	R/W	R/W	R/W				R/W
Reset	0	0	0	0				0

Bits 4, 5, 6, 7 – CMPn Compare Channel n Interrupt Enable Writing the CMPn bit to '1' enables the interrupt from Compare Channel n.

Bit 0 – OVF Timer Overflow/Underflow Interrupt Enable Writing the OVF bit to '1' enables the overflow/underflow interrupt.

23.5.12 Interrupt Flag Register

Name:	INTFLAGS
Offset:	0x0B
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
Γ	CMP3	CMP2	CMP1	CMP0				OVF
Access	R/W	R/W	R/W	R/W			•	R/W
Reset	0	0	0	0				0

Bits 4, 5, 6, 7 - CMPn Compare Channel n Interrupt Flag

The Compare Interrupt (CMPn) flag is set on a compare match on the corresponding compare channel. For all modes of operation, the CMPn flag will be set when a compare match occurs between the Count (TCEn.CNT) register and the corresponding Compare (TCEn.CMPn) register. The CMPn flag is not cleared automatically, only by writing a '1' to its bit location.

Bit 0 - OVF Overflow/Underflow Interrupt Flag

This flag is set either on a TOP (overflow) or BOTTOM (underflow) condition, depending on the WGMODE setting. The OVF flag is not cleared automatically. It will be cleared only by writing a '1' to its bit location.

Note: Any individual bits can be cleared by writing a '1' to its bit location, allowing each bit to be set without using a Read-Modify-Write operation on a single register.

23.5.13 Debug Control Register

	Name: Offset: Reset: Property:	DBGCTRL 0x0E 0x00 -						
Bit	7	6	5	4	3	2	1	0
								DBGRUN
Access								R/W
Reset								0

Bit 0 - DBGRUN Run in Debug

Value	Name	Description
0	DISABLED	The peripheral is halted in Break Debug mode and ignores events
1	ENABLED	The peripheral will continue to run in Break Debug mode when the CPU is halted

23.5.14 Temporary Register

Name:	TEMP
Offset:	0x0F
Reset:	0x00
Property:	-

The Temporary register is used by the CPU for 16-bit single-cycle access to the 16-bit registers of this peripheral. The register is common for all the 16-bit registers of this peripheral and can be read and written by software. For more details on reading and writing 16-bit registers, refer to *Accessing 16-Bit Registers* in the *Memories* section.

Bit	7	6	5	4	3	2	1	0
Γ	TEMP[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:0 - TEMP[7:0] Temporary Bits for 16-bit Access

23.5.15 Counter Register

Name:	CNT
Offset:	0x20
Reset:	0x00
Property:	-

The TCEn.CNTL and TCEn.CNTH register pair represents the 16-bit value, TCEn.CNT. The low byte [7:0] (suffix L) is accessible at the original offset. The high byte [15:8] (suffix H) can be accessed at offset + 0×01 . CPU and UPDI write access has priority over internal updates of the register.

Bit	15	14	13	12	11	10	9	8		
	CNT[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
	_	-	_							
Bit	/	6	5	4	3	2	1	0		
				CNT	[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:8 - CNT[15:8] Counter High Byte

This bit field holds the MSB of the 16-bit Counter register.

Bits 7:0 - CNT[7:0] Counter Low Byte

This bit field holds the LSB of the 16-bit Counter register.

23.5.16 Amplitude Register

Name:	AMP
Offset:	0x22
Reset:	0x00
Property:	-

The TCEn.AMPL and TCEn.AMPH register pair represents the 16-bit value, TCEn.AMP. The low byte [7:0] (suffix L) is accessible at the original offset. The high byte [15:8] (suffix H) can be accessed at offset + 0×01 . CPU and UPDI write access has priority over internal updates of the register.

The TCEn.AMP register holds the 16-bit value used to set the range for the compare registers and the min/max PWM duty cycle. When SCALE and AMPEN in TCEn.CTRLD are enabled, the min/max duty cycle is limited to the range defined by the AMP and OFFSET registers. The AMP register is not in use if AMPEN = '0'.

Bit	15	14	13	12	11	10	9	8
				AMP[[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				AMP	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:8 – AMP[15:8] Scale Amplitude High Byte

This bit field holds the MSB of the 16-bit Amplitude register.

Bits 7:0 – AMP[7:0] Scale Amplitude Low Byte

This bit field holds the LSB of the 16-bit Amplitude register.

23.5.17 Offset Register

Name:	OFFSET
Offset:	0x24
Reset:	0x00
Property:	-

The TCEn.OFFSETL and TCEn.OFFSETH register pair represents the 16-bit value, TCEn.OFFSET. The low byte [7:0] (suffix L) is accessible at the original offset. The high byte [15:8] (suffix H) can be accessed at offset + 0×01 . CPU and UPDI write access has priority over internal updates of the register.

The TCEn.OFFSET register holds the 16-bit value to set the offset adjustment for the compare register. When SCALE and AMPEN in TCEn.CTRLD are enabled, the OFFSET register is automatically updated after a write to the AMP register, based on the configuration in SCALEMODE bitfield in TCEn.CTRLD.

Bit	15	14	13	12	11	10	9	8		
	OFFSET[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				OFFSE	T[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:8 – OFFSET[15:8] Scale Offset High Byte

This bit field holds the MSB of the 16-bit Offset register.

Bits 7:0 - OFFSET[7:0] Scale Offset Low Byte

This bit field holds the LSB of the 16-bit Offset register.

23.5.18 Period Register

Name:	PER
Offset:	0x26
Reset:	0xFFFF
Property:	-

The TCEn.PERL and TCEn.PERH register pair represents the 16-bit value, TCEn.PER. The low byte [7:0] (suffix L) is accessible at the original offset. The high byte [15:8] (suffix H) can be accessed at offset + 0×01 .

TCEn.PER contains the 16-bit TOP value in the timer/counter.

Bit	15	14	13	12	11	10	9	8
				PER[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1
Bit	7	6	5	4	3	2	1	0
				PER	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

Bits 15:8 – PER[15:8] Period High Byte

This bit field holds the MSB of the 16-bit Period register.

Bits 7:0 - PER[7:0] Period Low Byte

This bit field holds the LSB of the 16-bit Period register.

23.5.19 Compare n Register

```
        Name:
        CMPn

        Offset:
        0x28 + n*0x02 [n=0..3]

        Reset:
        0x00

        Property:
        -
```

The CMPn register is continuously compared to the counter value. Ordinarily, the outputs from the comparators are then used for generating waveforms. The TCEn.CMPn registers are updated with the buffer value from their corresponding TCEn.CMPnBUF register when an UPDATE condition occurs.

The TCEn.CMPnL and TCEn.CMPnH register pair represents the 16-bit value, TCEn.CMPn. The low byte [7:0] (suffix L) is accessible at the original offset. The high byte [15:8] (suffix H) can be accessed at offset + 0×01 .

When SCALE bitfield in TCEn.CTRLD is written to '1', the data written to the CMPn register are expected to be in fixed point UQ1.15 notation ranging from 0 to 2 - 2⁻¹⁵. If AMPEN bitfield in TCEn.CTRLD is '0', a write to the TCEn.CMPnH register triggers a multiplication with the Period (TCEn.PER) register, and the resulting data are stored in the CMPn register. When AMPEN = '1', the written value is multiplied by the Amplitude (TCEn.AMP) register, and the Offset (TCEn.OFFSET) register is added.

Note: The data read from the TCEn.CMPn register are the resulting values after multiplication and add operations.

13	12	11	10	9	8				
CMP[15:8]									
R/W	R/W	R/W	R/W	R/W	R/W				
0	0	0	0	0	0				
5	4	3	2	1	0				
CMP[7:0]									
R/W	R/W	R/W	R/W	R/W	R/W				
0	0	0	0	0	0				
	R/W 0 5 R/W	CMP[15:3 R/W R/W 0 0 5 4 CMP[7:0 R/W R/W	CMP[15:8] R/W R/W 0 0 5 4 3 CMP[7:0] R/W R/W	CMP[15:8] R/W R/W R/W 0 0 0 0 5 4 3 2 CMP[7:0] R/W R/W R/W	CMP[15:8] R/W R/W R/W R/W 0 0 0 0 0 5 4 3 2 1 CMP[7:0] R/W R/W R/W R/W				

Bits 15:8 - CMP[15:8] Compare High Byte

This bit field holds the MSB of the 16-bit Compare register.

Bits 7:0 - CMP[7:0] Compare Low Byte

This bit filed holds the LSB of the 16-bit Compare register.

23.5.20 Period Buffer Register

Name:	PERBUF
Offset:	0x36
Reset:	0xFFFF
Property:	-

This register serves as the buffer for the period register (TCEn.PER). Accessing this register using the CPU or UPDI will affect the PERBV flag. The TCEn.PERBUFL and TCEn.PERBUFH register pair represents the 16-bit value, TCEn.PERBUF. The low byte [7:0] (suffix L) is accessible at the original offset. The high byte [15:8] (suffix H) can be accessed at offset + 0x01.

Bit	15	14	13	12	11	10	9	8
				PERBU	F[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1
Bit	7	6	5	4	3	2	1	0
				PERBL	JF[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

Bits 15:8 - PERBUF[15:8] Period Buffer High Byte

This bit field holds the MSB of the 16-bit Period Buffer register.

Bits 7:0 – PERBUF[7:0] Period Buffer Low Byte

This bit field holds the LSB of the 16-bit Period Buffer register.

23.5.21 Compare n Buffer Register

Name:	CMPnBUF
Offset:	0x38 + n*0x02 [n=03]
Reset:	0x00
Property:	-

The TCEn.CMPnBUFL and TCEn.CMPnBUFH register pair represents the 16-bit value, TCEn.CMPnBUF. The low byte [7:0] (suffix L) is accessible at the original offset. The high byte [15:8] (suffix H) can be accessed at offset + 0×01 .

This register serves as the buffer for the associated compare registers (TCEn.CMPn). Accessing these registers using the CPU or UPDI will affect the corresponding CMPnBV status bit.

When the SCALE bitfield in TCEn.CTRLD is written to '1', the data written to the CMPnBUF register are expected to be in fixed point UQ1.15 notation, giving a range from 0 to $2 - 2^{-15}$. If AMPEN bitfield in TCEn.CTRLD is '0', a write to the TCEn.CMPnBUFH register triggers a multiplication with the Period (TCEn.PER) register, and the resulting data are stored in the CMPnBUF register. When AMPEN = '1', the written value is multiplied by the Amplitude (TCEn.AMP) register, and the Offset (TCEn.OFFSET) register is added.

Note: The data read from the TCEn.CMPnBUF register are the resulting values after multiplication and add operations.

Bit	15	14	13	12	11	10	9	8		
	CMPBUFH[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				CMPBL	JFL[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:8 - CMPBUFH[15:8] Compare High Byte

This bit field holds the MSB of the 16-bit Compare Buffer register.

Bits 7:0 - CMPBUFL[7:0] Compare Low Byte

This bit field holds the LSB of the 16-bit Compare Buffer register.

24. WEX - Waveform Extension for the 16-Bit Timer/Counter Type E

24.1 Feature Description

- Waveform Output with Complementary Output from Each Compare Channel
- Four Dead-Time Insertion (DTI) Units
 - Separate high and low side dead-time setting
 - Double-buffered dead-time registers
 - 8-bit resolution
- Input Matrix for Timer/Counter Compare Channel Distribution
- Pattern Generation Unit Creating Synchronized Bit Pattern Across the Port Pins
 - Double-buffered pattern generation
 - Optionally distribution of one compare channel output across the port pins
- Event Controlled Fault Protection for Instant and Predictable Fault Triggering
- Four Swap Units
 - Separate port pair or high/low side driver swap

24.2 Overview

The Waveform Extension (WEX) provides extra functions to the timer/counter in Waveform Generation (WG) modes. It is primarily intended for use in different types of motor control and other power control applications. The WEX consists of five independent and successive units.

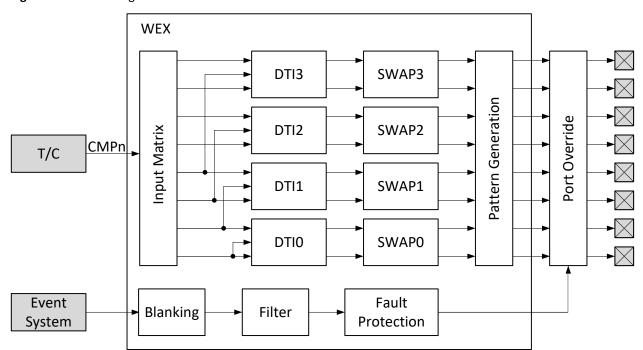


Figure 24-1. Block Diagram Overview

The Input Matrix (INMX) can distribute and route out the waveform outputs from the connected timer/counter across the port pins in different configurations, each optimized for different application types.

The Dead Time Insertion (DTI) unit splits each of the four lower INMX outputs into two nonoverlapping signals, the non-inverted low side (LS) and inverted high side (HS) of the waveform

output with optional dead-time insertion between LS and HS switching. When the DTI modules are disabled, the signals from the INMX go to the SWAP module.

The swap (SWAP) unit can swap the LS and HS pin positions for fast decay motor control. The SWAP works even when the DTI units are not enabled and will swap the connected INMX signals.

The Pattern Generation unit generates a synchronized output waveform with a constant logic level, which can be used for easy stepper motor and full-bridge control.

The Fault Protection unit is connected to the Event System, enabling an event to trigger a Fault condition to set the WEX output to a defined state. The Event System ensures predictable and instant fault reactions and gives flexibility the fault trigger selection.

The Port Override Disable unit can disable the waveform output on selectable port pins to optimize usage or free the pins for other functional use when the application does not need the waveform output spread across all the port pins as they can be selected by the INMX configurations.

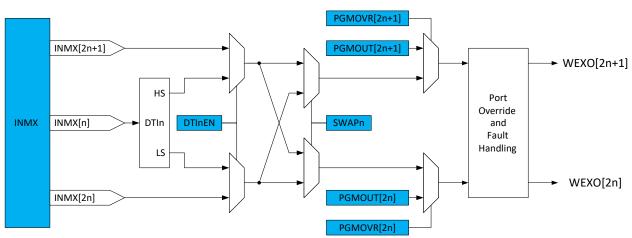


Figure 24-2. Waveform Extension Stage Details

24.3 Functional Description

24.3.1 Initialization

- Enable waveform extension mode in the Control A (WEXn.CTRLA) register
 - Enable the Dead Time Units by writing a '1' to the DTInEN bits. Enable the Pattern Generation mode by writing a '1' to the PGM bit. Configure the Input Matrix (INMX[2:0]) bit field to the desired input mode for the WEX peripheral.
- Optional: Enable Dead Time settings
 - Write Dead Time settings in the Dead-time Low Side (WEXn.DTLS)/High Side (WEXn.DTHS) or Dead-time Low Side Buffer (WEXn.DTLSBUF)/High Side Buffer (WEXn.DTHSBUF) registers
- Optional: Enable output swapping by writing to the DTI Swap (WEXn.SWAP) and/or DTI Swap Buffer (WEXn.SWAPBUF) registers
- Optional: Configure pattern generation in the Pattern Generation Mode Override (WEXn.PGMOVR) and the Pattern Generation Mode Output (WEXn.PGMOUT) registers, and their respective buffer (WEXn.PGMOVRBUF and WEXn.PGMOUTBUF) registers
- Configure blanking in the Blanking Control (WEXn.BLANKCTRL) and Blanking Time
 (WEXn.BLANKTIME) registers
- Optional: Enable fault control
 - Set fault mode in the Fault Control (WEXn.FAULTCTRL) register by changing the Fault Detection Restart Mode (FDMODE) bit

- Set fault action in the WEXn.FAULTCTRL register by changing the Fault Detection Action (FDACT[1:0]) bit field
- Configure the pin drives and fault output values in the Fault Drive (WEXn.FAULTDRV) and Fault Output (WEXn.FAULTOUT) registers
- Write the FAULTSET Command to the Control C (WEXn.CTRLC) register to ensure pins are in a fault state
- Enable overriding the output pins in the Output Override Enable (WEXn.OUTOVEN) register. The pins will now be in the fault state if a fault is detected.

The Waveform Extension will start operating when an input waveform is connected and running.

In case a fault is detected:

- Configure the fault generators and the Event System
- Enable fault inputs in the Event Control A/B/C (WEXn.EVCTRLA/B/C) registers

24.3.2 Operations

24.3.2.1 Input Matrix

The Input Matrix (INMX) unit distributes and routes the Timer/Counter waveform output across the WEX internal connections, according to the selectable configurations, as shown in Table 24-1.

The Input Matrix decides how inputs go into the dead-time generator. If the dead-time generator is enabled, it splits each input in two. All the signals are split if at least one dead time generator is enabled. The table below shows the output from the dead-time generator based on DTI and INMX settings.

Swap does not change which waveform output goes where, only the LS/HS pair.

When the DTI is disabled, and the SWAP is in the default condition, it is possible to bypass the WEX module functions and see the Timer/Counter (T/C) WO signals to port pins, which can be considered as Transparent mode for the WEX that the user can configure.

INMX[2:0]	Name	DTInEN	PIN7	PIN6	PIN5	PIN4	PIN3	PIN2	PIN1	PIN0
000	DIRECT	0	-	-	-	-	WO3*	WO2*	WO1*	WO0*
		1	WO3-HS	WO3-LS	WO2-HS	WO2-LS	WO1-HS	WO1-LS	WO0-HS	WO0-LS
001	-		Reserved	served						
010	CWCMA	0	WO0	WO0	WO0	WO0	WO0	WO0	WO0	WO0
		1	WO0-HS	WO0-LS	WO0-HS	WO0-LS	WO0-HS	WO0-LS	WO0-HS	WO0-LS
011	CWCMB	0	WO1	WO0	WO1	WO0	WO1	WO0	WO1	WO0
		1	WO1-HS	WO1-LS	WO0-HS	WO0-LS	WO1-HS	WO1-LS	WO0-HS	WO0-LS
1xx	-		Reserved							

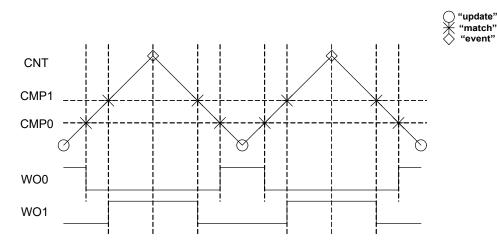
Table 24-1. Input Matrix Configurations

Note: * - If one WOn has Dead Time Unit enabled, the WOn with disabled Dead Time Units will be available on their respective WOn-LS PIN instead of their WOn PINs.

For example, INMX is in DIRECT mode. DTI2EN bit is set to '1', and the other DTInEN bits are set to '0'.

- WO0 signal is available on PIN0
- WO1 signal is available on PIN2
- WO2 signal is split on PIN4 and PIN5
- WO3 signal is available on PIN6

An extra set of signals goes with the waveform when using a Timer/counter in High Resolution mode. These need to be adjusted for the signals to follow the waveform. For example, when



INMX[2:0] = CWCMA, the high-resolution signals for WO0 need to be distributed on all channels for the output from the WEX peripheral. For DIRECT mode, the hires-values for WO2 received on position 2 in the input vector must be output on position 4 and 5 on the output vector.

For the direct mode, each waveform output is used as input for a separate Dead Time Unit. Use this mode to bypass the WEX and see the T/C outputs on I/O pins when the DTI units are disabled.

The Common Waveform Channel Mode A uses WO0 as input to all dead-time generators. The other waveforms are ignored. When the DTIs are enabled, the WEX will output WO0 and its complementary with dead-time added on all outputs.

The Common Waveform Channel Mode B can be used if dead-time is handled in the Timer/Counter by carefully selecting the values of Compare 0 and Compare 1 (TCEn.CMP0 and TCEn.CMP1) registers, as depicted below. The WEX Module will only ensure correct waveform propagation to I/Os, where WO0 is output on every even pin while WO1 is on every odd pin.

24.3.2.2 Dead-Time Insertion

The Dead-Time Insertion (DTI) unit generates OFF time where the non-inverted low side (LS) and inverted high side (HS) of the Waveform Output (WO) are both low. This OFF time is called dead time, and the Dead-Time Insertion unit ensures that the LS and HS never switch simultaneously.

The DTI unit consists of up to four equal dead-time generators. Figure 24-4 shows the block diagram of one DTI generator. All channels have a mutual register that controls the dead time. The high and low sides have independent dead-time settings, and the dead-time registers are double-buffered.

In Pattern Generation mode, the Dead-Time buffers are not available. Dead-Time can still be implemented using only the data registers, which is the case when PGM is enabled only on some outputs, and Complementary PWM with dead-time is needed on other outputs.

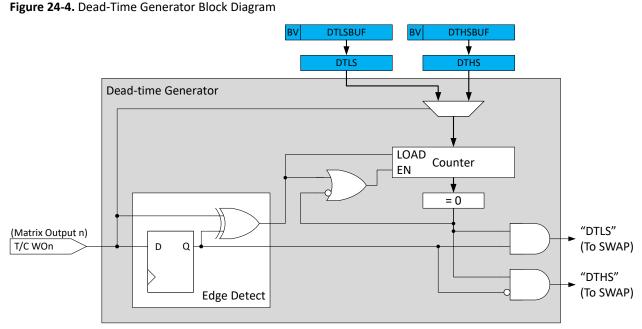
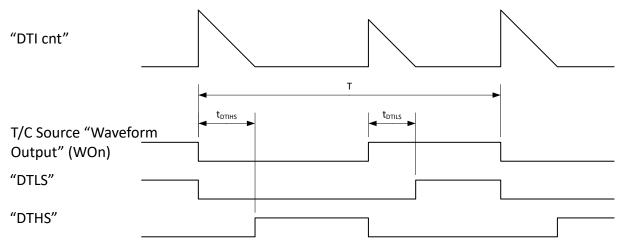



Figure 24-5 shows the 8-bit dead-time counter is decremented by one for each peripheral clock cycle until it reaches zero. A nonzero counter value will force the low and high side outputs into their OFF state.

When detecting a change on the Waveform Output (WOn), the dead-time counter reloads according to the edge of the input. A positive edge initiates a counter reload of the DTLS register. A negative edge initiates a reload of the DTHS register.

Figure 24-5. Dead-Time Generator Timing Diagram

24.3.3 Pattern Generation

The Pattern Generator mode can be used to produce a synchronized bit pattern across the pins the WEX connects to. If configuring the input matrix (the INMX bit field in the WEXCTRLA register) to CWCMA mode, the same waveform will be output on all channels. Enabling Dead Time will cause all high sides to be equal and all low sides to be equal.

These features are primarily intended for handling the commutation sequence in brushless DC motor (BLDC) and stepper motor applications. Figure 24-6 shows a block diagram of the Pattern Generator. For each port pin where the corresponding Pattern Generation Override

(WEXn.PGMOVR) bit is set, a fixed level is generated as configured by the Pattern Generation Output (WEXn.PGMOUT) register.

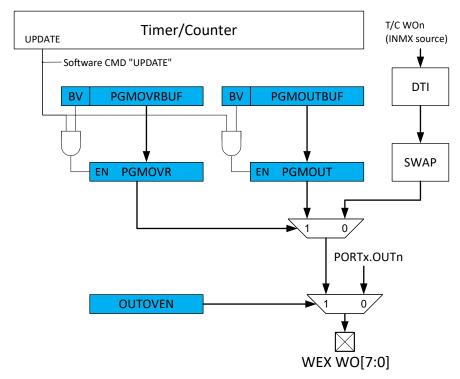


Figure 24-6. Pattern Generator Block Diagram

As with the other timer/counter double-buffered registers, the register update is synchronized to the UPDATE condition set by the Waveform Generation mode. If the synchronization provided is not required by the application, the application code can simply access the Pattern Generation Override (WEXn.PGMOVR) and Output (WEXn.PGMOUT) registers directly.

By using the software UPDATE CMD, the WEX can work independently of the Timer/Counter when in Pattern Generation mode.

24.3.4 Port Override

The Port Override logic is common for all the timer/counter extensions. If a bit in the Output Override Enable (WEXn.OUTOVEN) register is set, it takes control of the corresponding pin, overriding the output from any source generating before that. Any alternative pin function can use the corresponding I/O pin when not set. For details, refer to Output Override Enable (WEXn.OUTOVEN) register.

24.3.5 Faults

The Fault Protection unit enables fast and deterministic action when a fault is detected. A fault trigger is an event from the Event System or generated from the software. An OR operation is performed on all the fault sources after the filters to allow multiple fault sources simultaneously.

Fault Actions

When a fault is detected, the action is taken based on the Fault Detection Action (FDACT[1:0]) bit field in the Fault Control (WEXn.FAULTCTRL) register. This will either drive all the enabled pins low or custom settings controlled by the Fault Drive (WEXn.FAULTDRV) and Fault Output (WEXn.FAULTOUT) registers.

The fault detection flag is set, and an optional interrupt is generated. The fault detection flag is set on fault independent of enabling the fault action setting.

Fault protection is independent of the CPU.

If fault mode is enabled and the T/C used as the source for the WEX is stopped, the WEX will enter a Fault state, which occurs if either the T/C is stopped before the WEX or the device enters a sleep mode where the clocks are stopped.


Fault Blanking

Fault Blanking (BLANK) provides a way to suppress fault inputs during the beginning of the active time of the waveform output. Faults can be triggered only after a configured time, preventing false fault triggering during commutation using this method. The fault blanking time is set in the Blanking Time (WEXn.BLANKTIME) register together with the Blanking Prescaler (BLANKPRESC[1:0]) bit field in the Blanking Control (WEXn.BLANKCTRL) register. The bit fields define the number of prescaled peripheral clock cycles inhibiting the fault input. The start time for blanking is selectable. For longer blanking, the feature can be controlled by software through the Command (CMD[2:0]) bit field in the BLANKSET/BLANKCLR commands can be used. The software blanking works in parallel with hardware blanking, and blanking enabled has priority.

Fault Filtering

The WEX has three event inputs for triggering a Fault condition; event inputs A, B and C controlled by the Event Control (WEXn.EVCTRLA, WEXn.EVCTRLB and WEXn.EVCTRLC) registers, respectively.

To enable the fault trigger, write a '1' to the Fault Event Input (FAULTEI) bit in the Event Control (WEXn.EVCTRLx) register. The fault has an asynchronous and immediate effect on the waveform output. Enable the digital filter in the fault input to avoid false fault detection on external events (e.g., a glitch on the I/O port). In this case, the event detection and routing will be synchronous to the peripheral clock. The event action will be delayed approximately 2-3 peripheral clock cycles plus the selected digital filter coefficient.

Figure 24-7. Filter and Blanking

Fault Detection Restart Modes

Returning from the Fault state to normal operation after a fault can be done in two different modes by changing the Fault Detection Restart Mode (FDMODE) bit in the Fault Control (WEXn.FAULTCTRL) register.

- In Latched mode, the waveform output will remain in the Fault state until the Fault condition is no longer active and the Fault state has been cleared by software. When meeting both conditions, the waveform output will return to normal operation at the following UPDATE condition.
- In Cycle-by-Cycle mode, the waveform output will remain in the Fault state until the Fault condition is no longer active. When meeting this condition, the waveform output will return to normal operation at the following UPDATE condition.

The UPDATE condition used to restore normal operation is the same as in the timer/counter. The software UPDATE command (WEXn.CTRLC CMD[2:0]) doesn't affect the Fault restoring.

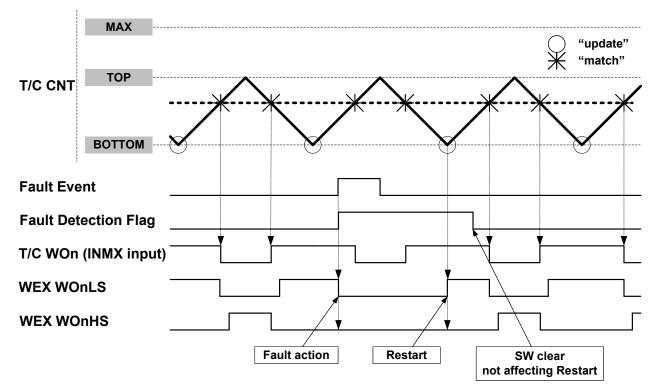



Figure 24-8. Latched Mode Fault Handling

Figure 24-9. Cycle-By-Cycle Mode Fault Handling

24.3.6 Sleep Mode Operation

WEX is, by default, disabled in Standby sleep mode and will halt as soon as entering the sleep mode. The module is fully operational in Standby sleep mode if the connected Timer/Counter is running in Standby sleep mode.

It is running in Standby sleep mode if the RUNSTDBY bit is set. The WEX hasn't a RUNSTDBY bit but will follow the connected Timer/Counter behavior that drives the input waveform.

A fault is triggered if WEX enters a sleep mode where the clock is stopped.

All operation halt in Power-Down sleep mode.

24.3.7 Configuration Change Protection

This peripheral has no registers under Configuration Change Protection (CCP).

24.4 Register Summary

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00	CTRLA	7:0	PGM		INMX[2:0]		DTI3EN	DTI2EN	DTI1EN	DTI0EN
0x01	CTRLB	7:0							UPDS	RC[1:0]
0x02	CTRLC	7:0							CMD[2:0]	
0x03	Reserved									
0x04	EVCTRLA	7:0					FILTER[2:0]		BLANK	FAULTEI
0x05	EVCTRLB	7:0					FILTER[2:0]		BLANK	FAULTEI
0x06	EVCTRLC	7:0					FILTER[2:0]		BLANK	FAULTEI
0x07	BUFCTRL	7:0				PGMOUTBV	PGMOVRBV	SWAPBV	DTHSBV	DTLSBV
0x08	BLANKCTRL	7:0		BLANKP	RESC[1:0]		E	BLANKTRIG[4:0)]	
0x09	BLANKTIME	7:0				BLANKT	IME[7:0]			
0x0A	FAULTCTRL	7:0	FDDBD					FDMODE	FDAC	T[1:0]
0x0B	FAULTDRV	7:0	FAULTDRV7	FAULTDRV6	FAULTDRV5	FAULTDRV4	FAULTDRV3	FAULTDRV2	FAULTDRV1	FAULTDRV0
0x0C	FAULTOUT	7:0	FAULTOUT7	FAULTOUT6	FAULTOUT5	FAULTOUT4	FAULTOUT3	FAULTOUT2	FAULTOUT1	FAULTOUT0
0x0D	INTCTRL	7:0								FAULTDET
0x0E	INTFLAGS	7:0				FDFEVC	FDFEVB	FDFEVA		FAULTDET
0x0F	STATUS	7:0	BLANKSTATE			FDSEVC	FDSEVB	FDSEVA		FDSTATE
0x10	DTLS	7:0				DTLS	5[7:0]			
0x11	DTHS	7:0				DTH	5[7:0]			
0x12	DTBOTH	7:0				DTBO	TH[7:0]			
0x13	SWAP	7:0					SWAP3	SWAP2	SWAP1	SWAP0
0x14	PGMOVR	7:0	PGMOVR7	PGMOVR6	PGMOVR5	PGMOVR4	PGMOVR3	PGMOVR2	PGMOVR1	PGMOVR0
0x15	PGMOUT	7:0	PGMOUT7	PGMOUT6	PGMOUT5	PGMOUT4	PGMOUT3	PGMOUT2	PGMOUT1	PGMOUT0
0x16	Reserved									
0x17	OUTOVEN	7:0	OUTOVEN7	OUTOVEN6	OUTOVEN5	OUTOVEN4	OUTOVEN3	OUTOVEN2	OUTOVEN1	OUTOVEN0
0x18	DTLSBUF	7:0		1	1	DTLSB	UF[7:0]		1	
0x19	DTHSBUF	7:0				DTHSB	UF[7:0]			
0x1A	DTBOTHBUF	7:0		DTBOTHBUF[7:0]						
0x1B	SWAPBUF	7:0					SWAPBUF3	SWAPBUF2	SWAPBUF1	SWAPBUF0
0x1C	PGMOVRBUF	7:0	PGMOVRBUF	PGMOVRBUF	PGMOVRBUF	PGMOVRBUF	PGMOVRBUF	PGMOVRBUF	PGMOVRBUF	PGMOVRBUF
UNIC	FGIVIOVRDUF	7.0	7	6	5	4	3	2	1	0
0x1D	PGMOUTBUF	7:0							PGMOUTBUF	
			7	6	5	4	3	2	1	0

24.5 Register Description

24.5.1 Control A

Name:	CTRLA
Offset:	0x00
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
	PGM		INMX[2:0]		DTI3EN	DTI2EN	DTI1EN	DTI0EN
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 7 – PGM Pattern Generation Mode

Writing this bit to '1' enables the Pattern Generation mode. In Pattern Generation mode, the deadtime buffer registers are used for storing the pattern. These buffers are not available in this mode.

Bits 6:4 – INMX[2:0] Input Matrix

This bit field defines the matrix routing of the timer/counters Waveform Generation inputs to the WEX internal module. Refer to table Table 24-1 for more information.

Value	Name	Description
0x0	DIRECT	Direct from TCE0
0x1	-	Reserved
0x2	CWCMA	Common Waveform Channel Mode A. Waveform output (WO) on a single Pulse-Width Modulation (PWM) channel.
0x3	CWCMB	Common Waveform Channel Mode B. WO on two PWM channels.

Bits 0, 1, 2, 3 - DTIEN Dead-Time Insertion CMPn Enable

Value	Name	Description
0x0	DISABLED	Dead-time not inserted
0x1	ENABLED	Dead-time inserted

24.5.2 Control B

ame: fset: set: operty:	CTRLB 0x01 0x00 -						
7	6	5	4	3	2	1	0
						UPDSF	RC[1:0]
						R/W	R/W
						0	0
	fset: set: operty:	fset: 0x01 set: 0x00 operty: -	fset: 0x01 set: 0x00 operty: - 7 6 5 4 3 2 1 Image: Contract of the second sec				

Bits 1:0 - UPDSRC[1:0] Update Source

This bit field selects the trigger source for the UPDATE condition used by Dead-Time, Swap and Pattern Generation units to update their register content from the buffers.

Value	Name	Description
0x0	TCE0	Timer/Counter type E for PWM UPDATE condition
0x1	-	Reserved
0x2	-	Reserved
0x3	SW	Only the software UPDATE command can be used to obtain an UPDATE condition

24.5.3 Control C

	Name: Offset: Reset: Property:	CTRLC 0x02 0x00 -						
Bit	7	6	5	4	3	2	1	0
							CMD[2:0]	
Access		·	•			R/W	R/W	R/W
Reset						0	0	0

Bits 2:0 - CMD[2:0] Command

This bit field is used to give software commands.

Note:

All commands last for a single cycle unless software continuously triggers them. The register is always read as zero.

FAULTCLR will clear the FDSTATE bit in the Status (WEXn.STATUS) register if no Fault condition is present.

BLANKCLR will clear the BLANKSTATE in the WEXn.STATUS register if no hardware blanking is active.

Value	Name	Description
0x0	NONE	No Command
0x1	UPDATE	Force update of Dead-Time, SWAP and PGM buffer registers
0x2	FAULTSET	Set fault detection
0x3	FAULTCLR	Clear fault detection
0x4	BLANKSET	Set SW blanking
0x5	BLANKCLR	Clear SW blanking
0x6	-	Reserved
0x7	-	Reserved

24.5.4 Event Control A

	Name: Offset: Reset: Property:	EVCTRLA 0x04 0x00 -						
Bit	7	6	5	4	3	2	1	0
					FILTER[2:0]		BLANK	FAULTEI
Access				R/W	R/W	R/W	R/W	R/W
Reset				0	0	0	0	0

Bits 4:2 - FILTER[2:0] Fault Event Filter Enable

This bit field controls the sampling of the digital filter. Events will be passed through only when the event source has been active and sampled with the same level for the number of peripheral clock cycles defined by the FILTER[2:0] bit field.

Value	Name	Description
0x0	ZERO	No digital filter
0x1	SAMPLE1	One sample
0x2	SAMPLE2	Two samples
0x3	SAMPLE3	Three samples
0x4	SAMPLE4	Four samples
0x5	SAMPLE5	Five samples
0x6	SAMPLE6	Six samples
0x7	SAMPLE7	Seven samples

Bit 1 – BLANK Fault Event Blanking Enable

This bit enables Blanking on event input A.

Bit 0 – FAULTEI Fault Event Input Enable

This bit enables event input A as a trigger for a Fault condition.

Note: Fault event inputs are not taken into account before Timer/Counting driving a waveform is enabled.

24.5.5 Event Control B

	Name: Offset: Reset: Property:	EVCTRLB 0x05 0x00 -						
Bit	7	6	5	4	3	2	1	0
					FILTER[2:0]		BLANK	FAULTEI
Access		•		R/W	R/W	R/W	R/W	R/W
Reset				0	0	0	0	0

Bits 4:2 - FILTER[2:0] Fault Event Filter Enable

This bit field controls the sampling of the digital filter. Events will be passed through only when the event source has been active and sampled with the same level for the number of peripheral clock cycles defined by the FILTER[2:0] bit field.

Value	Name	Description
0x0	ZERO	No digital filter
0x1	SAMPLE1	One sample
0x2	SAMPLE2	Two samples
0x3	SAMPLE3	Three samples
0x4	SAMPLE4	Four samples
0x5	SAMPLE5	Five samples
0x6	SAMPLE6	Six samples
0x7	SAMPLE7	Seven samples

Bit 1 – BLANK Fault Event Blanking Enable

This bit enables Blanking on event input B.

Bit 0 – FAULTEI Fault Event Input Enable

This bit enables event input B as a trigger for a Fault condition.

Note: Fault event inputs are not taken into account before Timer/Counting driving a waveform is enabled.

24.5.6 Event Control C

	Name: Offset: Reset: Property:	EVCTRLC 0x06 0x00 -						
Bit	7	6	5	4	3	2	1	0
					FILTER[2:0]		BLANK	FAULTEI
Access		÷		R/W	R/W	R/W	R/W	R/W
Reset				0	0	0	0	0

Bits 4:2 - FILTER[2:0] Fault Event Filter Enable

This bit field controls the sampling of the digital filter. Events will be passed through only when the event source has been active and sampled with the same level for the number of peripheral clock cycles defined by the FILTER[2:0] bit field.

Value	Name	Description
0x0	ZERO	No digital filter
0x1	SAMPLE1	One sample
0x2	SAMPLE2	Two samples
0x3	SAMPLE3	Three samples
0x4	SAMPLE4	Four samples
0x5	SAMPLE5	Five samples
0x6	SAMPLE6	Six samples
0x7	SAMPLE7	Seven samples

Bit 1 – BLANK Fault Event Blanking Enable

This bit enables Blanking on event input C.

Bit 0 – FAULTEI Fault Event Input Enable

This bit enables event input C as a trigger for a Fault condition.

Note: Fault event inputs are not taken into account before Timer/Counting driving a waveform is enabled.

24.5.7 Buffer Valid Control

Name:	BUFCTRL
Offset:	0x07
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
				PGMOUTBV	PGMOVRBV	SWAPBV	DTHSBV	DTLSBV
Access		•		R/W	R/W	R/W	R/W	R/W
Reset				0	0	0	0	0

Bit 4 – PGMOUTBV Pattern Generation Mode (PGM) Output Value Buffer Valid

If this bit is set, the PGM Output Value Buffer is written and contains valid data that will be copied into the Pattern Generation Mode Output (WEXn.PGMOUT) register on the following UPDATE condition. If this bit is zero, no action will be taken. The connected timer/counter unit's Lock Update (LUPD) flag also affects the update for the PGM buffers. This bit is set only in PGM mode.

Bit 3 – PGMOVRBV Pattern Generation Mode (PGM) Override Buffer Valid

If this bit is set, the PGM Override Buffer is written and contains valid data that will be copied into the Pattern Generation Mode Override (WEXn.PGMOVR) register on the following UPDATE condition. If this bit is zero, no action will be taken. The connected timer/counter unit's Lock Update (LUPD) flag also affects the update for the PGM buffers.

This bit is set only in PGM mode.

Bit 2 - SWAPBV Swap Buffer Valid

If this bit is set, Swap Buffer is written and contains valid data that will be copied into the DTI Swap (WEXn.SWAP) register on the following UPDATE condition. If this bit is zero, no action will be taken. The connected timer/counter unit's Lock Update (LUPD) flag also affects the update for Swap buffer.

Bit 1 - DTHSBV Dead-time High Side Buffer Valid

If this bit is set, the corresponding DT buffer is written and contains valid data that will be copied into the Dead-time High Side (WEXn.DTHS) register on the following UPDATE condition. If this bit is zero, no action will be taken. The connected timer/counter unit's Lock Update (LUPD) flag also affects the update for dead-time buffers.

This bit will always read as zero in PGM mode.

Bit 0 - DTLSBV Dead-time Low Side Buffer Valid

If this bit is set, the corresponding DT buffer is written and contains valid data that will be copied into the Dead-time Low Side (WEXn.DTLS) register on the following UPDATE condition. If this bit is zero, no action will be taken. The connected timer/counter unit's Lock Update (LUPD) flag also affects the update for dead-time buffers.

This bit will always read as zero in PGM mode.

24.5.8 Blanking Control

Name:	BLANKCTRL	
Offset:	0x08	
Reset:	0x00	
Property:	-	

Bit	7	6	5	4	3	2	1	0
		BLANKPF	RESC[1:0]	BLANKTRIG[4:0]				
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0

Bits 6:5 – BLANKPRESC[1:0] Blanking Prescaler

Value	Name	Description
0x0	DIV1	No prescaling
0x1	DIV4	Divide CLK_PER by 4
0x2	DIV16	Divide CLK_PER by 16
0x3	DIV64	Divide CLK_PER by 64

Bits 4:0 - BLANKTRIG[4:0] Blanking Trigger

Value	Name	Description
0x0	NONE	No HW blanking trigger. SW blanking only
0x4	TCE0UPD	TCE0 Update Condition
0x8	TCE0CMP0	TCE0 Compare 0
0xC	TCE0CMP1	TCE0 Compare 1
0x10	TCE0CMP2	TCE0 Compare 2
0x14	TCE0CMP3	TCE0 Compare 3

Note:

Any write to the Blanking Control (WEXn.BLANKCTRL) register will clear the blanking counter. Blanking will then restart at the next trigger.

24.5.9 Blanking Time

	Name: Offset: Reset: Property:	BLANKTIME 0x09 0x00 -							
Bit	7	6	5	4	3	2	1	0	
				BLANKT	IME[7:0]				7
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	_
Reset	0	0	0	0	0	0	0	0	

Bits 7:0 - BLANKTIME[7:0] Blanking Time

This bit field controls the blanking time as several clock cycles. The clock is CLK_PER prescaled by the BLANKPRESC[1:0] bit field in the Blanking Control (WEXn.BLANKCTRL) register.

24.5.10 Fault Control

(Name: Offset: Reset: Property:	FAULTCTRL 0x0A 0x00 -						
Bit	7	6	5	4	3	2	1	0
Γ	FDDBD					FDMODE	FDAC	T[1:0]
Access	R/W	• · · · ·	•	•		R/W	R/W	R/W
Reset	0					0	0	0

Bit 7 – FDDBD Fault Detection on Debug Break Detection

Value	Name	Description
0x0	FAULT	On Chip Debug Break request is treated as a fault if fault protection is enabled
0x1	IGNORE	On Chip Debug Break request will not trigger a fault

Bit 2 – FDMODE Fault Detection Restart Mode

Value	Name	Description
0x0	LATCHED	Latched mode. The output will remain in a Fault state until the Fault condition is no longer active and Fault Detection Flag Event Input (FDFEVx in INTCTRL register) is cleared by software.
0x1	CBC	Cycle-by-Cycle mode. Waveform output will remain in a Fault state until the Fault condition is no longer active.

Bits 1:0 – FDACT[1:0] Fault Detection Action

Value	Name	Description
0x0	NONE	None. Fault protection disabled.
0x1	LOW	Drive all pins low
0x2	-	Reserved
0x3	CUSTOM	Drive all pins to the settings defined by the Fault Drive (WEXn.FAULTDRV) and Fault Output (WEXn.FAULTOUT) registers

24.5.11 Fault Drive

FAULTDRV
0x0B
0x00
-

Bit	7	6	5	4	3	2	1	0
	FAULTDRV7	FAULTDRV6	FAULTDRV5	FAULTDRV4	FAULTDRV3	FAULTDRV2	FAULTDRV1	FAULTDRV0
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bits 0, 1, 2, 3, 4, 5, 6, 7 - FAULTDRV Fault Drive

This bit field defines the pin drive when a fault occurs. The bits have a one-to-one bit relation to waveform output. If the bit is zero, the pin is tri-states. If the bit is '1', the drive level is according to the setting in the Fault Output (WEXn.FAULTOUT) registers.

The register cannot be changed if fault protection is enabled (the FDACT bit field in the FAULTCTRL register is different from NONE).

Value	Description
0	The pin n (Pxn) output pad is tri-state
1	The pin n (Pxn) output is overwritten with the value in the FAULTOUT register

24.5.12 Fault Output

Name:	FAULTOUT
Offset:	0x0C
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
	FAULTOUT7	FAULTOUT6	FAULTOUT5	FAULTOUT4	FAULTOUT3	FAULTOUT2	FAULTOUT1	FAULTOUT0
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bits 0, 1, 2, 3, 4, 5, 6, 7 - FAULTOUT Fault Output Value

This bit field defines the output value when a fault occurs if FAULTDRV is set to '1'. The bits have a one-to-one bit relation to waveform output. The register cannot be changed if fault protection is enabled (the FDACT bit field in the FAULTCTRL register is different from NONE). The table below shows the available configuration for each bit n in this bit field:

Value	Description				
0	Waveform output value for Pin n (Pxn) is driven low				
1 Waveform output value for Pin n (Pxn) is driven high					

24.5.13 Interrupt Control

	Name: Offset: Reset: Property:	INTCTRL 0x0D 0x00 -						
Bit	7	6	5	4	3	2	1	0
								FAULTDET
Access		÷	•	-	•	•		R/W
Reset								0

Bit 0 – FAULTDET Fault Detection Interrupt Enable

Writing this bit to '1' enables a fault detection interrupt. There is no dependency on the TCE0 interrupt.

24.5.14 Interrupt Flags

	Name: Offset: Reset: Property:	INTFLAGS 0x0E 0x00 -						
Bit	7	6	5	4	3	2	1	0
				FDFEVC	FDFEVB	FDFEVA		FAULTDET
Access		•		R/W	R/W	R/W		R/W
Reset				0	0	0		0

Bit 4 – FDFEVC Fault Detection Flag Event Input C

This bit is set on a fault detection on Event input C. The bit is cleared by writing a '1' to its location.

- **Bit 3 FDFEVB** Fault Detection Flag Event Input B This bit is set on a fault detection on Event input B. The bit is cleared by writing a '1' to its location.
- Bit 2 FDFEVA Fault Detection Flag Event Input A

This bit is set on a fault detection on Event input A. The bit is cleared by writing a '1' to its location.

Bit 0 - FAULTDET Fault Detection Interrupt Flag

This bit is set on a positive edge of fault detection. The bit is cleared by writing a '1' to its location.

24.5.15 Status

Name:	STATUS
Offset:	0x0F
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
	BLANKSTATE			FDSEVC	FDSEVB	FDSEVA		FDSTATE
Access	R			R	R	R		R
Reset	0			0	0	0		0

Bit 7 – BLANKSTATE Blanking State

This bit is set if a blanking condition is active. Blanking is triggered either by software or hardware.

Value	Name	Description
0x0	OFF	Blanking off
0x1	ON	Blanking active

Bit 4 - FDSEVC Fault Detection State Event C

This status bit contains the current fault detection state for event input C.

Bit 3 – FDSEVB Fault Detection State Event B

This status bit contains the current fault detection state for event input B.

Bit 2 – FDSEVA Fault Detection State Event A

This status bit contains the current fault detection state for event input A.

Bit 0 - FDSTATE Fault Detection State

This status bit is set to '1' when any Fault detect condition is detected, i.e., when an event is detected on one of the event channels, software triggered fault or fault on break. This flag is cleared by writing the FAULTCLR command (CMD[2:0]) bit field to CTRLC. When operating in Cycle-by-Cycle Fault detection mode, the state is cleared on the first update after the Fault condition is no longer present.

Value	Name	Description
0x0	NORMAL	Normal state
0x1	FAULT	Fault state

24.5.16 Dead-Time Low Side

	Name: Offset: Reset: Property:	DTLS 0x10 0x00 -									
Bit	7	6	5	4	3	2	1	0			
		DTLS[7:0]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			

Bits 7:0 – DTLS[7:0] Dead-Time Low Side

This register holds the number of peripheral clock cycles for the dead-time low side.

	Name: Offset: Reset: Property:	DTHS 0x11 0x00 -								
Bit	7	6	5	4	3	2	1	0		
	DTHS[7:0]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

24.5.17 Dead-Time High Side

Bits 7:0 - DTHS[7:0] Dead-Time High Side

This register holds the number of peripheral clock cycles for the dead-time high side.

C F	Name: Offset: Reset: Property:	DTBOTH 0x12 0x00 -							
Bit	7	6	5	4	3	2	1	0	
Γ				DTBOT	H[7:0]]
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-
Reset	0	0	0	0	0	0	0	0	

24.5.18 Dead-Time Both Sides

Bits 7:0 – DTBOTH[7:0] Dead-Time Both Side

Writing to this register will simultaneously update the DTHS and DTLS registers.

24.5.19 DTI Swap

Name:	SWAP
Offset:	0x13
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
Γ					SWAP3	SWAP2	SWAP1	SWAP0
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0

Bits 0, 1, 2, 3 – SWAP Swap DTI Output Pairs

Setting bits in this bit field enables an output swap of DTI output [2n] and [2n+1]. DTInEN settings will not affect the swap operation.

The table below shows the available configuration for each SWAPn bit.

Value	Description
0	No swap - waveform output remains unchanged
1	Swap waveform output pins High and Low for Pair n

24.5.20 Pattern Generation Mode Override

Name:	PGMOVR
Offset:	0x14
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
	PGMOVR7	PGMOVR6	PGMOVR5	PGMOVR4	PGMOVR3	PGMOVR2	PGMOVR1	PGMOVR0
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bits 0, 1, 2, 3, 4, 5, 6, 7 – PGMOVR Pattern Generation Mode Override

This register holds override enable PGM. If a bit is set to '1', the corresponding bit in PGMOUT specifies the value that will override the output from the SWAP unit.

The table below shows the available configuration for each bit n in this bit field:

Value	Description
0	The pin n (Pxn) output is not overwritten
1	The pin n (Pxn) output is overwritten with the value in the PGMOUT register

24.5.21 Pattern Generation Mode Output

Name:	PGMOUT
Offset:	0x15
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
	PGMOUT7	PGMOUT6	PGMOUT5	PGMOUT4	PGMOUT3	PGMOUT2	PGMOUT1	PGMOUT0
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bits 0, 1, 2, 3, 4, 5, 6, 7 – PGMOUT Pattern Generation Mode Output

This register holds the Override Value to take effect when the WEX is in Pattern Generation mode. The table below shows the available configuration for each bit n in this bit field:

Value	Description
0	Waveform output value for Pin n (Pxn) is driven low
1	Waveform output value for Pin n (Pxn) is driven high

24.5.22 Output Override Enable

Name:	OUTOVEN
Offset:	0x17
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
	OUTOVEN7	OUTOVEN6	OUTOVEN5	OUTOVEN4	OUTOVEN3	OUTOVEN2	OUTOVEN1	OUTOVEN0
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bits 0, 1, 2, 3, 4, 5, 6, 7 - OUTOVEN Output Override Enable

This bit field enables the override of the corresponding port output register. (i.e., one-to-one bit relation to waveform output).

The register cannot be cleared if fault protection is enabled (the FDACT bit field in the Fault Control (WEXn.FAULTCTRL) register is different from NONE).

24.5.23 Dead-Time Low Side Buffer

	Name: Offset: Reset: Property:	DTLSBUF 0x18 0x00 -							
Bit	7	6	5	4	3	2	1	0	
				DTLSB	JF[7:0]				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-
Reset	0	0	0	0	0	0	0	0	

Bits 7:0 - DTLSBUF[7:0] Dead-Time Low Side Buffer

This register is the buffer for the WEXn.DTLS register. If using double-buffering, the valid content in this register is copied to the WEXn.DTLS register on an UPDATE condition. This register is unused if Pattern Generation mode is enabled (PGM = '1' in the Control A (WEXn.CTRLA) register).

24.5.24 Dead-Time High Side Buffer

	Name: Offset: Reset: Property:	DTHSBUF 0x19 0x00 -							
Bit	7	6	5	4	3	2	1	0	
				DTHSB	UF[7:0]				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 7:0 – DTHSBUF[7:0] Dead-Time High Side Buffer

This register is the buffer for the WEXn.DTHS register. If using double-buffering, the valid content in this register is copied to the WEXn.DTHS register on an UPDATE condition. This register is unused if Pattern Generation mode is enabled (PGM = '1' in the Control A (WEXn.CTRLA) register).

24.5.25 Dead-Time Both Sides Buffer

	Name: Offset: Reset: Property:	DTBOTHBUF 0x1A 0x00 -						
Bit	7	6	5	4	3	2	1	0
				DTBOTH	BUF[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:0 - DTBOTHBUF[7:0] Dead-Time Both Sides Buffer

Writing to this memory location will simultaneously update the WEXn.DTHSBUF and WEXn.DTLSBUF registers.

This register is unused if Pattern Generation mode is enabled (PGM = '1' in the Control A (WEXn.CTRLA) register).

24.5.26 DTI Swap Buffer

	Name: Offset: Reset: Property:	SWAPBUF 0x1B 0x00 -						
Bit	7	6	5	4	3	2	1	0
					SWAPBUF3	SWAPBUF2	SWAPBUF1	SWAPBUF0
Access		•			R/W	R/W	R/W	R/W
Reset					0	0	0	0

Bits 0, 1, 2, 3 - SWAPBUF Swap DTI Output Pairs Buffer

This bit field is the buffer value for the Swap DTI Output Pairs (SWAPn) bits. If using doublebuffering, the valid content in this register is copied to the DTI Swap (WEXn.SWAP) register on an UPDATE condition.

The table below shows the available configuration for each SWAPBUFn bit.

Value	Description
0	No swap - waveform output remains unchanged
1	Swap waveform output pins High and Low for Pair n

24.5.27 Pattern Generation Mode Override Buffer

Name:	PGMOVRBUF
Offset:	0x1C
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
	PGMOVRBUF							
	7	6	5	4	3	2	1	0
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bits 0, 1, 2, 3, 4, 5, 6, 7 - PGMOVRBUF Pattern Generation Mode Override Buffer

This register is the buffer for the Pattern Generation Mode Override (WEXn.PGMOVR) register. If using double-buffering, the valid content in this register is copied to the WEXn.PGMOVR register on an UPDATE condition.

This register is used only when enabling Pattern Generation mode (PGM = '1' in the Control A (WEXn.CTRLA) register).

The table below shows the available configuration for each bit n in this bit field:

Value	Description
0	The pin n (Pxn) output is not overwritten
1	The pin n (Pxn) output is overwritten with the value in the PGMOUTBUF register

24.5.28 Pattern Generation Mode Output Buffer

Name:	PGMOUTBUF
Offset:	0x1D
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
	PGMOUTBUF							
	7	6	5	4	3	2	1	0
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bits 0, 1, 2, 3, 4, 5, 6, 7 – PGMOUTBUF Pattern Generation Mode Output Buffer

This register is the buffer for the Pattern Generation Mode Output (WEXn.PGMOUT) register. If using double-buffering, the valid content in this register is copied to the WEXn.PGMOUT register on an UPDATE condition.

This register is used only when enabling Pattern Generation mode (PGM = '1' in the Control A (WEXn.CTRLA) register).

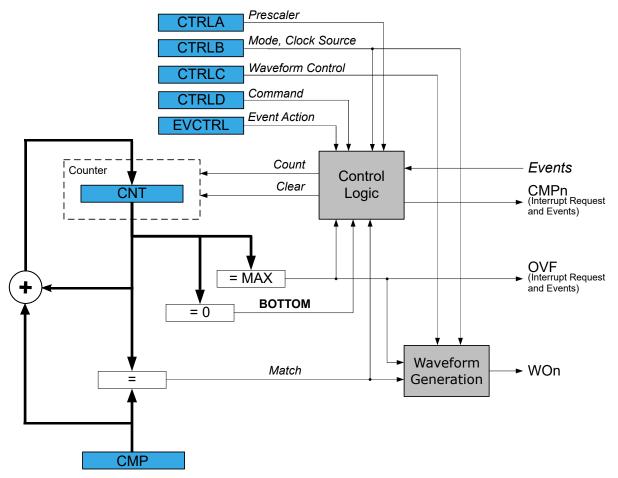
The table below shows the available configuration for each bit n in this bit field:

Value	Description
0	Waveform output value for Pin n (Pxn) is driven low
1	Waveform output value for Pin n (Pxn) is driven high

25. TCF - 24-bit Timer/Counter Type F

25.1 Features

- Up to 24-Bit Timer/Counter
- Operation Modes:
 - Frequency Generation
 - Numerical Controller Oscillator (NCO)
 - 8-Bit Pulse-Width Modulation (PWM)
- 7-Bit Prescaler
- Timer Overflow and Compare Match Events/Interrupts
- Event Generation as Pulse or Waveform Output
- Multiple Clock Sources


25.2 Overview

The Timer/Counter type F (TCF) capabilities include frequency and waveform generation. The TCF consists of a base counter and a control logic which can be set in different modes, each providing a unique functionality. The base counter is clocked by a selectable clock source with optional prescaling.

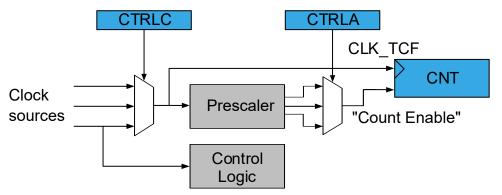

25.2.1 Block Diagram

Figure 25-1. Timer/Counter Type F Block Diagram

The timer/counter can be clocked from multiple clock sources, including the Peripheral Clock (CLK_PER), internal oscillators, and Event System (EVSYS).

Figure 25-2. Timer/Counter Clock Logic

The Clock Select (CLKSEL) bit field in the Control C (TCFn.CTRLC) register selects one of the clock sources used as an input for the prescaler.

By using the EVSYS, any event source, such as an external clock signal on any I/O pin, may be used as the counter clock input. In addition, the timer/counter can be controlled via the event system.

25.2.2 Signal Description

Table 25-1. Signal Description

Signal	Description	Туре		
WOn	Digital Asynchronous Output	Waveform Output n		

25.3 Functional Description

25.3.1 Definitions

The following definitions are used throughout the documentation:

Table 25-2. Timer/Counter Definitions

Name	Description
BOTTOM	The counter reaches BOTTOM when it becomes zero
MAX	The counter reaches MAXimum when it becomes all ones
TOP	The counter reaches TOP when it becomes equal to the highest value in the count sequence
CNT	Counter register value
CMP	Compare register value

In general - the term "timer" is used when the timer/counter counts periodic clock ticks, while "counter" is used when the input signal has sporadic or irregular ticks. The latter can be the case when counting events.

25.3.2 Initialization

To start using the timer/counter in the Frequency Generation mode, follow these steps:

- Write a TOP value to the Compare (TCFn.CMP) register. Enable the peripheral by writing a '1' to the Enable (ENABLE) bit in the Control A (TCFn.CTRLA) register.
- The counter will start counting clock ticks according to the prescaler setting in the Clock Select (CLKSEL) bit field in TCFn.CTRLA)
- The counter value can be read from the Count (TCFn.CNT) register. The TCF will generate an interrupt when the CNT value reaches TOP if the interrupts are enabled.

25.3.3 Operation

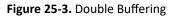
25.3.3.1 Register Synchronization Categories

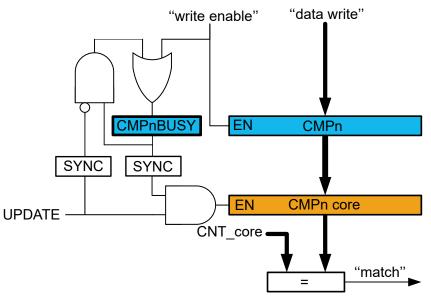
The TCF core is operating asynchronous with the peripheral clock. Any access to the control and data register therefore needs to be synchronized to the core domain. This is done differently for different register categories.

Some control registers are not allowed to be changed while the timer/counter is running (enable-protected).

Table 25-3. Categorization of Registers

Double-Buffered Registers	Enable-Protected Registers	Normal I/O Registers
CTRLA	CTRLB	INTCTRL
CTRLC	EVCTRL	INTFLAGS
CTRLD		STATUS
CNT (CNT/PER)		DBGCTRL
CMP (CMP0/CMP1)		


Note: CNT register is a synchronized copy of the actual asynchronous counter value. The CNT register is frozen during synchronization and is not updated every CLK_PER cycle. The synchronization process takes up to one CLK_TCF cycle plus three CLK_PER cycles.


Double-Buffered Registers

The double-buffered registers have their separate busy flag in the STATUS register. When the register is written this triggers a synchronization to the core domain and will set the corresponding busy flag. The busy bits are cleared when completing the synchronization. Registers are write-protected while the synchronization is ongoing.

For the CNT and CMP registers larger than 8-bit, the synchronization starts when writing the MSB. When the TCF operates in 8-bit PWM mode, the individual bytes in CNT and CMP registers are synchronized separately.

The control and CNT register synchronization are done as soon as the registers are written. Compare registers are updated at overflow (UPDATE). The busy flag is set until the UPDATE condition occurs. See the figure below. If immediate synchronization is wanted, this can be forced by issuing an UPDATE through the COMMAND bit field in the TCFn.CTRLD register.

As long as the CNT register is not written, the register is continuously updated from the core domain. After wake-up from sleep, the CNTBUSY bit remains set until the CNT value is updated with the latest value in the core domain.

Enable Protected Registers

The enable-protected registers can only be written when the ENABLE bit in the TCFn.CTRLA register is written to '0'.

25.3.3.2 Waveform Generation Modes

The TCF provides four waveform generation modes controlled by the Waveform Generation Mode (WGMODE) bit field in the Control B (TCFn.CTRLB) register. The waveform generation modes are:

- Frequency generation
- NCO Pulse-Frequency
- NCO Fixed Duty Cycle
- 8-bit PWM

The registers functionality might be different for each mode and is summarized in the table below:

Table 25-4. Registers - Mode Differences

Mode	CNT2	CNT1	CNT0	CMP2	CMP1	CMP0	CMP1 Flag	CMP0 Flag	OVF Flag
Frequency Generation		Counter			Compare/TO	þ	CMP Match ⁽¹⁾	CMP Match ⁽¹⁾	TOP
NCO Pulse-Frequency	Counter/Accumulator			Increment			WO pulse end	WO pulse start	MAX
NCO Fixed Duty-Cycle	Coι	unter/Accum	nulator	Increment			MAX ⁽¹⁾	MAX ⁽¹⁾	MAX
8-bit PWM	-	Period	Counter	-	Compare 1	Compare 0	CMP1 Match	CMP0 Match	TOP

Note:

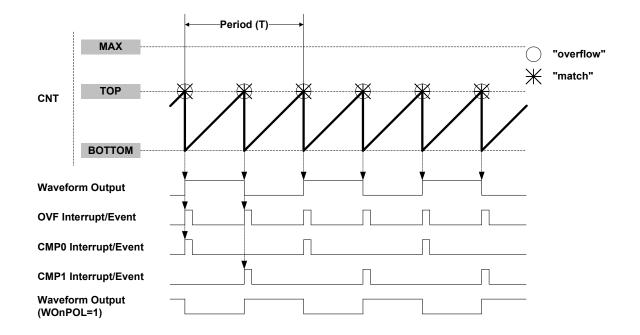
1. CMP0 and CMP1 interrupts and events are generated on alternating overflows where one will match the rising edge of the waveform and the other the falling edge. An overflow interrupt/ event is generated on all overflows.

25.3.3.2.1 Frequency Waveform Generation

In Frequency Waveform Generation mode, the TCFn.CMP register controls the period time (T). The corresponding waveform generator output is toggled on each compare match between the TCFn.CNT and TCFn.CMPn registers.

The following equation defines the waveform frequency *f*_{FRQ}:

$$f_{\rm FRQ} = \frac{f_{\rm CLK_TCF}}{2N(\rm CMP+1)}$$


where N represents the prescaler divider used (see the PRESC bit field in the TCFn.CTRLA register), and $f_{\text{CLK TCF}}$ is the TCF clock frequency.

The maximum frequency of the waveform generated is half of the peripheral clock frequency ($f_{CLK_TCF}/2$) when TCFn.CMP is set to 0×0000 and no prescaling is used (N = 1, PRESC = 0x0 in TCFn.CTRLA).

The OVF interrupt/event is generated on every overflow. The CMP0 and CMP1 interrupts/events are generated on alternating overflows - each occurs once every PWM period with half the period in between.

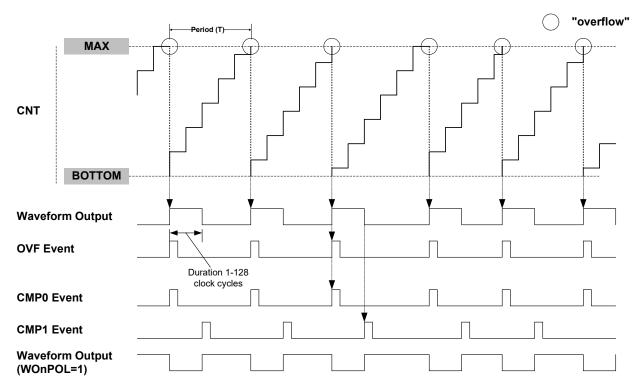
Figure 25-4. Frequency Waveform Generation

25.3.3.2.2 NCO Pulse-Frequency Waveform Generation

In NCO Pulse-Frequency Waveform Generation mode, the TCF operates by repeatedly adding a fixed value defined by the TCFn.CMP to an accumulator (TCFn.CNT). Additions occur at the input clock rate. The accumulator will overflow with a carry periodically, the raw waveform output, effectively reducing the input clock by the ratio of the added value to the maximum accumulator value.

The waveform frequency (f_{FRO}) is defined by the following equation:

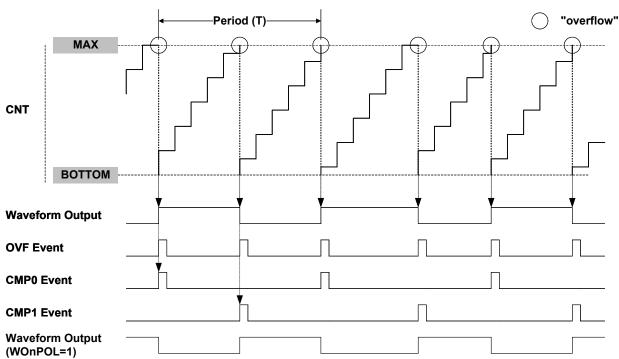
 $f_{\rm FRQ} = \frac{f_{\rm CLK_TCF} \, x \, \rm Increment}{2^{\rm SIZE_CNT}}$


This makes a linear relationship between the increment value and the waveform frequency. This linear advantage over divide-by-n timers comes at the cost of the output jitter. However, the jitter that occurs periodically is always plus or minus one clock period, depending on the division remainder. For example, when there is no division remainder, then there is no jitter, whereas a division remainder of 0.5 will result in a jitter frequency one half of the overflow frequency.

In NCO Pulse-Frequency (NCOPF) mode, the output becomes active on the rising clock edge immediately following the overflow event. It goes inactive 1 to 128 clock periods later, determined by the WGPULSE bit field in TCFn.CTRLC. Prescaler is disabled in this mode, which gives a pulsed waveform output at the f_{FRO} frequency.

Each waveform pulse start generates a CMP0 event, and each waveform pulse end generates a CMP1 event. The interrupt flags are set simultaneously as the pulse events are generated.

Figure 25-5. NCO Pulse-Frequency Waveform Generation



25.3.3.2.3 NCO Fixed Duty-Cycle Frequency Waveform Generation

In NCO Fixed Duty Cycle Frequency Waveform Generation mode, the TCF operates like in NCO Pulse-Frequency Waveform Generation mode, but the output is toggled every time the accumulator overflows. Given that the increment value remains constant, this provides a 50% duty cycle at half the f_{FRO} frequency for the Pulse-Frequency mode.

The CMP0 and CMP1 events are generated at alternating overflows. The interrupt flags are set simultaneous as the pulse events are generated.

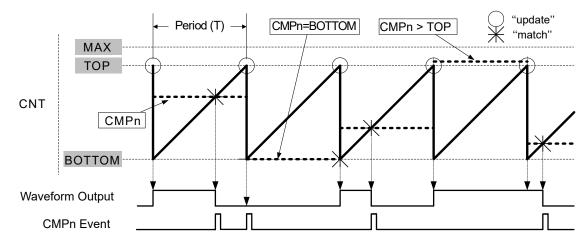


Figure 25-6. NCO Fixed Duty-Cycle Frequency Waveform Generation

25.3.3.2.4 8-Bit PWM Mode

The TCF can be configured to run in 8-bit PWM mode, using the register pairs in the lowest 16-bit Compare register (TCFn.CMP0 and TCFn.CMP1) as individual compare registers. The TCFn.CNT0 is used as the counter, the TCFn.CNT1 (PER) controls the waveform period (T), and CMP0/1 control the waveform's duty cycle. The figure below shows how the counter counts from BOTTOM to TOP and then restarts from BOTTOM. The waveform generator output is set at BOTTOM and cleared on the compare match between the TCFn.CNT0 and TCFn.CMPn registers.

Note: TCFn.CMPn = BOTTOM will generate a static low signal on WOn while TCFn.CMPn > TOP will produce a static high signal on WOn.

Figure 25-7. 8-Bit PWM Mode

The Period (TCFn.PER) register defines the PWM resolution. The minimum resolution is two bits (TCFn.PER = 0×0003), and the maximum resolution is eight bits (TCFn.PER = MAX).

The following equation calculates the exact resolution in bits for single-slope PWM (R_{PWM}):

$$R_{\rm PWM} = \frac{\log({\rm PER}+1)}{\log(2)}$$

The single-slope PWM frequency (f_{PWM}) depends on the period setting (TCFn.PER), the peripheral clock frequency $f_{CLK TCF}$ and the TCF prescaler (the PRESC bit field in the TCFn.CTRLA register).

It is calculated by the following equation where *N* represents the prescaler divider used:

$$f_{\rm PWM} = \frac{f_{\rm CLK_TCF}}{N(\rm PER+1)}$$

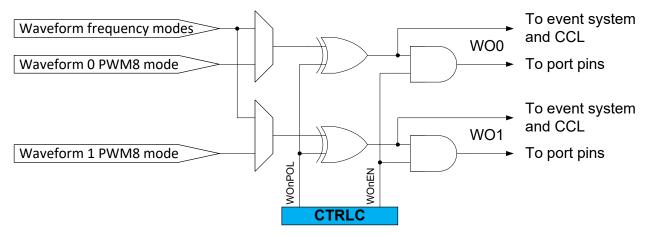
25.3.3.3 Output

Timer synchronization and output logic level depend on the selected Waveform Generation Mode (WGMODE) bit field in Control B (TCFn.CTRLB) register.

Writing the Waveform Output Enable (WOnEN) bit in Control C (TCFn.CTRLC) register to '1' enables the waveform output, making the waveform output available on the corresponding pin, overriding the value in the corresponding PORT and DIR registers.

The table below lists the different configurations and their impact on the output.

Table 25-5. Output Configuration


WOnEN	WGMODE	Waveform Output		
1	8-bit PWM mode	Output follows PWM waveform		
I	Frequency or NCO modes	Output follows Frequency waveform		
0	Not applicable	No output		

Important: It is not possible to change modes while the peripheral is enabled. There is a possibility that an interrupt flag is set during the timer configuration. It is recommended to clear the Timer/Counter Interrupt Flags (TCFn.INTFLAGS) register after configuring the peripheral.

The waveform outputs to the Event System and CCL are bypassing the output enable. The figure below shows the waveform output logic for the TCF.

Figure 25-8. Waveform Output to the Pin, Event System and CCL

25.3.3.4 Noise Canceler

The Noise Canceler improves noise immunity by using a simple digital filter scheme. When the Noise Filter (FILTERA) bit in the Event Control (TCFn.EVCTRL) register is enabled, the peripheral monitors

the event channel and keeps the last four observed samples. If four consecutive samples are equal, the input is considered stable, and the signal is fed to the edge detector.

When enabled, the Noise Canceler introduces an additional delay of five clock cycles between a change applied to the input and the event action.

The Noise Canceler uses the Timer/Counter clock and is not affected by the prescaler.

25.3.4 Operation Considerations

Take some considerations when using the TCF.

- When writing to one of the CTRLA, CTRLC, CTRLD, CNT, or CMP registers, it is not allowed to
 write a new value before the register content has been transferred to its destination. Each of the
 mentioned registers has an individual synchronization, which means that, e.g., writing to CTRLA
 does not disturb a CTRLC write in progress. Use the TCFn.STATUS to detect that a transfer to the
 destination register is finished.
- The CNT, CMP, and CTRLA/C/D registers might get corrupted when switching clock sources. A safe procedure for switching clock source is:
 - Disable the TCF
 - Disable the TCF interrupts by clearing OVF and CMPn bit fields in the TCFn.INTCTRL register
 - Select the clock source by setting the CLKSEL bit field in the TCFn.CTRLB register as appropriate
 - Write new values to TCFn.CNT, TCFn.CMP and TCFn.CTRLA/C/D registers
 - Wait for BUSY flags to be cleared
 - Clear the TCF Interrupt flags
 - Optional: Enable interrupts
 - Enable the TCF
- The CNT and CTRLA/C/D registers are updated directly after a write operation, while CMP is updated at an overflow condition. If immediate synchronization of the CMP register is needed, this may be initiated through the UPDATE command using the CMD bit field in the CTRLD register.
- When entering Standby sleep mode after having written to CNT, CMP, or CTRLA/C/D, EVCTRL, the clock request is held until the registers are updated.
- When the TCF operating is in Standby sleep mode and the interrupt condition is met, the wake-up process starts on the following cycle of the TCF clock, meaning that the timer is always advanced by at least one before the processor can read the counter value.
- The synchronization of the TCF interrupt flags takes three peripheral cycles plus one timer cycle. The timer is therefore advanced by at least one before the processor can read the timer value causing the interrupt flag to be set.
- Reading the CNT register shortly after wake-up from Standby sleep mode may give an incorrect result. Since CNT is clocked on the asynchronous domain, reading the CNT will be done through a register synchronized to the internal I/O clock domain. Synchronization happens whenever there is a new counter value and no ongoing write synchronization. When waking up from Standby sleep mode, the CNT will read as the previous value (as before entering sleep) until the next rising edge of the asynchronous clock. The phase of the clock after waking up from Standby sleep mode is essentially unpredictable, as it depends on the wake-up time. The recommended procedure for reading CNT is thus as follows:
 - Wait for the Counter Synchronization Busy (CNTBUSY) bit in the TCFn.STATUS register to be cleared
 - Read the TCFn.CNT register
- The Waveform Output (WOn) pin is changed on the timer clock and is not synchronized to the processor clock.

25.3.5 Events

The TCF can generate the events described in the following table:

Table 25-6. Event Generators in TCF

Event	Description	CMPnEV	Event Type	Generating Clock Domain	Event Length
OVF	OVF flag is set	0	Pulse	CLK_TCF	One CLK_TCF period
CMDp	CMPn Match	0	Pulse	CLK_TCF	One CLK_TCF period
CMPn	Waveform Output n (WO0/WO1)	1	Level	CLK_TCF	Waveform Output

The TCF is an event generator. Any condition that causes the OVF Interrupt flag in the TCFn.INTFLAGS register to be set or a compare match will also generate an event.

The peripheral uses one event input. Incoming events will give an event action as defined by Event Action A (EVACTA) bit field in the TCFn.EVCTRL register if the Counter Event A Input Enable (CNTAEI) bit in the Event Control (TCFn.EVCTRL) register is set to '1'.

25.3.6 Interrupts

Table 25-7. Available Interrupt Vectors and Sources

Name	Vector Description	Conditions
OVF	Overflow interrupt	Timer/Counter has reached TOP or MAX
CMP0	Compare Channel 0 interrupt	Match between the counter value and the Compare or Compare 0 register
CMP1	Compare Channel 1 interrupt	Match between the counter value and the Compare 1 register

When an interrupt condition occurs, the corresponding interrupt flag is set in the peripheral's Interrupt Flags (*peripheral*.INTFLAGS) register.

An interrupt source is enabled or disabled by writing to the corresponding enable bit in the peripheral's Interrupt Control (*peripheral*.INTCTRL) register.

An interrupt request generates when the corresponding interrupt source is enabled - and the interrupt flag is set. The interrupt request remains active until clearing the interrupt flag. See the peripheral's INTFLAGS register for details on how to clear interrupt flags.

25.3.7 Sleep Mode Operation

When in Standby sleep mode, the TCF is disabled by default. It will be halted as soon as entering sleep mode.

The module can stay fully operational in the Standby sleep mode if writing the Run Standby (RUNSTDBY) bit in the TCFn.CTRLA register to '1'.

All operations are halted in Power-Down sleep mode.

25.4 Register Summary

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00	CTRLA	7:0	RUNSTDBY					PRESC[2:0]		ENABLE
0x01	CTRLB	7:0	CMP1EV	CMP0EV		CLKSEL[2:0]			WGMODE[2:0]	
0x02	CTRLC	7:0			WGPULSE[2:0]		WO1POL	WO0POL	WO1EN	WO0EN
0x03	CTRLD	7:0							CMD	[1:0]
0x04	EVCTRL	7:0					FILTERA	EVACT	FA[1:0]	CNTAEI
0x05	INTCTRL	7:0						CMP1	CMP0	OVF
0x06	INTFLAGS	7:0						CMP1	CMP0	OVF
0x07	STATUS	7:0	CMP1BUSY	CMP0BUSY	PERBUSY	CNTBUSY	CTRLDBUSY	CTRLCBUSY	CTRLABUSY	
0x08 0x0C	Reserved									
0x0D	DBGCTRL	7:0								DBGRUN
0x0E 0x0F	Reserved									
		7:0				CNT	[7:0]			
0x10	CNT	15:8				CNT	[15:8]			
0.10	CIVI	23:16				CNT[2	23:16]			
		31:24								
		7:0				CMF	P[7:0]			
0x14	CMP	15:8				CMP	[15:8]			
0714	CIVIE	23:16				CMP[23:16]			
		31:24								

25.5 Register Description

25.5.1 Control A

Name:	CTRLA
Offset:	0x00
Reset:	0x00
Property:	Double-Buffered

Bit	7	6	5	4	3	2	1	0
	RUNSTDBY					PRESC[2:0]		ENABLE
Access	R/W				R/W	R/W	R/W	R/W
Reset	0				0	0	0	0

Bit 7 – RUNSTDBY Run Standby

Writing a '1' to this bit will enable the peripheral to run in Standby sleep mode.

Bits 3:1 - PRESC[2:0] Prescaler Select

This bit field selects the clock prescaler.

Value	Name	Description
0x0	DIV1	TCF runs directly on Clock Source
0x1	DIV2	TCF uses Clock Source divided by 2
0x2	DIV4	TCF uses Clock Source divided by 4
0x3	DIV8	TCF uses Clock Source divided by 8
0x4	DIV16	TCF uses Clock Source divided by 16
0x5	DIV32	TCF uses Clock Source divided by 32
0x6	DIV64	TCF uses Clock Source divided by 64
0x7	DIV128	TCF uses Clock Source divided by 128

Bit 0 - ENABLE Enable

Writing this bit to '1' enables the Timer/Counter type F (TCF) peripheral.

25.5.2 Control B

Name:	CTRLB
Offset:	0x01
Reset:	0x00
Property:	Enable-protected

Bit	7	6	5	4	3	2	1	0
Γ	CMP1EV	CMP0EV		CLKSEL[2:0]			WGMODE[2:0]]
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 7 – CMP1EV Compare 1 Event Generation

This bit field controls the waveform mode on the event output line. Writing this bit to '1' will output the waveform output on the event line instead of the compare match or overflow pulse. The WO1EN bit is ignored for the event outputs.

Value	Name	Description
0	PULSE	An event pulse is generated when there is a match or overflow
1	WAVEFORM	The event output is equal to the waveform output WO1, whatever WO1EN bit it is

Bit 6 – CMP0EV Compare 0 Event Generation

This bit field controls the waveform mode on the event output line. Writing this bit to '1' will output the waveform output on the event line instead of the compare match or overflow pulse. The WO0EN bit is ignored for the event outputs.

Value	Name	Description
0	PULSE	An event pulse is generated when there is a match or overflow
1	WAVEFORM	The event output is equal to the waveform output WO0, whatever WO0EN bit it is

Bits 5:3 – CLKSEL[2:0] Clock Select

This bit field controls the Timer/Counter clock source and cannot be changed while the Timer/Counter is enabled.

Value	Name	Description
0x0	CLKPER	Peripheral clock
0x1	EVENT	Event edge
0x2	OSCHF	Internal high-frequency oscillator
0x3	OSC32K	Internal 32kHz oscillator
0x4	-	Reserved
0x5	PLL	Phase Locked Loop
Others	-	Reserved

Bits 2:0 - WGMODE[2:0] Waveform Generation Mode

_	-				-			-	-	-	-	-	-	-
This b	it fie	eld	se	elect	ts f	the	Way	/e	efo	rn	n	n	hode.	

Value	Name	Description			
0x0	FRQ	Frequency			
0x1	NCOPF	Numerical Controlled Oscillator Pulse-Frequency			
0x2	NCOFDC	Numerical Controlled Oscillator Fixed Duty-Cycle			
0x3-0x6	-	Reserved			
0x7	PWM8	8-Bit PWM mode			

25.5.3 Control C

Name:	CTRLC
Offset:	0x02
Reset:	0x00
Property:	Double-Buffered

Bit	7	6	5	4	3	2	1	0
			WGPULSE[2:0]		WO1POL	WO0POL	WO1EN	WO0EN
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0

Bits 6:4 - WGPULSE[2:0] Waveform Generation Pulse Length

This bit field controls the generated waveform high time in Pulse-Frequency mode.

Value	Name	Description
0x0	CLK1	High pulse is 1 Timer/Counter clock period
0x1	CLK2	High pulse is 2 Timer/Counter clock periods
0x2	CLK4	High pulse is 4 Timer/Counter clock periods
0x3	CLK8	High pulse is 8 Timer/Counter clock periods
0x4	CLK16	High pulse is 16 Timer/Counter clock periods
0x5	CLK32	High pulse is 32 Timer/Counter clock periods
0x6	CLK64	High pulse is 64 Timer/Counter clock periods
0x7	CLK128	High pulse is 128 Timer/Counter clock periods

Bit 3 - WO1POL Waveform Output 1 Polarity

This bit field controls the waveform output 1's polarity.

Value	Description
0	The waveform output WO1 is set on overflow and cleared on compare match
1	The waveform output WO1 is cleared on overflow and set on compare match

Bit 2 - WO0POL Waveform Output 0 Polarity

This bit field controls the waveform output 0's polarity.					
Value	Description				
0	The waveform output WO0 is set on overflow and cleared on compare match				

The waveform output WO0 is cleared on overflow and set on compare match

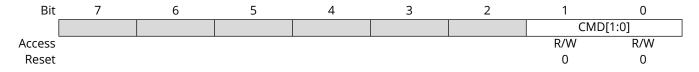
Bit 1 - WO1EN Waveform Output 1 Enable

1

This bit is used to set the Compare/Overflow Output output value. For frequency generation modes, the same waveform is available on both outputs.

Value	Description					
0	The waveform output is disconnected					
1	The waveform output is available on corresponding pin					

Bit 0 - WO0EN Waveform Output 0 Enable


This bit is used to set the Compare/Overflow output value. For frequency generation modes, the same waveform is available on both outputs.

Value	Description				
0	The waveform output is disconnected				
1	The waveform output is available on corresponding pin				

25.5.4 Control D

Name:	CTRLD
Offset:	0x03
Reset:	0x00
Property:	Double-Buffered

Bits 1:0 - CMD[1:0] Command

This bit field is used for software control of update, restart, and Reset of the timer/counter. The Command bit field remains set until the command is synchronized to counter domain. No new command is accepted during this time.

Value	Name	Description	
0x0	NONE	No command	
0x1	UPDATE	Force update	
0x2	RESTART	Force restart	

25.5.5 Event Control

Name:	EVCTRL
Offset:	0x04
Reset:	0x00
Property:	Enable-protected

Bit	7	6	5	4	3	2	1	0
					FILTERA	EVACT	A[1:0]	CNTAEI
Access				•	R/W	R/W	R/W	R/W
Reset					0	0	0	0

Bit 3 – FILTERA Event Filter A

Writing this bit to '1' enables the input filter on event A.

Bits 2:1 - EVACTA[1:0] Event Action A

This bit field selects the action the counter will take upon event conditions.

Value	Name	Description
0	RESTART	Restart the counter
1	BLANK	Mask waveform output to '0'

Bit 0 - CNTAEI Counter Event A Input Enable

Writing this bit to '1' enables the input event.

25.5.6 Interrupt Control

Name:	INTCTRL
Offset:	0x05
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
						CMP1	CMP0	OVF
Access		•		•		R/W	R/W	R/W
Reset						0	0	0

Bit 2 – CMP1 Compare 1 Interrupt Enable Writing this bit to '1' enables the Compare 1 interrupt.

Bit 1 – CMP0 Compare 0 Interrupt Enable Writing this bit to '1' enables the Compare 0 interrupt.

Bit 0 - OVF Overflow Interrupt Enable

Writing this bit to '1' enables interrupt on overflow.

25.5.7 Interrupt Flags

Name:	INTFLAGS
Offset:	0x06
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
						CMP1	CMP0	OVF
Access		•		•		R/W	R/W	R/W
Reset						0	0	0

Bit 2 - CMP1 Compare 1 Flag

This bit is set when an interrupt occurs. The interrupt conditions depend on the Waveform Generation Mode (WGMODE) bit field in the Control B (TCFn.CTRLB) register. This bit is cleared by writing a '1' or writing the Compare register.

Bit 1 – CMP0 Compare 0 Flag

This bit is set when an interrupt occurs. The interrupt conditions depend on the Waveform Generation Mode (WGMODE) bit field in the Control B (TCFn.CTRLB) register. This bit is cleared by writing a '1' or writing the Compare register.

Bit 0 - OVF Overflow Interrupt Flag

This bit is set when an overflow interrupt occurs. The flag is set whenever the timer/counter wraps from MAX to BOTTOM.

Writing a '1' to the bit position clears the bit.

25.5.8 Status

Name:	STATUS
Offset:	0x07
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
	CMP1BUSY	CMP0BUSY	PERBUSY	CNTBUSY	CTRLDBUSY	CTRLCBUSY	CTRLABUSY	
Access	R	R	R	R	R	R	R	
Reset	0	0	0	0	0	0	0	

Bit 7 – CMP1BUSY Compare 1 Synchronization Busy

When this bit is '1', the TCFn is busy synchronizing the CMP1 (TCFn.CMP1) register in the asynchronous domain. This bit is valid only in the PWM8 mode. For other modes, this bit is identical to CMP0BUSY.

Bit 6 – CMP0BUSY Compare 0 Synchronization Busy

When this bit is '1', the TCFn is busy synchronizing the Compare (TCFn.CMP) register in the asynchronous domain.

Bit 5 – PERBUSY Period Synchronization Busy

When this bit is '1', the TCFn is busy synchronizing the Period (TCFn.PER or TCFn.CNT1) register in the asynchronous domain. This bit in only valid in PWM8 mode. For other modes, this bit is identical to CNTBUSY.

Bit 4 – CNTBUSY Counter Synchronization Busy

When this bit is '1', the TCFn is busy synchronizing the Counter (TCFn.CNT) register in the asynchronous domain. After wake-up from a sleep mode where the peripheral clock is disabled, this bit is set until the synchronization is complete.

Bit 3 – CTRLDBUSY Control D Synchronization Busy

When this bit is '1', the TCFn is busy synchronizing the Control D (TCFn.CTRLD) register in the asynchronous domain.

Bit 2 – CTRLCBUSY Control C Synchronization Busy

When this bit is '1', the TCFn is busy synchronizing the Control C (TCFn.CTRLC) register in the asynchronous domain.

Bit 1 – CTRLABUSY Control A Synchronization Busy

When this bit is '1', the TCFn is busy synchronizing the Control A (TCFn.CTRLA) register in the asynchronous domain.

25.5.9 Debug Control

	Name: Offset: Reset: Property:	DBGCTRL 0x0D 0x00 -						
Bit	7	6	5	4	3	2	1	0
								DBGRUN
Access							•	R/W
Reset								0

Bit 0 – DBGRUN Debug Run

Value	Description
0	The peripheral is halted in Break Debug mode and ignores events
1	The peripheral will continue to run in Break Debug mode when the CPU is halted

25.5.10 Counter Register

Name:CNTOffset:0x10Reset:0x00Property:Double-Buffered

The TCFn.CNT0, TCFn.CNT1, TCFn.CNT2 and TCFn.CNT3 registers represent the 32-bit value TCFn.CNT. Byte 0 [7:0] is accessible at the original offset. Byte 1 [15:8] is accessible at the offset $+ 0 \times 1$. Byte 2 [23:16] is accessible at the offset $+ 0 \times 2$. Byte 3 [31:24] is accessible at the offset $+ 0 \times 3$, but it never contains any data.

A write or read access to byte 2 (offset $+ 0 \times 2$) triggers a new synchronization.

In the 8-bit PWM mode, only TCFn.CNT0 and TCFn.CNT1 are used and accessed as independent registers. TCFn.CNT2 and TCFn.CNT3 do not have any function in this mode.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Γ				CNT[2	23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
[CNT[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
Γ				CNT	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 23:0 - CNT[23:0] Counter

This bit field holds the Counter register.

25.5.11 Compare Register

Name:CMPOffset:0x14Reset:0x00Property:Double-Buffered

The TCFn.CMP0, TCFn.CMP1, TCFn.CMP2 and TCFn.CMP3 registers represent the 32-bit value TCFn.CMP. Byte 0 [7:0] is accessible at the original offset. Byte 1 [15:8] is accessible at the offset $+ 0 \times 1$. Byte 2 [23:16] is accessible at the offset $+ 0 \times 2$. Byte 3 [31:24] is accessible at the offset $+ 0 \times 3$, but it never contains any data.

A write or read access to byte 2 (offset + 0x2) triggers a new synchronization.

In the 8-bit PWM mode, only TCFn.CMP0 and TCFn.CMP1 are used and accessed as independent registers. TCFn.CMP2 and TCFn.CMP3 do not have any function in this mode.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
				CMP[2	23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
[CMP[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
[CMP	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 23:0 - CMP[23:0] Compare Value

This bit field holds the compare, top or increment value.

26. RTC - Real-Time Counter

26.1 Features

- 16-Bit Resolution
- Selectable Clock Sources
- Programmable 15-Bit Clock Prescaling
- One Compare Register
- One Period Register
- Clear Timer on Period Overflow
- Optional Interrupt/Event on Overflow and Compare Match
- Periodic Interrupt and Event
- Crystal Error Correction

26.2 Overview

The RTC peripheral offers two timing functions: The Real-Time Counter (RTC) and a Periodic Interrupt Timer (PIT).

The PIT functionality can be enabled independently of the RTC functionality.

RTC - Real-Time Counter

The RTC counts (prescaled) clock cycles in a Counter register and compares the content of the Counter register to a Period register and a Compare register.

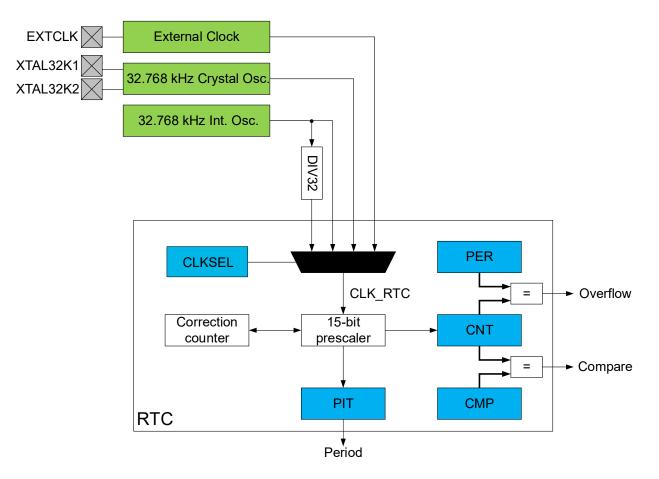
The RTC can generate both interrupts and events on compare match or overflow. It will generate a compare interrupt and/or event at the first count after the counter value equals the Compare register value, and an overflow interrupt and/or event at the first count after the counter value equals the Period register value. The overflow will reset the counter value to zero.

The RTC peripheral typically runs continuously, including in Low-Power sleep modes, to keep track of time. It can wake up the device from sleep modes, and/or interrupt the device at regular intervals.

The reference clock is typically the 32.768 kHz output from an external crystal. The RTC can also be clocked from an external clock signal, the 32 kHz Internal Oscillator (OSC32K), or the OSC32K divided by 32.

The RTC peripheral includes a 15-bit programmable prescaler that can scale down the reference clock before it reaches the counter. A wide range of resolutions and time-out periods can be configured for the RTC. With a 32.768 kHz clock source, the maximum resolution is 30.5 µs, and time-out periods can be up to two seconds. With a resolution of 1s, the maximum time-out period is more than 18 hours (65536 seconds).

The RTC also supports crystal error correction when operated using external crystal selection. An externally calibrated value will be used for correction. The software can adjust the RTC with an accuracy of ± 1 PPM, and the maximum adjustment is ± 127 PPM. The RTC correction operation will either speed up (by skipping count) or slow down (by adding extra count) the prescaler to account for the crystal error.


PIT - Periodic Interrupt Timer

The PIT uses the same clock source (CLK_RTC) as the RTC function and can generate an interrupt request or a level event on every nth clock period. The n can be selected from {4, 8, 16,... 32768} for interrupts, and from {64, 128, 256,... 8192} for events.

26.2.1 RTC Block Diagram

Figure 26-1. RTC Block Diagram

26.3 Clocks

The peripheral clock (CLK_PER) is required to be at least four times faster than the RTC clock (CLK_RTC) for reading the counter value, regardless of the prescaler setting.

A 32.768 kHz crystal can be connected to the XTAL32K1 or XTAL32K2 pins, along with any required load capacitors. Alternatively, an external digital clock can be connected to the XTAL32K1 pin.

26.4 RTC Functional Description

The RTC peripheral offers two timing functions: The Real-Time Counter (RTC) and a Periodic Interrupt Timer (PIT). This subsection describes the RTC.

26.4.1 Initialization

Before enabling the RTC peripheral and the desired actions (interrupt requests and output events), the source clock for the RTC counter must be configured to operate the RTC.

26.4.1.1 Configure the Clock CLK_RTC

To configure the CLK_RTC, follow these steps:

- 1. Configure the desired oscillator to operate as required, in the Clock Controller (CLKCTRL) peripheral.
- 2. Write the Clock Select (CLKSEL) bit field in the Clock Selection (RTC.CLKSEL) register accordingly.

The CLK_RTC clock configuration is used by both RTC and PIT functionalities.

26.4.1.2 Configure RTC

To operate the RTC, follow these steps:

- 1. Set the compare value in the Compare (RTC.CMP) register, and/or the overflow value in the Period (RTC.PER) register.
- 2. Enable the desired interrupts by writing to the respective interrupt enable bits (CMP, OVF) in the Interrupt Control (RTC.INTCTRL) register.
- 3. Configure the RTC internal prescaler by writing the desired value to the Prescaler (PRESCALER) bit field in the Control A (RTC.CTRLA) register.
- 4. Enable the RTC by writing a '1' to the RTC Peripheral Enable (RTCEN) bit in the RTC.CTRLA register.

26.4.2 Operation - RTC

26.4.2.1 Enabling and Disabling

The RTC is enabled by writing the RTC Peripheral Enable (RTCEN) bit in the Control A (RTC.CTRLA) register to '1'. The RTC is disabled by writing the RTC Peripheral Enable (RTCEN) bit in RTC.CTRLA to '0'.

26.5 PIT Functional Description

The RTC peripheral offers two timing functions: The Real-Time Counter (RTC) and a Periodic Interrupt Timer (PIT). This subsection describes the PIT.

26.5.1 Initialization

To operate the PIT, follow these steps:

- 1. Configure the RTC clock CLK_RTC as described in section 26.4.1.1. Configure the Clock CLK_RTC.
- 2. Enable the interrupt by writing a '1' to the Periodic Interrupt (PI) bit in the PIT Interrupt Control (RTC.PITINTCTRL) register.
- 3. Enable the PIT by writing a '1' to the Periodic Interrupt Timer Enable (PITEN) bit in the RTC.PITCTRLA register.
- 4. Select the period for the interrupt by writing the desired value to the Period (PERIOD) bit field in the Periodic Interrupt Timer Control A (RTC.PITCTRLA) register.

26.5.2 Operation - PIT

26.5.2.1 Enabling and Disabling

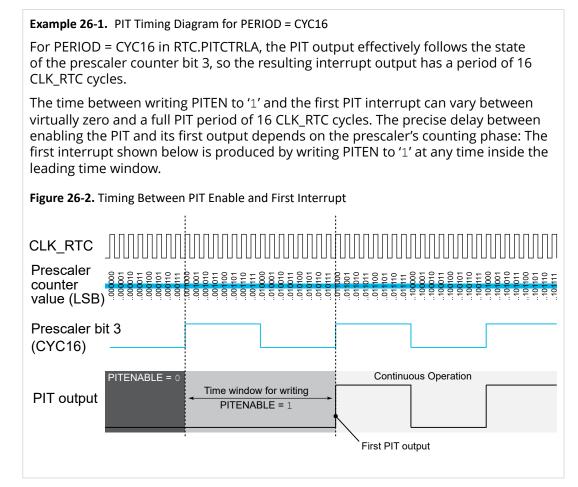
The PIT is enabled by writing the Periodic Interrupt Timer Enable (PITEN) bit in the Periodic Interrupt Timer Control A (RTC.PITCTRLA) register to '1'. The PIT is disabled by writing the Periodic Interrupt Timer Enable (PITEN) bit in RTC.PITCTRLA to '0'.

26.5.2.2 PIT Interrupt Timing

Timing of the First Interrupt

Both PIT and RTC functions are running from the same counter inside the prescaler and can be configured as described below:

- The RTC interrupt period is configured by writing the Period (RTC.PER) register
- The PIT interrupt period is configured by writing the Period (PERIOD) bit field in Periodic Interrupt Timer Control A (RTC.PITCTRLA) register


The prescaler is OFF when both functions are OFF (RTC Peripheral Enable (RTCEN) bit in RTC.CTRLA and the Periodic Interrupt Timer Enable (PITEN) bit in RTC.PITCTRLA are '0'), but it is running (that is, its internal counter is counting) when either function is enabled. For this reason, the timing of the

first PIT interrupt and the first RTC count tick will be unknown (anytime between enabling and a full period).

Continuous Operation

After the first interrupt, the PIT will continue toggling every ½ PIT period resulting in a full PIT period signal.

26.6 Crystal Error Correction

The prescaler for the RTC and PIT can do internal frequency correction of the crystal clock by using the PPM error value from the Crystal Frequency Calibration (CALIB) register when the Frequency Correction Enable (CORREN) bit in the RTC.CTRLA register is '1'.

The CALIB register must be written by the user, based on the information about the frequency error. Perform the correction operation by adding or removing some cycles equal to the value given in the Error Correction Value (ERROR) bit field in the CALIB register spread throughout a million-cycle interval.

The RTC count value available through the Count (RTC.CNT) registers or in the PIT intervals will reflect the clock correction.

If disabling the correction feature, an ongoing correction cycle will be completed before the function is disabled.

Note: If using this feature with a negative correction, the minimum prescaler configuration is DIV2.

26.7 Events

The RTC can generate the events described in the following table:

Table 26-1. RTC Event Generators

Genera	tor Name	Description	Event	Clock	Length of the Event
Modul e	Event		Туре	Domain	
RTC	OVF	Overflow	Pulse	CLK_RTC	One CLK_RTC period
	CMP	Compare Match			One CLK_RTC period
	PIT_DIV8192	Prescaled RTC clock divided by 8192	Level		Given by prescaled RTC clock divided by 8192
	PIT_DIV4096	Prescaled RTC clock divided by 4096			Given by prescaled RTC clock divided by 4096
	PIT_DIV2048	Prescaled RTC clock divided by 2048			Given by prescaled RTC clock divided by 2048
	PIT_DIV1024	Prescaled RTC clock divided by 1024			Given by prescaled RTC clock divided by 1024
	PIT_DIV512	Prescaled RTC clock divided by 512			Given by prescaled RTC clock divided by 512
	PIT_DIV256	Prescaled RTC clock divided by 256			Given by prescaled RTC clock divided by 256
	PIT_DIV128	Prescaled RTC clock divided by 128			Given by prescaled RTC clock divided by 128
	PIT_DIV64	Prescaled RTC clock divided by 64			Given by prescaled RTC clock divided by 64

The conditions for generating the OVF and CMP events are identical to those that will raise the corresponding interrupt flags in the RTC.INTFLAGS register.

Refer to the *EVSYS - Event System* section for more details regarding event users and Event System configuration.

26.8 Interrupts

 Table 26-2.
 Available Interrupt Vectors and Sources

Name	Vector Description	Conditions
RTC	Real-Time Counter overflow and compare match interrupt	Overflow (OVF): The counter has reached the value from the RTC.PER register and wrapped to zero
		Compare (CMP): Match between the value from the Counter (RTC.CNT) register and the value from the Compare (RTC.CMP) register
PIT	Periodic Interrupt Timer interrupt	A time period has passed, as configured by the PERIOD bit field in RTC.PITCTRLA

When an interrupt condition occurs, the corresponding interrupt flag is set in the peripheral's Interrupt Flags (*peripheral*.INTFLAGS) register.

An interrupt source is enabled or disabled by writing to the corresponding enable bit in the peripheral's Interrupt Control (*peripheral*.INTCTRL) register.

An interrupt request is generated when the corresponding interrupt source is enabled, and the interrupt flag is set. The interrupt request remains active until the interrupt flag is cleared. See the peripheral's INTFLAGS register for details on how to clear interrupt flags.

Note that:

- The RTC has two INTFLAGS registers: RTC.INTFLAGS and RTC.PITINTFLAGS.
- The RTC has two INTCTRL registers: RTC.INTCTRL and RTC.PITINTCTRL.

26.9 Sleep Mode Operation

The RTC will continue to operate in Idle sleep mode. It will run in Standby sleep mode if the Run in Standby (RUNSTDBY) bit in RTC.CTRLA is set.

The PIT will continue to operate in any sleep mode.

26.10 Synchronization

Both the RTC and the PIT are asynchronous, operating from a different clock source (CLK_RTC) independently of the peripheral clock (CLK_PER). For Control and Count register updates, it will take some RTC and/or peripheral clock cycles before an updated register value is available in a register or until a configuration change affects the RTC or PIT, respectively. This synchronization time is described for each register in the *Register Description* section.

For some RTC registers, a Synchronization Busy (CMPBUSY, PERBUSY, CNTBUSY, CTRLABUSY) flag is available in the Status (RTC.STATUS) register.

For the RTC.PITCTRLA register, a Synchronization Busy (CTRLBUSY) flag is available in the Periodic Interrupt Timer Status (RTC.PITSTATUS) register.

Check these flags before writing to the mentioned registers.

26.11 Debug Operation

If the Debug Run (DBGRUN) bit in the Debug Control (RTC.DBGCTRL) register is '1', the RTC will continue normal operation. If DBGRUN is '0' and the CPU is halted, the RTC will halt the operation and ignore any incoming events.

If the Debug Run (DBGRUN) bit in the Periodic Interrupt Timer Debug Control (RTC.PITDBGCTRL) register is '1', the PIT will continue normal operation. If DBGRUN is '0' in the Debug mode and the CPU is halted, the PIT output will be low. When the PIT output is high at the time, a new positive edge occurs to set the interrupt flag when restarting from a break. The result is an additional PIT interrupt that does not happen during normal operation. If the PIT output is low at the break, the PIT will resume low without additional interrupt.

26.12 Register Summary

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00	CTRLA	7:0	RUNSTDBY		PRESCA	LER[3:0]		CORREN		RTCEN
0x01	STATUS	7:0					CMPBUSY	PERBUSY	CNTBUSY	CTRLABUSY
0x02	INTCTRL	7:0							CMP	OVF
0x03	INTFLAGS	7:0							CMP	OVF
0x04	TEMP	7:0				TEN	1P[7:0]			
0x05	DBGCTRL	7:0								DBGRUN
0x06	CALIB	7:0	SIGN				ERROR[6:0]			
0x07	CLKSEL	7:0							CLKSI	EL[1:0]
0x08	CNT	7:0				CN	T[7:0]			
0x08	CNT	15:8				CN	T[15:8]			
0x0A	PER	7:0				PE	R[7:0]			
UXUA	PER	15:8				PEF	R[15:8]			
0x0C	СМР	7:0				CM	IP[7:0]			
UXUC	CIVIP	15:8				CMI	P[15:8]			
0x0E										
	Reserved									
0x0F										
0x10	PITCTRLA	7:0			PERIC	D[3:0]				PITEN
0x11	PITSTATUS	7:0								CTRLBUSY
0x12	PITINTCTRL	7:0								PI
0x13	PITINTFLAGS	7:0								PI
0x14	Reserved									
0x15	PITDBGCTRL	7:0								DBGRUN
0x16	PITEVGENCTRLA	7:0		EVGEN1	ISEL[3:0]			EVGENO	SEL[3:0]	

26.13 Register Description

26.13.1 Control A

Name:	CTRLA
Offset:	0x00
Reset:	0x00
Property:	-

Application software needs to check that the CTRLABUSY flag in the RTC.STATUS register is cleared before writing to this register.

Bit	7	6	5	4	3	2	1	0
	RUNSTDBY		PRESCA	LER[3:0]		CORREN		RTCEN
Access	R/W	R/W	R/W	R/W	R/W	R/W		R/W
Reset	0	0	0	0	0	0		0

Bit 7 - RUNSTDBY Run in Standby

Value	Description
0	RTC disabled in Standby sleep mode
1	RTC enabled in Standby sleep mode

Bits 6:3 - PRESCALER[3:0] Prescaler

These bits define the prescaling of the CLK_RTC clock signal. Due to synchronization between the RTC clock and the peripheral clock, there is a latency of two RTC clock cycles from updating the register until this has an effect.

Value	Name	Description
0x0	DIV1	RTC clock/1 (no prescaling)
0x1	DIV2	RTC clock/2
0x2	DIV4	RTC clock/4
0x3	DIV8	RTC clock/8
0x4	DIV16	RTC clock/16
0x5	DIV32	RTC clock/32
0x6	DIV64	RTC clock/64
0x7	DIV128	RTC clock/128
0x8	DIV256	RTC clock/256
0x9	DIV512	RTC clock/512
0xA	DIV1024	RTC clock/1024
0xB	DIV2048	RTC clock/2048
0xC	DIV4096	RTC clock/4096
0xD	DIV8192	RTC clock/8192
0xE	DIV16384	RTC clock/16384
0xF	DIV32768	RTC clock/32768

Bit 2 - CORREN Frequency Correction Enable

Va	lue	Description
0		Frequency correction is disabled
1		Frequency correction is enabled

Bit 0 - RTCEN RTC Peripheral Enable

Value	Description
0	RTC peripheral is disabled
1	RTC peripheral is enabled

26.13.2 Status

Name:	STATUS
Offset:	0x01
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
					CMPBUSY	PERBUSY	CNTBUSY	CTRLABUSY
Access			•	•	R	R	R	R
Reset					0	0	0	0

Bit 3 – CMPBUSY Compare Synchronization Busy

This bit is '1' when the RTC is busy synchronizing the Compare (RTC.CMP) register in the RTC clock domain.

Bit 2 – PERBUSY Period Synchronization Busy

This bit is '1' when the RTC is busy synchronizing the Period (RTC.PER) register in the RTC clock domain.

Bit 1 - CNTBUSY Counter Synchronization Busy

This bit is '1' when the RTC is busy synchronizing the Count (RTC.CNT) register in the RTC clock domain.

Bit 0 – CTRLABUSY Control A Synchronization Busy

This bit is '1' when the RTC is busy synchronizing the Control A (RTC.CTRLA) register in the RTC clock domain.

26.13.3 Interrupt Control

Offset: Reset:	0x02 0x00						
7	6	5	4	3	2	1	0
						CMP	OVF
	•					R/W	R/W
						0	0
	Offset: Reset: Property:	Offset: 0x02 Reset: 0x00 Property: -	Offset: 0x02 Reset: 0x00 Property: -	Offset: 0×02 Reset: 0×00 Property: -	Offset: 0x02 Reset: 0x00 Property: -	Offset: 0x02 Reset: 0x00 Property: -	Offset: 0x02 Reset: 0x00 Property: - 7 6 5 4 3 2 1 7 6 5 4 3 2 1 7 6 5 4 3 2 1 7 6 5 4 3 2 1 7 6 5 4 3 2 1 7 6 5 4 3 2 1 7 7 6 5 4 3 2 1 7 7 6 5 4 3 2 1 7 7 6 5 4 3 2 1 8 9 9 9 9 9 9 8 9 9 9 9 9 9 9 8 9 9 9 9 </td

Bit 1 – CMP Compare Match Interrupt Enable

Enable interrupt-on-compare match (that is, when the value from the Count (RTC.CNT) register matches the value from the Compare (RTC.CMP) register).

Value	Description
0	The compare match interrupt is disabled
1	The compare match interrupt is enabled

Bit 0 – OVF Overflow Interrupt Enable

Enable interrupt-on-counter overflow (that is, when the value from the Count (RTC.CNT) register matched the value from the Period (RTC.PER) register and wraps around to zero).

Value	Description
0	The overflow interrupt is disabled
1	The overflow interrupt is enabled

26.13.4 Interrupt Flag

Name:	INTFLAGS
Offset:	0x03
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
							CMP	OVF
Access			•	•			R/W	R/W
Reset							0	0

Bit 1 – CMP Compare Match Interrupt Flag

This flag is set when the value from the Count (RTC.CNT) register matches the value from the Compare (RTC.CMP) register. Writing a '1' to this bit clears the flag.

Bit 0 – OVF Overflow Interrupt Flag

This flag is set when the value from the Count (RTC.CNT) register has reached the value from the Period (RTC.PER) register and wrapped to zero. Writing a '1' to this bit clears the flag.

26.13.5 Temporary

Name:	TEMP
Offset:	0x4
Reset:	0x00
Property:	-

The Temporary register is used by the CPU for 16-bit single-cycle access to the 16-bit registers of this peripheral. The register is common for all the 16-bit registers of this peripheral and can be read and written by software. For more details on reading and writing 16-bit registers, refer to *Accessing 16-Bit Registers* in the *Memories* section.

Bit	7	6	5	4	3	2	1	0	
	TEMP[7:0]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 7:0 - TEMP[7:0] Temporary

Temporary register for read/write operations in 16-bit registers.

26.13.6 Debug Control

	Name: Offset: Reset: Property:	DBGCTRL 0x05 0x00 -						
Bit	7	6	5	4	3	2	1	0
								DBGRUN
Access		• • •	·	•		•	·	R/W
Reset								0

Bit 0 – DBGRUN Debug Run

Value	Description
0	The peripheral is halted in Break Debug mode and ignores events
1	The peripheral will continue to run in Break Debug mode when the CPU is halted

26.13.7 Crystal Frequency Calibration

Name:	CALIB
Offset:	0x06
Reset:	0x00
Property:	-

This register stores the error value and the type of correction to be done. The register is written by software with an error value based on external calibration and/or temperature correction/s.

Bit	7	6	5	4	3	2	1	0
	SIGN	ERROR[6:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 7 – SIGN Error Correction Sign Bit

This bit shows the direction of the correction.

Value	Description
0x0	Positive correction causing the prescaler to count slower
0x1	Negative correction causing the prescaler to count faster. This requires that the minimum prescaler configuration is DIV2

Bits 6:0 - ERROR[6:0] Error Correction Value

The number of correction clocks for each million RTC clock cycles interval (PPM).

26.13.8 Clock Selection

(Name: Offset: Reset: Property:	CLKSEL 0x07 0x00 -						
Bit	7	6	5	4	3	2	1	0
							CLKSE	L[1:0]
Access							R/W	R/W
Reset							0	0

Bits 1:0 – CLKSEL[1:0] Clock Select

Writing these bits select the source for the RTC clock (CLK_RTC).

Value	Name	Description
0x00	OSC32K	32.768 kHz from OSC32K
0x01	OSC1K	1.024 kHz from OSC32K
0x02	XTAL32K	32.768 kHz from XOSC32K or external clock from XTAL32K1 pin
0x03	EXTCLK	External clock from the EXTCLK pin

26.13.9 Count

Name:	CNT
Offset:	0x08
Reset:	0x0000
Property:	-

The RTC.CNTL and RTC.CNTH register pair represents the 16-bit value, RTC.CNT. The low byte [7:0] (suffix L) is accessible at the original offset. The high byte [15:8] (suffix H) can be accessed at offset + 0×01 .

Due to the synchronization between the RTC clock and main clock domains, there is a latency of two RTC clock cycles from updating the register until this has an effect. The application software needs to check that the CNTBUSY flag in RTC.STATUS is cleared before reading or writing this register.

Bit	15	14	13	12	11	10	9	8
				CNT[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				CNT	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:8 - CNT[15:8] Counter High Byte

These bits hold the MSB of the 16-bit Counter register. Application software needs to check that the CNTBUSY flag in the RTC.STATUS register is cleared before writing to this register.

Bits 7:0 - CNT[7:0] Counter Low Byte

These bits hold the LSB of the 16-bit Counter register. Application software needs to check that the CNTBUSY flag in the RTC.STATUS register is cleared before writing to this register.

26.13.10 Period

Name:	PER
Offset:	0x0A
Reset:	0xFFFF
Property:	-

The RTC.PERL and RTC.PERH register pair represents the 16-bit value, RTC.PER. The low byte [7:0] (suffix L) is accessible at the original offset. The high byte [15:8] (suffix H) can be accessed at offset + 0×01 .

Due to the synchronization between the RTC clock and main clock domains, there is a latency of two RTC clock cycles from updating the register until this has an effect. The application software needs to check that the PERBUSY flag in RTC.STATUS is cleared before writing to this register.

Bit	15	14	13	12	11	10	9	8
				PER[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1
Bit	7	6	5	4	3	2	1	0
				PER	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

Bits 15:8 - PER[15:8] Period High Byte

These bits hold the MSB of the 16-bit Period register. Application software needs to check that the PERBUSY flag in the RTC.STATUS register is cleared before writing to this register.

Bits 7:0 - PER[7:0] Period Low Byte

These bits hold the LSB of the 16-bit Period register. Application software needs to check that the PERBUSY flag in the RTC.STATUS register is cleared before writing to this register.

26.13.11 Compare

Name:	CMP
Offset:	0x0C
Reset:	0x0000
Property:	-

The RTC.CMPL and RTC.CMPH register pair represents the 16-bit value, RTC.CMP. The low byte [7:0] (suffix L) is accessible at the original offset. The high byte [15:8] (suffix H) can be accessed at offset + 0×01 .

Application software needs to check that the CMPBUSY flag in the RTC.STATUS register is cleared before writing to this register.

Bit	15	14	13	12	11	10	9	8
				CMP[[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				CMP	P[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:8 - CMP[15:8] Compare High Byte

These bits hold the MSB of the 16-bit Compare register.

Bits 7:0 - CMP[7:0] Compare Low Byte

These bits hold the LSB of the 16-bit Compare register. Application software needs to check that the CMPBUSY flag in the RTC.STATUS register is cleared before writing to this register.

0

26.13.12 Periodic Interrupt Timer Control A

0

0

	Name: Offset: Reset: Property:	PITCTRLA 0x10 0x00 -						
Bit	7	6	5	4	3	2	1	0
			PERIO	D[3:0]				PITEN
Access		R/W	R/W	R/W	R/W		•	R/W

0

Bits 6:3 - PERIOD[3:0] Period

Reset

Writing this bit field selects the number of RTC clock cycles between each interrupt. **Note:** Application software needs to check that the CTRLBUSY flag in the RTC.PITSTATUS register is cleared before writing to this register.

Λ

Value	Name	Description
0x0	OFF	No interrupt
0x1	CYC4	4 cycles
0x2	CYC8	8 cycles
0x3	CYC16	16 cycles
0x4	CYC32	32 cycles
0x5	CYC64	64 cycles
0x6	CYC128	128 cycles
0x7	CYC256	256 cycles
0x8	CYC512	512 cycles
0x9	CYC1024	1024 cycles
0xA	CYC2048	2048 cycles
0xB	CYC4096	4096 cycles
0xC	CYC8192	8192 cycles
0xD	CYC16384	16384 cycles
0xE	CYC32768	32768 cycles
0xF	-	Reserved

Bit 0 – PITEN Periodic Interrupt Timer Enable

Note: Application software needs to check that the CTRLBUSY flag in the RTC.PITSTATUS register is cleared before writing to this register.

Value	Description
0	Periodic Interrupt Timer disabled
1	Periodic Interrupt Timer enabled

Important: Due to the synchronization between the RTC clock and main clock domains, there is a latency of two RTC clock cycles from updating the register until this has an effect. Application software needs to check that the CTRLBUSY flag in the RTC.PITSTATUS register is cleared before writing to this register.

26.13.13 Periodic Interrupt Timer Status

	Name: Offset: Reset: Property:	PITSTATUS 0x11 0x00 -						
Bit	7	6	5	4	3	2	1	0
								CTRLBUSY
Access				•		•		R
Reset								0

Bit 0 – CTRLBUSY PITCTRLA Synchronization Busy

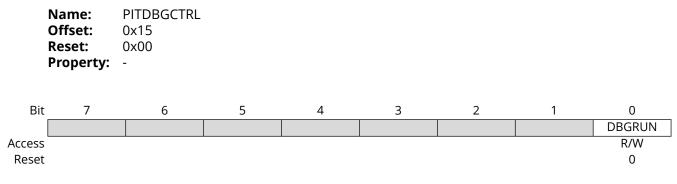
This bit is '1' when the RTC is busy synchronizing the Periodic Interrupt Timer Control A (RTC.PITCTRLA) register in the RTC clock domain.

26.13.14 PIT Interrupt Control

	Name: Offset: Reset: Property:	PITINTCTRL 0x12 0x00 -						
Bit	7	6	5	4	3	2	1	0
								PI
Access				•		•	•	R/W
Reset								0
it 0 – Pl	l Periodic Ir	nterrupt						

Bit 0 – PI Periodic Interrupt

Value	Description
0	The periodic interrupt is disabled
1	The periodic interrupt is enabled


26.13.15 PIT Interrupt Flag

C F	Name: Offset: Reset: Property:	PITINTFLAGS 0x13 0x00 -						
Bit	7	6	5	4	3	2	1	0
								PI
Access								R/W
Reset								0

Bit 0 – PI Periodic Interrupt Flag This flag is set when a periodic interrupt is issued. Writing a '1' clears the flag.

26.13.16 Periodic Interrupt Timer Debug Control

Bit 0 – DBGRUN Debug Run

Value	Description
0	The peripheral is halted in Break Debug mode and ignores events
1	The peripheral will continue to run in Break Debug mode when the CPU is halted

26.13.17 Periodic Timer Event Generation Control A

Name:	PITEVGENCTRLA
Offset:	0x16
Reset:	0x00

Bit	7	6	5	4	3	2	1	0
		EVGEN1	SEL[3:0]			EVGEN0	SEL[3:0]	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 0:3, 4:7 – EVGENnSEL Event Generator n Select

Value	Name	Description
0x0	OFF	No event generated
0x1	DIV4	CLK_RTC divided by 4
0x2	DIV8	CLK_RTC divided by 8
0x3	DIV16	CLK_RTC divided by 16
0x4	DIV32	CLK_RTC divided by 32
0x5	DIV64	CLK_RTC divided by 64
0x6	DIV128	CLK_RTC divided by 128
0x7	DIV256	CLK_RTC divided by 256
0x8	DIV512	CLK_RTC divided by 512
0x9	DIV1024	CLK_RTC divided by 1024
0xA	DIV2048	CLK_RTC divided by 2048
0xB	DIV4096	CLK_RTC divided by 4096
0xC	DIV8192	CLK_RTC divided by 8192
0xD	DIV16384	CLK_RTC divided by 16384
0xE	DIV32768	CLK_RTC divided by 32768
other	-	Reserved

27. USART - Universal Synchronous and Asynchronous Receiver and Transmitter

27.1 Features

- Full-Duplex Operation
- Half-Duplex Operation:
 - One-Wire mode
 - RS-485 mode
- Asynchronous or Synchronous Operation
- Supports Serial Frames with Five, Six, Seven, Eight or Nine Data Bits and One or Two Stop Bits
- Fractional Baud Rate Generator:
 - Can generate the desired baud rate from any peripheral clock frequency
 - No need for an external oscillator
- Built-In Error Detection and Correction Schemes:
 - Odd or even parity generation and parity check
 - Buffer overflow and frame error detection
 - Noise filtering including false Start bit detection and digital low-pass filter
- Separate Interrupts for:
 - Transmit complete
 - Transmit Data register empty
 - Receive complete
- Host SPI Mode
- Multiprocessor Communication Mode
- Start-of-Frame Detection
- IRCOM Module for IrDA[®] Compliant Pulse Modulation/Demodulation
- LIN Client Support

27.2 Overview

The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) is a fast and flexible serial communication peripheral. The USART supports several different modes of operation that can accommodate multiple types of applications and communication devices. For example, the One-Wire Half-Duplex mode is useful when low pin count applications are desired. The communication is frame-based, and the frame format can be customized to support a wide range of standards.

The USART is buffered in both directions, enabling continued data transmission without any delay between frames. Separate interrupts for receive and transmit completion allow fully interrupt-driven communication.

The transmitter consists of a two-level write buffer, a shift register, and control logic for different frame formats. The receiver consists of a two-level receive buffer and a shift register. The status information of the received data is available for error checking. Data and clock recovery units ensure robust synchronization and noise filtering during asynchronous data reception.

27.2.1 Block Diagram

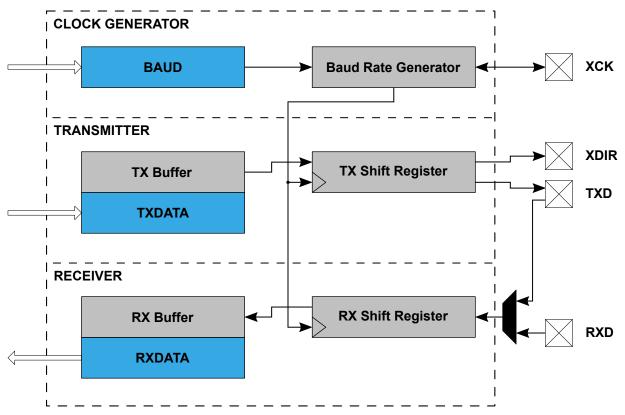


Figure 27-1. USART Block Diagram

27.2.2 Signal Description

Signal	Туре	Description
ХСК	Output/input	Clock for synchronous operation
XDIR	Output	Transmit enable for RS-485
TxD	Output/input	Transmitting line (and receiving line in One-Wire mode)
RxD	Input	Receiving line

27.3 Functional Description

27.3.1 Initialization

Full-Duplex Mode:

- 1. Set the baud rate (USARTn.BAUD).
- 2. Set the frame format and mode of operation (USARTn.CTRLC).
- 3. Configure the TXD pin as an output.
- 4. Enable the transmitter and the receiver (USARTn.CTRLB).

Notes:

- For interrupt-driven USART operation, global interrupts must be disabled during the initialization
- Before doing a reinitialization with a changed baud rate or frame format, be sure that there are no ongoing transmissions while the registers are changed

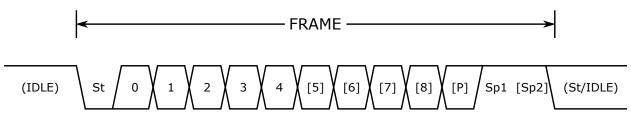
One-Wire Half-Duplex Mode:

- 1. Internally connect the TXD to the USART receiver (the LBME bit in the USARTn.CTRLA register).
- 2. Enable internal pull-up for the RX/TX pin (the PULLUPEN bit in the PORTx.PINnCTRL register).
- 3. Enable Open-Drain mode (the ODME bit in the USARTn.CTRLB register).
- 4. Set the baud rate (USARTn.BAUD).
- 5. Set the frame format and mode of operation (USARTn.CTRLC).
- 6. Enable the transmitter and the receiver (USARTn.CTRLB).

Notes:

- When Open-Drain mode is enabled, the TXD pin is automatically set to output by hardware
- For interrupt-driven USART operation, global interrupts must be disabled during the initialization
- Before doing a reinitialization with a changed baud rate or frame format, be sure that there are no ongoing transmissions while the registers are changed

27.3.2 Operation

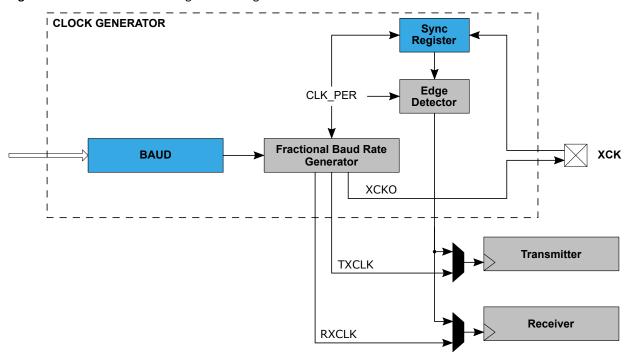

27.3.2.1 Frame Formats

The USART data transfer is frame-based. A frame starts with a Start bit followed by one character of data bits. If enabled, the Parity bit is inserted after the data bits and before the first Stop bit. After the Stop bit(s) of a frame, either the next frame can follow immediately, or the communication line can return to the Idle (high) state. The USART accepts all combinations of the following as valid frame formats:

- 1 Start bit
- 5, 6, 7, 8, or 9 data bits
- No, even, or odd Parity bit
- 1 or 2 Stop bits

The figure below illustrates the possible combinations of frame formats. Bits inside brackets are optional.

Figure 27-2. Frame Formats



- St Start bit, always low
- (n) Data bits (0 to 8)
- P Parity bit, may be odd or even
- **Sp** Stop bit, always high
- **IDLE** No transfer on the communication line (RxD or TxD). The Idle state is always high.

27.3.2.2 Clock Generation

The clock used for shifting and sampling data bits is generated internally by the fractional baud rate generator or externally from the Transfer Clock (XCK) pin.

Figure 27-3. Clock Generation Logic Block Diagram

27.3.2.2.1 The Fractional Baud Rate Generator

In modes where the USART is not using the XCK input as a clock source, the fractional Baud Rate Generator is used to generate the clock. Baud rate is given in terms of bits per second (bps) and is configured by writing the USARTn.BAUD register. The baud rate (f_{BAUD}) is generated by dividing the peripheral clock ($f_{CLK PER}$) by a division factor decided by the BAUD register.

The fractional Baud Rate Generator features hardware that accommodates cases where f_{CLK_PER} is not divisible by f_{BAUD} . Usually, this situation would lead to a rounding error. The fractional Baud Rate Generator expects the BAUD register to contain the desired division factor left shifted by six bits, as implemented by the equations in Table 27-1. The six Least Significant bits (LSbs) will then hold the fractional part of the desired divisor. Use the fractional part of the BAUD register to dynamically adjust f_{BAUD} to achieve a closer approximation to the desired baud rate.

Since the baud rate cannot be higher than f_{CLK_PER} , the integer part of the BAUD register needs to be at least 1. Since the result is left shifted by six bits, the corresponding minimum value of the BAUD register is 64. The valid range is, therefore, 64 to 65535.

In Synchronous mode, only the 10-bit integer part of the BAUD register (BAUD[15:6]) determines the baud rate, and the fractional part (BAUD[5:0]) must, therefore, be written to zero.

The table below lists equations for translating baud rates into input values for the BAUD register. The equations consider fractional interpretation, so the BAUD values calculated with these equations can be written directly to USARTn.BAUD without any additional scaling.

Operating Mode	Conditions	Baud Rate (Bits Per Seconds)	USART.BAUD Register Value Calculation
Asynchronous	$f_{BAUD} \le \frac{f_{CLK_PER}}{S}$ $USART.BAUD \ge 64$	$f_{BAUD} = \frac{64 \times f_{CLK_PER}}{S \times BAUD}$	$BAUD = \frac{64 \times f_{CLK_PER}}{S \times f_{BAUD}}$
Synchronous Host	$f_{BAUD} \le \frac{f_{CLK_PER}}{S}$ $USART.BAUD \ge 64$	$f_{BAUD} = \frac{f_{CLK_PER}}{S \times BAUD[15:6]}$	$BAUD[15:6] = \frac{f_{CLK_PER}}{S \times f_{BAUD}}$

Table 27-1. Equations for Calculating Baud Rate Register Setting

S is the number of samples per bit

- Asynchronous Normal mode: S = 16
- Asynchronous Double-Speed mode: S = 8
- Synchronous mode: S = 2

27.3.2.3 Data Transmission

The USART transmitter sends data by periodically driving the transmission line low. The data transmission is initiated by loading the Transmit Data (USARTn.TXDATAL and USARTn.TXDATAH) registers with the data to be sent. The data in the Transmit Data registers are moved to the TX Buffer once it is empty and onwards to the shift register once it is empty and ready to send a new frame. After the shift register is loaded with data, the data frame will be transmitted.

When the entire frame in the shift register has been shifted out, and there are no new data present in the Transmit Data registers or the TX Buffer, the Transmit Complete Interrupt Flag (the TXCIF bit in the USARTn.STATUS register) is set, and the interrupt is generated if it is enabled.

The Transmit Data registers can only be written when the Data Register Empty Interrupt Flag (the DREIF bit in the USARTn.STATUS register) is set, indicating that they are empty and ready for new data.

When using frames with fewer than eight bits, the Most Significant bits (MSbs) written to the Transmit Data registers are ignored. When the Character Size (CHSIZE) bit field in the Control C (USARTn.CTRLC) register is configured to 9-bit (low byte first), the Transmit Data Register Low Byte (TXDATAL) must be written before the Transmit Data Register High Byte (TXDATAH). When CHSIZE is configured to 9-bit (high byte first), TXDATAH must be written before TXDATAL.

27.3.2.3.1 Disabling the Transmitter

When disabling the transmitter, the operation will not become effective until ongoing and pending transmissions are completed. That is, when the transmit shift register, Transmit Data (USARTn.TXDATAL and USARTn.TXDATAH) registers, and TX Buffer register do not contain data to be transmitted. When the transmitter is disabled, it will no longer override the TXD pin, and the PORT module regains control of the pin. The pin is automatically configured as an input by hardware regardless of its previous setting. The pin can now be used as a normal I/O pin with no port override from the USART.

27.3.2.4 Data Reception

The USART receiver samples the reception line to detect and interpret the received data. The direction of the pin must, therefore, be configured as an input by writing a '0' to the corresponding bit in the Data Direction (PORTx.DIR) register.

The receiver accepts data when a valid Start bit is detected. Each bit that follows the Start bit will be sampled at the baud rate or XCK clock and shifted into the receive shift register until the first Stop bit of a frame is received. A second Stop bit will be ignored by the receiver. When the first Stop bit is received, and a complete serial frame is present in the receive shift register, the contents of the shift register will be moved into the receive buffer. The Receive Complete Interrupt Flag (the RXCIF bit in the USARTn.STATUS register) is set, and the interrupt is generated if enabled.

The RXDATA registers are the part of the double-buffered RX buffer that can be read by the application software when RXCIF is set. If only one frame has been received, the data and status bits for that frame are pushed to the RXDATA registers directly. If two frames are present in the RX buffer, the RXDATA registers contain the data for the oldest frame.

The buffer shifts out the data either when RXDATAL or RXDATAH is read, depending on the configuration. The register, which does not lead to data being shifted, must be read first to be able to read both bytes before shifting. When the Character Size (CHSIZE) bit field in the Control C (USARTn.CTRLC) register is configured to 9-bit (low byte first), a read of RXDATAH shifts the receive buffer. Otherwise, RXDATAL shifts the buffer.

27.3.2.4.1 Receiver Error Flags

The USART receiver features error detection mechanisms that uncover any corruption of the transmission. These mechanisms include the following:

- Frame Error detection controls whether the received frame is valid
- Buffer Overflow detection indicates data loss due to the receiver buffer being full and overwritten by the new data
- Parity Error detection checks the validity of the incoming frame by calculating its parity and comparing it to the Parity bit

Each error detection mechanism controls one error flag that can be read in the RXDATAH register:

- Frame Error (FERR)
- Buffer Overflow (BUFOVF)
- Parity Error (PERR)

The error flags are located in the RX buffer together with their corresponding frame. The RXDATAH register that contains the error flags must be read before the RXDATAL register since reading the RXDATAL register will trigger the RX buffer to shift out the RXDATA bytes.

Note: If the Character Size (CHSIZE) bit field in the Control C (USARTn.CTRLC) register is set to nine bits, low byte first (9BITL), the RXDATAH register will, instead of the RXDATAL register, trigger the RX buffer to shift out the RXDATA bytes. The RXDATAL register must, in that case, be read before the RXDATAH register.

27.3.2.4.2 Disabling the Receiver

When disabling the receiver, the operation is immediate. The receiver buffer will be flushed, and data from ongoing receptions will be lost.

27.3.2.4.3 Flushing the Receive Buffer

If the RX buffer has to be flushed during normal operation, repeatedly read the DATA location (USARTn.RXDATAH and USARTn.RXDATAL registers) until the Receive Complete Interrupt Flag (the RXCIF bit in the USARTn.RXDATAH register) is cleared.

27.3.3 Communication Modes

The USART is a flexible peripheral that supports multiple different communication protocols. The available modes of operation can be split into two groups: Synchronous and asynchronous communication.

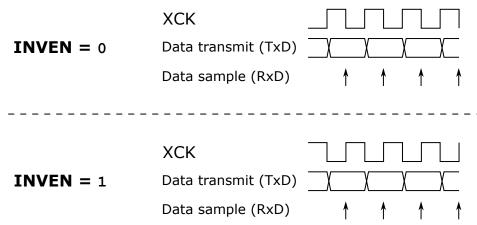
The synchronous communication relies on one device on the bus to be the host, providing the rest of the devices with a clock signal through the XCK pin. All the devices use this common clock signal for both transmission and reception, requiring no additional synchronization mechanism.

The device can be configured to run either as a host or a client on the synchronous bus.

The asynchronous communication does not use a common clock signal. Instead, it relies on the communicating devices to be configured with the same baud rate. When receiving a transmission, the hardware synchronization mechanisms are used to align the incoming transmission with the receiving device peripheral clock.

Four different modes of reception are available when communicating asynchronously. One of these modes can receive transmissions at twice the normal speed, sampling only eight times per bit instead of the normal 16. The other three operating modes use variations of synchronization logic, all receiving at normal speed.

27.3.3.1 Synchronous Operation


27.3.3.1.1 Clock Operation

The XCK pin direction controls whether the transmission clock is an input (Client mode) or an output (Host mode). The corresponding port pin direction must be set to output for Host mode or input

for Client mode (PORTx.DIRn). The data input (on RXD) is sampled at the XCK clock edge, which is opposite the edge where data are transmitted (on TXD), as shown in the figure below.

Figure 27-4. Synchronous Mode XCK Timing

The I/O pin can be inverted by writing a '1' to the Inverted I/O Enable (INVEN) bit in the Pin n Control register of the port peripheral (PORTx.PINnCTRL). When using the inverted I/O setting for the corresponding XCK port pin, the XCK clock edges used for sampling RxD and transmitting on TxD can be selected. If the inverted I/O is disabled (INVEN = 0), the rising XCK clock edge represents the start of a new data bit, and the received data will be sampled at the falling XCK clock edge. If inverted I/O is enabled (INVEN = 1), the falling XCK clock edge represents the start of a new data bit, and the received data will be sampled at the rising XCK clock edge.

27.3.3.1.2 External Clock Limitations

When the USART is configured in Synchronous Client mode, the XCK signal must be provided externally by the host device. Since the clock is provided externally, configuring the BAUD register will have no impact on the transfer speed. Successful clock recovery requires the clock signal to be sampled at least twice for each rising and falling edge. The maximum XCK speed in Synchronous Operation mode, f_{Client_XCK} , is therefore limited by:

$$f_{Client_{XCK}} < \frac{f_{CLK_{PER}}}{4}$$

If the XCK clock has jitter, or if the high/low period duty cycle is not 50/50, the maximum XCK clock speed must be reduced accordingly to ensure that XCK is sampled a minimum of two times for each edge.

27.3.3.1.3 USART in Host SPI Mode

The USART may be configured to function with multiple different communication interfaces, and one of these is the Serial Peripheral Interface (SPI), where it can work as the host device. The SPI is a four-wire interface that enables a host device to communicate with one or multiple clients.

Frame Formats

The serial frame for the USART in Host SPI mode always contains eight Data bits. The Data bits can be configured to be transmitted with either the LSb or MSb first by writing to the Data Order (UDORD) bit in the Control C (USARTn.CTRLC) register.

SPI does not use Start, Stop, or Parity bits, so the transmission frame can only consist of the Data bits.

Clock Generation

Being a host device in a synchronous communication interface, the USART in Host SPI mode must generate the interface clock to be shared with the client devices. The interface clock is generated using the fractional Baud Rate Generator, which is described in 27.3.2.2.1. The Fractional Baud Rate Generator.

Each Data bit is transmitted by pulling the data line high or low for one full clock period. The receiver will sample bits in the middle of the transmitter hold period, as shown in the figure below. It also shows how the timing scheme can be configured using the Inverted I/O Enable (INVEN) bit in the PORTx.PINnCTRL register and the USART Clock Phase (UCPHA) bit in the USARTn.CTRLC register.

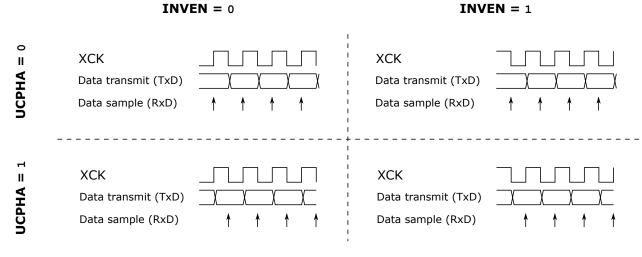


Figure 27-5. Data Transfer Timing Diagrams

The table below further explains the figure above.

Table 27-2. Functionality of the INVEN and UCPHA Bits

INVEN	UCPHA	Leading Edge ⁽¹⁾	Trailing Edge ⁽¹⁾
0	0	Rising, sample	Falling, transmit
0	1	Rising, transmit	Falling, sample
1	0	Falling, sample	Rising, transmit
1	1	Falling, transmit	Rising, sample

Note:

1. The leading edge is the first clock edge of a clock cycle. The trailing edge is the last clock edge of a clock cycle.

Data Transmission

Data transmission in Host SPI mode is functionally identical to the general USART operation, as described in the *Operation* section. The transmitter interrupt flags and corresponding USART interrupts are also identical. See 27.3.2.3. Data Transmission for further description.

Data Reception

Data reception in Host SPI mode is identical in function to general USART operation as described in the *Operation* section. The receiver interrupt flags and the corresponding USART interrupts are also identical, except for the receiver error flags that are not in use and always read as '0'. See 27.3.2.4. Data Reception for further description.

USART in Host SPI Mode vs. SPI

The USART in Host SPI mode is fully compatible with a stand-alone SPI peripheral. Their data frame and timing configurations are identical. Some SPI specific special features are, however, not supported with the USART in Host SPI mode:

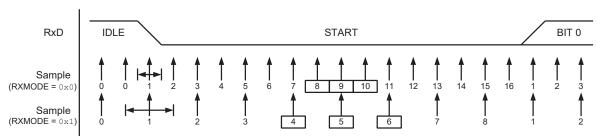
- Write Collision Flag Protection
- Double-Speed mode
- Multi-Host support

A comparison of the pins used with USART in Host SPI mode and with SPI is shown in the table below.

USART	SPI	Comment
TXD	MOSI	Host out
RXD	MISO	Host in
ХСК	SCK	Functionally identical
-	<u>SS</u>	Not supported by USART in Host SPI mode ⁽¹⁾

Table 27-3. Comparison of USART in Host SPI Mo	ode and SPI Pins
--	------------------

Note:

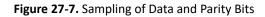

1. For the stand-alone SPI peripheral, this pin is used with the Multi-Host function or as a dedicated Client Select pin. The Multi-Host function is not available with the USART in Host SPI mode, and no dedicated Client Select pin is available.

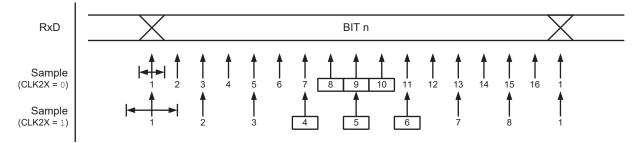
27.3.3.2 Asynchronous Operation

27.3.3.2.1 Clock Recovery

Since there is no common clock signal when using Asynchronous mode, each communicating device generates separate clock signals. These clock signals must be configured to run at the same baud rate for the communication to take place. The devices, therefore, run at the same speed, but their timing is skewed in relation to each other. To accommodate this, the USART features a hardware clock recovery unit which synchronizes the incoming asynchronous serial frames with the internally generated baud rate clock.

The figure below illustrates the sampling process for the Start bit of an incoming frame. It shows the timing scheme for both Normal and Double-Speed mode (the RXMODE bit field in the USARTn.CTRLB register configured respectively to 0×00 and 0×01). The sample rate for Normal mode is 16 times the baud rate, while the sample rate for Double-Speed mode is eight times the baud rate (see 27.3.3.2.4. Double-Speed Operation for more details). The horizontal arrows show the maximum synchronization error. Note that the maximum synchronization error is larger in Double-Speed mode.




When the clock recovery logic detects a falling edge from the Idle (high) state to the Start bit (low), the Start bit detection sequence is initiated. In the figure above, sample 1 denotes the first sample reading '0'. The clock recovery logic then uses three subsequent samples (samples 8, 9, and 10 in Normal mode, and samples 4, 5, 6 in Double-Speed mode) to decide if a valid Start bit is received. If two or three samples read '0', the Start bit is accepted. The clock recovery unit is synchronized, and the data recovery can begin. If less than two samples read '0', the Start bit is rejected. This process is repeated for each Start bit.

27.3.3.2.2 Data Recovery

As with clock recovery, the data recovery unit samples at a rate 8 or 16 times faster than the baud rate depending on whether it is running in Double-Speed or Normal mode, respectively. The figure below shows the sampling process for reading a bit in a received frame.

A majority voting technique is, like with clock recovery, used on the three center samples for deciding the logic level of the received bit. The process is repeated for each bit until a complete frame is received.

The data recovery unit will only receive the first Stop bit while ignoring the rest if there are more. If the sampled Stop bit is read '0', the Frame Error flag will be set. The figure below shows the sampling of a Stop bit. It also shows the earliest possible beginning of the next frame's Start bit.

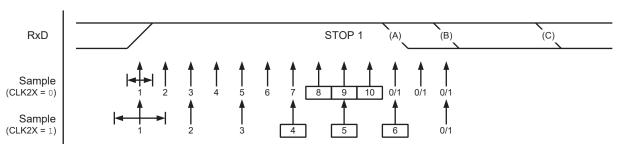


Figure 27-8. Stop Bit and Next Start Bit Sampling

A new high-to-low transition indicating the Start bit of a new frame can come right after the last of the bits used for majority voting. For Normal-Speed mode, the first low-level sample can be at the point marked (A) in the figure above. For Double-Speed mode, the first low level must be delayed to point (B), being the first sample after the majority vote samples. Point (C) marks a Stop bit of full length at the nominal baud rate.

27.3.3.2.3 Error Tolerance

The speed of the internally generated baud rate and the externally received data rate has to be identical, but, due to natural clock source error, this is usually not the case. The USART is tolerant of such error, and the limits of this tolerance make up what is sometimes known as the Operational Range.

The following tables list the operational range of the USART, being the maximum receiver baud rate error that can be tolerated. Note that Normal-Speed mode has higher toleration of baud rate variations than Double-Speed mode.

D	R _{slow} [%]	R _{fast} [%]	Maximum Total Error [%]	Recommended Max. Receiver Error [%]
5	93.20	106.67	-6.80/+6.67	±3.0
6	94.12	105.79	-5.88/+5.79	±2.5
7	94.81	105.11	-5.19/+5.11	±2.0
8	95.36	104.58	-4.54/+4.58	±2.0
9	95.81	104.14	-4.19/+4.14	±1.5
10	96.17	103.78	-3.83/+3.78	±1.5

Table 27-4. Recommended Maximum Receiver Baud Rate Error for Normal-Speed Mode

Notes:

- D: The sum of character size and parity size (D = 5 to 10 bits)
- $R_{\mbox{\scriptsize SLOW}}$: The ratio of the slowest incoming data rate that can be accepted in relation to the receiver baud rate
- R_{FAST}: The ratio of the fastest incoming data rate that can be accepted in relation to the receiver baud rate

D	R _{slow} [%]	R _{fast} [%]	Maximum Total Error [%]	Recommended Max. Receiver Error [%]	
5	94.12	105.66	-5.88/+5.66	±2.5	
6	94.92	104.92	-5.08/+4.92	±2.0	
7	95.52	104.35	-4.48/+4.35	±1.5	
8	96.00	103.90	-4.00/+3.90	±1.5	
9	96.39	103.53	-3.61/+3.53	±1.5	
10	96.70	103.23	-3.30/+3.23	±1.0	

Table 27-5. Recommended Maximum Receiver Baud Rate Error for Double-Speed Mode

Notes:

- D: The sum of character size and parity size (D = 5 to 10 bits)
- R_{SLOW}: The ratio of the slowest incoming data rate that can be accepted in relation to the receiver baud rate
- R_{FAST}: The ratio of the fastest incoming data rate that can be accepted in relation to the receiver baud rate

The recommendations of the maximum receiver baud rate error were made under the assumption that the receiver and transmitter equally divide the maximum total error.

The following equations are used to calculate the maximum ratio of the incoming data rate and the internal receiver baud rate.

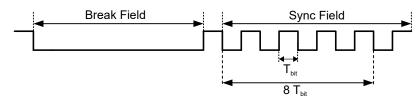
$$R_{SLOW} = \frac{S(D+1)}{S(D+1) + S_F - 1} \qquad \qquad R_{FAST} = \frac{S(D+2)}{S(D+1) + S_M}$$

- D: The sum of character size and parity size (D = 5 to 10 bits)
- S: Samples per bit. S = 16 for Normal-Speed mode and S = 8 for Double-Speed mode.
- S_F : First sample number used for majority voting. SF = 8 for Normal-Speed mode and SF = 4 for Double-Speed mode.
- S_M: Middle sample number used for majority voting. SM = 9 for Normal-Speed mode and SM = 5 for Double-Speed mode.
- R_{SLOW}: The ratio of the slowest incoming data rate that can be accepted in relation to the receiver baud rate
- R_{FAST}: The ratio of the fastest incoming data rate that can be accepted in relation to the receiver baud rate

27.3.3.2.4 Double-Speed Operation

The double-speed operation allows for higher baud rates under asynchronous operation with lower peripheral clock frequencies. This operation mode is enabled by writing the RXMODE bit field in the Control B (USARTn.CTRLB) register to 0×01 .

When enabled, the baud rate for a given asynchronous baud rate setting will be doubled, as shown in the equations in 27.3.2.2.1. The Fractional Baud Rate Generator. In this mode, the receiver will use half the number of samples (reduced from 16 to 8) for data sampling and clock recovery. This


requires a more accurate baud rate setting and peripheral clock. See 27.3.3.2.3. Error Tolerance for more details.

27.3.3.2.5 Auto-Baud

The auto-baud feature lets the USART configure its BAUD register based on input from a communication device, which allows the device to communicate autonomously with multiple devices communicating with different baud rates. The USART peripheral features two auto-baud modes: Generic Auto-Baud mode and LIN Constrained Auto-Baud mode.

Both auto-baud modes must receive an auto-baud frame, as seen in the figure below.

Figure 27-9. Auto-Baud Timing

The break field is detected when 12 or more consecutive low cycles are sampled and notifies the USART that it is about to receive the synchronization field. After the break field, when the Start bit of the synchronization field is detected, a counter running at the peripheral clock speed is started. The counter is then incremented for the next eight T_{bit} of the synchronization field. When all eight bits are sampled, the counter is stopped. The resulting counter value is in effect the new BAUD register value.

When the USART Receive mode is set to GENAUTO (the RXMODE bit field in the USARTn.CTRLB register), the Generic Auto-Baud mode is enabled. In this mode, one can set the Wait For Break (WFB) bit in the USARTn.STATUS register to enable detection of a break field of any length (that is, also shorter than 12 cycles). This makes it possible to set an arbitrary new baud rate without knowing the current baud rate. If the measured sync field results in a valid BAUD value ($0 \times 0064 - 0 \times FFFF$), the BAUD register is updated.

When USART Receive mode is set to LINAUTO mode (the RXMODE bit field in the USARTn.CTRLB register), it follows the LIN format. The WFB functionality of the Generic Auto-Baud mode is not compatible with the LIN Constrained Auto-Baud mode, which means that the received signal must be low for 12 peripheral clock cycles or more for a break field to be valid. When a break field has been detected, the USART expects the following synchronization field character to be 0x55. If the received synchronization field character is not 0x55, the Inconsistent Sync Field Error Flag (the ISFIF bit in the USARTn.STATUS register) is set, and the baud rate is unchanged.

27.3.3.2.6 Half-Duplex Operation

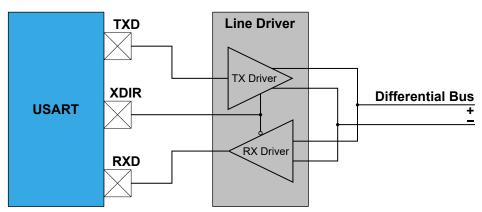
Half-duplex is a type of communication where two or more devices may communicate with each other, but only one at a time. The USART can be configured to operate in the following half-duplex modes:

- One-Wire mode
- RS-485 mode

One-Wire Mode

One-Wire mode is enabled by setting the Loop-Back Mode Enable (LBME) bit in the USARTn.CTRLA register. This will enable an internal connection between the TXD pin and the USART receiver, making the TXD pin a combined TxD/RxD line. The RXD pin will be disconnected from the USART receiver and may be controlled by a different peripheral.

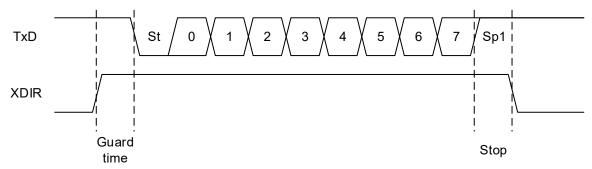
In One-Wire mode, multiple devices can manipulate the TxD/RxD line at the same time. In the case where one device drives the pin to a logical high level (V_{CC}), and another device pulls the line low (GND), a short will occur. To accommodate this, the USART features an Open-Drain mode (the ODME


bit in the USARTn.CTRLB register), which prevents the transmitter from driving a pin to a logical high level, thereby constraining it to only be able to pull it low. Combining this function with the internal pull-up feature (the PULLUPEN bit in the PORTx.PINnCTRL register) will let the line be held high through a pull-up resistor, allowing any device to pull it low. When the line is pulled low, the current from V_{CC} to GND will be limited by the pull-up resistor. The TXD pin is automatically set to output by hardware when the Open-Drain mode is enabled.

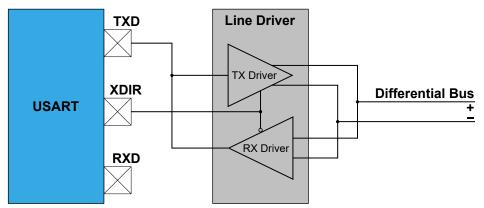
When the USART is transmitting to the TxD/RxD line, it will also receive its transmission. This can be used to detect overlapping transmissions by checking if the received data are the same as the transmitted data.

RS-485 Mode

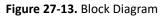
RS-485 is a communication standard supported by the USART peripheral. It is a physical interface that defines the setup of a communication circuit. Data are transmitted using differential signaling, making communication robust against noise. RS-485 is enabled by writing the RS485 bit in the USARTn.CTRLA register to '1'.

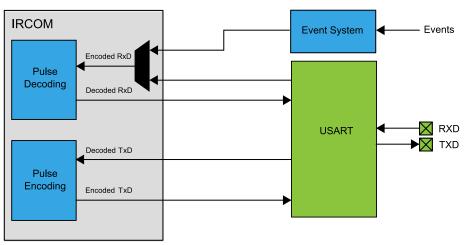

The RS-485 mode supports external line driver devices that convert a single USART transmission into corresponding differential pair signals. It implements automatic control of the XDIR pin that can be used to enable transmission or reception for the line driver device. The USART automatically drives the XDIR pin high while the USART is transmitting and pulls it low when the transmission is complete. An example of such a circuit is shown in the figure below.

The XDIR pin goes high one baud clock cycle in advance of data being shifted out to allow some guard time to enable the external line driver. The XDIR pin will remain high for the complete frame, including Stop bit(s).



RS-485 mode is compatible with One-Wire mode. One-Wire mode enables an internal connection between the TXD pin and the USART receiver, making the TXD pin a combined TxD/RxD line.


The RXD pin will be disconnected from the USART receiver and may be controlled by a different peripheral. An example of such a circuit is shown in the figure below.



27.3.3.2.7 IRCOM Mode of Operation

The USART peripheral can be configured in Infrared Communication mode (IRCOM), which is IrDA[®] 1.4 compatible with baud rates up to 115.2 kbps. When enabled, the IRCOM mode enables infrared pulse encoding/decoding for the USART.

The USART is set in IRCOM mode by writing 0×02 to the CMODE bit field in the USARTn.CTRLC register. The data on the TXD/RXD pins are the inverted values of the transmitted/received infrared pulse. It is also possible to select an event channel from the Event System as an input for the IRCOM receiver. This enables the IRCOM to receive input from the I/O pins or sources other than the corresponding RXD pin, which will disable the RxD input from the USART pin.

For transmission, three pulse modulation schemes are available:

- 3/16 of the baud rate period
- Fixed programmable pulse time based on the peripheral clock frequency
- Pulse modulation disabled

For the reception, a fixed programmable minimum high-level pulse-width for the pulse to be decoded as a logical '0' is used. Shorter pulses will then be discarded, and the bit will be decoded to logical '1' as if no pulse was received.

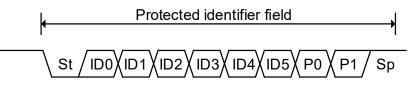
Double-Speed mode cannot be used for the USART when IRCOM mode is enabled.

27.3.4 Additional Features

27.3.4.1 Parity

Parity bits can be used by the USART to check the validity of a data frame. The Parity bit is set by the transmitter based on the number of bits with the value of '1' in a transmission and controlled by the receiver upon reception. If the Parity bit is inconsistent with the transmission frame, the receiver may assume that the data frame has been corrupted.

Even or odd parity can be selected for error checking by writing the Parity Mode (PMODE) bit field in the USARTn.CTRLC register. If even parity is selected, the Parity bit is set to '1' if the number of Data bits with value '1' is odd (making the total number of bits with value '1' even). If odd parity is selected, the Parity bit is set to '1' if the number of data bits with value '1' is even (making the total number of bits with value '1' odd).


When enabled, the parity checker calculates the parity of the data bits in incoming frames and compares the result with the Parity bit of the corresponding frame. If a parity error is detected, the Parity Error flag (the PERR bit in the USARTN.RXDATAH register) is set.

If LIN Constrained Auto-Baud mode is enabled (RXMODE = 0×03 in the USARTN.CTRLB register), a parity check is performed only on the protected identifier field. A parity error is detected if one of the equations below is not true, which sets the Parity Error flag.

P0 = ID0 XOR ID1 XOR ID2 XOR ID4

P1 = NOT (ID1 XOR ID3 XOR ID4 XOR ID5)

Figure 27-14. Protected Identifier Field and Mapping of Identifier and Parity Bits

27.3.4.2 Start-of-Frame Detection

The Start-of-Frame Detection feature enables the USART to wake up from Standby sleep mode upon data reception.

When a high-to-low transition is detected on the RXD pin, the oscillator is powered up, and the USART peripheral clock is enabled. After start-up, the rest of the data frame can be received, provided that the baud rate is slow enough concerning the oscillator start-up time. The start-up time of the oscillators varies with supply voltage and temperature. For details on oscillator start-up time characteristics, refer to the *Electrical Characteristics* section.

If a false Start bit is detected, the device will, if another wake-up source has not been triggered, go back into the Standby sleep mode.

The Start-of-Frame detection works in Asynchronous mode only. It is enabled by writing the Start-of-Frame Detection Enable (SFDEN) bit in the USARTn.CTRLB register. If a Start bit is detected while the device is in Standby sleep mode, the USART Receive Start Interrupt Flag (RXSIF) bit is set.

The USART Receive Complete Interrupt Flag (RXCIF) bit and the RXSIF bit share the same interrupt line, but each has its dedicated interrupt settings. The table below shows the USART Start Frame Detection modes, depending on the interrupt setting.

Table 27-6. USART Start Frame Detection Modes

SFDEN	RXSIF Interrupt	RXCIF Interrupt	Comment
0	х	х	Standard mode

•••••	.continued		
SFDEN	RXSIF Interrupt	RXCIF Interrupt	Comment
1	Disabled	Disabled	Only the oscillator is powered during the frame reception. If the interrupts are disabled and buffer overflow is ignored, all incoming frames will be lost
1	Disabled	Enabled	System/all clocks are awakened on Receive Complete interrupt
1	Enabled	х	System/all clocks are awakened when a Start bit is detected

Note: The **SLEEP** instruction will not shut down the oscillator if there is ongoing communication.

27.3.4.3 Multiprocessor Communication

The Multiprocessor Communication mode (MPCM) effectively reduces the number of incoming frames that have to be handled by the receiver in a system with multiple microcontrollers communicating via the same serial bus. This mode is enabled by writing a '1' to the MPCM bit in the Control B (USARTn.CTRLB) register. In this mode, a dedicated bit in the frames is used to indicate whether the frame is an address or data frame type.

If the receiver is set up to receive frames that contain five to eight data bits, the first Stop bit is used to indicate the frame type. If the receiver is set up for frames with nine data bits, the ninth bit is used to indicate frame type. When the frame type bit is '1', the frame contains an address. When the frame type bit is '0', the frame is a data frame. If 5- to 8-bit character frames are used, the transmitter must be set to use two Stop bits since the first Stop bit is used for indicating the frame type.

If a particular client MCU has been addressed, it will receive the following data frames as usual, while the other client MCUs will ignore the frames until another address frame is received.

27.3.4.3.1 Using Multiprocessor Communication

Use the following procedure to exchange data in Multiprocessor Communication mode (MPCM):

- 1. All client MCUs are in Multiprocessor Communication mode.
- 2. The host MCU sends an address frame, and all clients receive and read this frame.
- 3. Each client MCU determines if it has been selected.
- 4. The addressed MCU will disable MPCM and receive all data frames. The other client MCUs will ignore the data frames.
- 5. When the addressed MCU has received the last data frame, it must enable MPCM again and wait for a new address frame from the host.

The process then repeats from step 2.

27.3.5 Events

The USART can generate the events described in the table below.

Table 27-7. Event Generators in USART

Generator Peripheral		Description	Event Type	Generating Clock Domain	Length of Event
USARTn	ХСК	The clock signal in SPI Host mode and Synchronous USART Host mode	Pulse	CLK_PER	One XCK period

The table below describes the event user and its associated functionality.

Table 27-8. Event Users in USART

User Nam	User Name Description		Input Detection		
Peripheral	Input	Description	Input Detection	Async/Sync	
USARTn	IREI	USARTn IrDA event input	Pulse	Sync	

27.3.6 Interrupts

Table 27-9. Available Interrupt Vectors ar	nd Sources
--	------------

Name	Vector Description	Conditions
RXC	Receive Complete interrupt	 There is unread data in the receive buffer (RXCIE) Receive of Start-of-Frame detected (RXSIE) Auto-Baud Error/ISFIF flag set (ABEIE)
DRE	Data Register Empty interrupt	The transmit buffer is empty/ready to receive new data (DREIE)
ТХС	Transmit Complete interrupt	The entire frame in the transmit shift register has been shifted out and there are no new data in the transmit buffer (TXCIE)

When an interrupt condition occurs, the corresponding interrupt flag is set in the STATUS (USARTn.STATUS) register.

An interrupt source is enabled or disabled by writing to the corresponding bit in the Control A (USARTn.CTRLA) register.

An interrupt request is generated when the corresponding interrupt source is enabled, and the Interrupt flag is set. The interrupt request remains active until the Interrupt flag is cleared. See the USARTn.STATUS register for details on how to clear Interrupt flags.

27.4 Register Summary

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00	RXDATAL	7:0				DAT	A[7:0]			
0x01	RXDATAH	7:0	RXCIF	BUFOVF				FERR	PERR	DATA[8]
0x02	TXDATAL	7:0				DAT	A[7:0]			
0x03	TXDATAH	7:0								DATA[8]
0x04	STATUS	7:0	RXCIF	TXCIF	DREIF	RXSIF	ISFIF		BDF	WFB
0x05	CTRLA	7:0	RXCIE	TXCIE	DREIE	RXSIE	LBME	ABEIE		RS485
0x06	CTRLB	7:0	RXEN	TXEN		SFDEN	ODME	RXMO	DE[1:0]	MPCM
0x07	CTRLC	7:0	CMOE	DE[1:0]	PMODE[1:0] SBMODE			CHSIZE[2:0]		
0x07	CTRLC	7:0	CMOE	DE[1:0]				UDORD	UCPHA	
0x08	BAUD	7:0				BAU	D[7:0]			
0,000	BAUD	15:8				BAUD	[15:8]			
0x0A	CTRLD	7:0	ABW	/[1:0]						
0x0B	DBGCTRL	7:0								DBGRUN
0x0C	EVCTRL	7:0								IREI
0x0D	TXPLCTRL	7:0				TXP	L[7:0]			
0x0E	RXPLCTRL	7:0					RXPL[6:0]			

27.5 Register Description

27.5.1 Receiver Data Register Low Byte

Name:	RXDATAL
Offset:	0x00
Reset:	0x00
Property:	-

This register contains the eight LSbs of the data received by the USART receiver. The USART receiver is double-buffered, and this register always represents the data for the oldest received frame. If the data for only one frame is present in the receive buffer, this register contains that data.

The buffer shifts out the data either when RXDATAL or RXDATAH is read, depending on the configuration. The register, which does not lead to data being shifted, must be read first to be able to read both bytes before shifting.

When the Character Size (CHSIZE) bit field in the Control C (USARTn.CTRLC) register is configured to 9-bit (low byte first), a read of RXDATAH shifts the receive buffer, or else, RXDATAL shifts the buffer.

Bit	7	6	5	4	3	2	1	0
	DATA[7:0]							
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bits 7:0 - DATA[7:0] Receiver Data Register

27.5.2 Receiver Data Register High Byte

Name:	RXDATAH
Offset:	0x01
Reset:	0x00
Property:	-

This register contains the MSb of the data received by the USART receiver, as well as status bits reflecting the status of the received data frame. The USART receiver is double-buffered, and this register always represents the data and status bits for the oldest received frame. If the data and status bits for only one frame is present in the receive buffer, this register contains that data.

The buffer shifts out the data either when RXDATAL or RXDATAH is read, depending on the configuration. The register, which does not lead to data being shifted, must be read first to be able to read both bytes before shifting.

When the Character Size (CHSIZE) bits in the Control C (USARTn.CTRLC) register is configured to 9-bit (low byte first), a read of RXDATAH shifts the receive buffer, or else, RXDATAL shifts the buffer.

Bit	7	6	5	4	3	2	1	0
	RXCIF	BUFOVF				FERR	PERR	DATA[8]
Access	R	R	•			R	R	R
Reset	0	0				0	0	0

Bit 7 - RXCIF USART Receive Complete Interrupt Flag

This flag is set when there are unread data in the receive buffer and cleared when the receive buffer is empty.

Bit 6 - BUFOVF Buffer Overflow

This flag is set if a buffer overflow is detected. A buffer overflow occurs when the receive buffer is full, a new frame is waiting in the receive shift register, and a new Start bit is detected. This flag is cleared when the Receiver Data (USARTn.RXDATAL and USARTn.RXDATAH) registers are read. This flag is not used in the Host SPI mode of operation.

Bit 2 – FERR Frame Error

This flag is set if the first Stop bit is '0' and cleared when it is correctly read as '1'. This flag is not used in the Host SPI mode of operation.

Bit 1 – PERR Parity Error

This flag is set if parity checking is enabled and the received data has a parity error, or else, this flag cleared. For details on parity calculation, refer to 27.3.4.1. Parity. This flag is not used in the Host SPI mode of operation.

Bit 0 – DATA[8] Receiver Data Register

When using a 9-bit frame size, this bit holds the ninth bit (MSb) of the received data. When the Receiver Mode (RXMODE) bit field in the Control B (USARTn.CTRLB) register is configured to LIN Constrained Auto-Baud (LINAUTO) mode, this bit indicates if the received data are within the response space of a LIN frame. This bit is cleared if the received data are in the protected identifier field and is otherwise set.

27.5.3 Transmit Data Register Low Byte

Name:	TXDATAL
Offset:	0x02
Reset:	0x00
Property:	-

The data written to this register is automatically loaded into the TX Buffer and through to the dedicated shift register. The shift register outputs each of the bits serially to the TXD pin.

When using a 9-bit frame size, the ninth bit (MSb) must be written to the Transmit Data Register High Byte (USARTn.TXDATAH). In that case, the buffer shifts data either when the Transmit Data Register Low Byte (USARTn.TXDATAL) or the Transmit Data Register High Byte (USARTn.TXDATAH) is written, depending on the configuration. The register, which does not lead to data being shifted, must be written first to be able to write both registers before shifting.

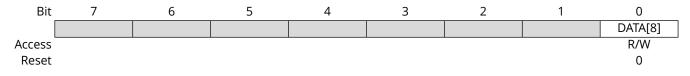
When the Character Size (CHSIZE) bit field in the Control C (USARTn.CTRLC) register is configured to 9-bit (low byte first), a write of the Transmit Data Register High Byte shifts the transmit buffer. Otherwise, the Transmit Data Register Low Byte shifts the buffer.

This register may only be written when the Data Register Empty Interrupt Flag (DREIF) in the Status (USARTn.STATUS) register is set.

Bit	7	6	5	4	3	2	1	0	
	DATA[7:0]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 7:0 - DATA[7:0] Transmit Data Register Low Byte

27.5.4 Transmit Data Register High Byte


Name:	TXDATAH
Offset:	0x03
Reset:	0x00
Property:	-

The data written to this register is automatically loaded into the TX Buffer and through to the dedicated shift register. The shift register outputs each of the bits serially to the TXD pin.

When using a 9-bit frame size, the ninth bit (MSb) must be written to the Transmit Data Register High Byte (USARTn.TXDATAH). In that case, the buffer shifts data either when the Transmit Data Register Low Byte (USARTn.TXDATAL) or the Transmit Data Register High Byte (USARTn.TXDATAH) is written, depending on the configuration. The register, which does not lead to data being shifted, must be written first to be able to write both registers before shifting.

When the Character Size (CHSIZE) bit field in the Control C (USARTn.CTRLC) register is configured to 9-bit (low byte first), a write of the Transmit Data Register High Byte shifts the transmit buffer. Otherwise, the Transmit Data Register Low Byte shifts the buffer.

This register may only be written when the Data Register Empty Interrupt Flag (DREIF) in the Status (USARTn.STATUS) register is set.

Bit 0 - DATA[8] Transmit Data Register High Byte

27.5.5 USART Status Register

Name:	STATUS
Offset:	0x04
Reset:	0x20
Property:	-

Bit	7	6	5	4	3	2	1	0
	RXCIF	TXCIF	DREIF	RXSIF	ISFIF		BDF	WFB
Access	R	R/W	R	R/W	R/W	•	R/W	W
Reset	0	0	1	0	0		0	0

Bit 7 – RXCIF USART Receive Complete Interrupt Flag

This flag is set when there are unread data in the receive buffer and cleared when the receive buffer is empty.

- **Bit 6 TXCIF** USART Transmit Complete Interrupt Flag This flag is set when the entire frame in the transmit shift register has been shifted out, and there are no new data in the transmit buffer (TXDATAL and TXDATAH) registers. It is cleared by writing a '1' to it.
- Bit 5 DREIF USART Data Register Empty Interrupt Flag

This flag is set when the Transmit Data (USARTn.TXDATAL and USARTn.TXDATAH) registers are empty and cleared when they contain data not yet moved into the transmit shift register.

Bit 4 - RXSIF USART Receive Start Interrupt Flag

This flag is set when Start-of-Frame detection is enabled, the device is in Standby sleep mode, and a valid start bit is detected. It is cleared by writing a '1' to it. This flag is not used in the Host SPI mode operation.

Bit 3 – ISFIF Inconsistent Synchronization Field Interrupt Flag

This flag is set if an auto-baud mode is enabled, and the synchronization field is too short or too long to give a valid baud setting. It will also be set when USART is set to LINAUTO mode, and the SYNC character differs from data value 0x55. This flag is cleared by writing a '1' to it. See the *Auto-Baud* section for more information.

Bit 1 – BDF Break Detected Flag

This flag is set if an auto-baud mode is enabled and a valid break and synchronization character is detected, and is cleared when the next data are received. It can also be cleared by writing a '1' to it. See the *Auto-Baud* section for more information.

Bit 0 – WFB Wait For Break

Setting this bit enables the Wait For Break feature for the following incoming frame. After this frame, the feature is automatically disabled.

27.5.6 Control A

Name:	CTRLA
Offset:	0x05
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
	RXCIE	TXCIE	DREIE	RXSIE	LBME	ABEIE		RS485
Access	R/W	R/W	R/W	R/W	R/W	R/W		R/W
Reset	0	0	0	0	0	0		0

Bit 7 – RXCIE Receive Complete Interrupt Enable

This bit controls whether the Receive Complete Interrupt is enabled or not. When enabled, the interrupt will be triggered when the RXCIF bit in the USARTn.STATUS register is set.

Value	Description
0	The Receive Complete Interrupt is disabled
1	The Receive Complete Interrupt is enabled

Bit 6 – TXCIE Transmit Complete Interrupt Enable

This bit controls whether the Transmit Complete Interrupt is enabled or not. When enabled, the interrupt will be triggered when the TXCIF bit in the USARTn.STATUS register is set.

Value	Description
0	The Transmit Complete Interrupt is disabled
1	The Transmit Complete Interrupt is enabled

The Transmit Complete Interrupt is enabled

Bit 5 – DREIE Data Register Empty Interrupt Enable

This bit controls whether the Data Register Empty Interrupt is enabled or not. When enabled, the interrupt will be triggered when the DREIF bit in the USARTn.STATUS register is set.

0 The Data Register Empty Interrupt is disabled	Value	Description	
1 The Data Degister Empty Interrupt is enabled	0	The Data Register Empty Interrupt is disabled	
	1	The Data Register Empty Interrupt is enabled	

Bit 4 – RXSIE Receiver Start Frame Interrupt Enable

This bit controls whether the Receiver Start Frame Interrupt is enabled or not. When enabled, the interrupt will be triggered when the RXSIF bit in the USARTN STATUS register is set.

Value	Description
0	The Receiver Start Frame Interrupt is disabled
1	The Receiver Start Frame Interrupt is enabled

Bit 3 – LBME Loop-Back Mode Enable

This bit controls whether the Loop-back mode is enabled or not. When enabled, an internal connection between the TXD pin and the USART receiver is created, and the input from the RXD pin to the USART receiver is disconnected.

Value	Description
0	Loop-back mode is disabled
1	Loop-back mode is enabled

Bit 2 – ABEIE Auto-Baud Error Interrupt Enable

This bit controls whether the Auto-baud Error Interrupt is enabled or not. When enabled, the interrupt will be triggered when the ISFIF bit in the USARTn.STATUS register is set.

Value	Description
0	The Auto-Baud Error Interrupt is disabled
1	The Auto-Baud Error Interrupt is enabled

Bit 0 - RS485 RS-485 Mode

This bit controls whether the RS-485 mode is enabled or not. Refer to section RS-485 Mode for more information.

0 RS-4	485 mode is disabled
1 RS-4	485 mode is enabled

27.5.7 Control B

Name:	CTRLB
Offset:	0x06
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
Γ	RXEN	TXEN		SFDEN	ODME	RXMOI	DE[1:0]	MPCM
Access	R/W	R/W		R/W	R/W	R/W	R/W	R/W
Reset	0	0		0	0	0	0	0

Bit 7 – RXEN Receiver Enable

This bit controls whether the USART receiver is enabled or not. Refer to 27.3.2.4.2. Disabling the Receiver for more information.

Value	Description
0	The USART receiver is disabled
1	The USART receiver is enabled

Bit 6 – TXEN Transmitter Enable

This bit controls whether the USART transmitter is enabled or not. Refer to 27.3.2.3.1. Disabling the Transmitter for more information.

Value	Description
0	The USART transmitter is disabled
1	The USART transmitter is enabled

Bit 4 – SFDEN Start-of-Frame Detection Enable

This bit controls whether the USART Start-of-Frame Detection mode is enabled or not. Refer to 27.3.4.2. Start-of-Frame Detection for more information.

Value	Description
0	The USART Start-of-Frame Detection mode is disabled
1	The USART Start-of-Frame Detection mode is enabled

Bit 3 – ODME Open Drain Mode Enable

This bit controls whether Open Drain mode is enabled or not. See the One-Wire Mode section for more information.

Value	Description
0	Open Drain mode is disabled
1	Open Drain mode is enabled

Bits 2:1 - RXMODE[1:0] Receiver Mode

Writing this bit field selects the receiver mode of the USART.

- Writing the bits to 0x00 enables Normal-Speed (NORMAL) mode. When the USART Communication Mode (CMODE) bit field in the Control C (USARTn.CTRLC) register is configured to Asynchronous USART (ASYNCHRONOUS) or Infrared Communication (IRCOM), always write the RXMODE bit field to 0x00.
- Writing the bits to 0x01 enables Double-Speed (CLK2X) mode. Refer to 27.3.3.2.4. Double-Speed Operation for more information.
- Writing the bits to 0x02 enables Generic Auto-Baud (GENAUTO) mode. Refer to the *Auto-Baud* section for more information.
- Writing the bits to 0x03 enables Lin Constrained Auto-Baud (LINAUTO) mode. Refer to the *Auto-Baud* section for more information.

Value	Name	Description
0x00	NORMAL	Normal-Speed mode
0x01	CLK2X	Double-Speed mode
0x02	GENAUTO	Generic Auto-Baud mode
0x03	LINAUTO	LIN Constrained Auto-Baud mode

Bit 0 – MPCM Multi-Processor Communication Mode

This bit controls whether the Multi-Processor Communication mode is enabled or not. Refer to 27.3.4.3. Multiprocessor Communication for more information.

Value	Description
0	Multi-Processor Communication mode is disabled
1	Multi-Processor Communication mode is enabled

27.5.8 Control C - Normal Mode

Name:	CTRLC
Offset:	0x07
Reset:	0x03
Property:	-

This register description is valid for all modes except the Host SPI mode. When the USART Communication Mode (CMODE) bit field in this register is written to 'MSPI', see CTRLC - Host SPI mode for the correct description.

Bit	7	6	5	4	3	2	1	0
	CMO	DE[1:0]	PMOD	DE[1:0]	SBMODE		CHSIZE[2:0]	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	1	1

Bits 7:6 - CMODE[1:0] USART Communication Mode

IRCOM

MSPI

This bit field selects the communication mode of the USART.

Writing a 0x03 to these bits alters the available bit fields in this register. See CTRLC - Host SPI mode.ValueNameDescription0x00ASYNCHRONOUSAsynchronous USART0x01SYNCHRONOUSSynchronous USART

Host SPI

Infrared Communication

Bits 5:4 – PMODE[1:0] Parity Mode

0x02

0x03

This bit field enables and selects the type of parity generation. See 27.3.4.1. Parity for more information.

Value	Name	Description
0x0	DISABLED	Disabled
0x1	-	Reserved
0x2	EVEN	Enabled, even parity
0x3	ODD	Enabled, odd parity

Bit 3 – SBMODE Stop Bit Mode

This bit selects the number of Stop bits to be inserted by the transmitter.

The receiver ignores this setting

Value	Description
0	1 Stop bit
1	2 Stop bits

Bits 2:0 - CHSIZE[2:0] Character Size

This bit field selects the number of data bits in a frame. The receiver and transmitter use the same setting. For 9BIT character size, the order of which byte to read or write first, low or high byte of RXDATA or TXDATA, can be configured.

	i indrin, can be conna	
Value	Name	Description
0x00	5BIT	5-bit
0x01	6BIT	6-bit
0x02	7BIT	7-bit
0x03	8BIT	8-bit
0x04	-	Reserved
0x05	-	Reserved
0x06	9BITL	9-bit (Low byte first)
0x07	9BITH	9-bit (High byte first)

27.5.9 Control C - Host SPI Mode

Name:	CTRLC
Offset:	0x07
Reset:	0x02
Property:	-

This register description is valid only when the USART is in Host SPI mode (CMODE written to MSPI). For other CMODE values, see CTRLC - Normal Mode.

See 27.3.3.1.3. USART in Host SPI Mode for a full description of the Host SPI mode operation.

Bit	7	6	5	4	3	2	1	0
	CMOE	DE[1:0]				UDORD	UCPHA	
Access	R/W	R/W		•		R/W	R/W	
Reset	0	0				0	1	

Bits 7:6 - CMODE[1:0] USART Communication Mode

This bit field selects the communication mode of the USART.

Writing a value different than 0×03 to these bits alters the available bit fields in this register. See CTRLC - Normal Mode.

Value	Name	Description	
0x00	ASYNCHRONOUS	Asynchronous USART	
0x01	SYNCHRONOUS	Synchronous USART	
0x02	IRCOM	Infrared Communication	
0x03	MSPI	Host SPI	

Bit 2 - UDORD USART Data Order

This bit controls the frame format. The receiver and transmitter use the same setting. Changing the setting of the UDORD bit will corrupt all ongoing communication for both the receiver and the transmitter.

Value	Description
0	MSb of the data word is transmitted first
1	LSb of the data word is transmitted first

Bit 1 - UCPHA USART Clock Phase

This bit controls the phase of the interface clock. Refer to the Clock Generation section for more information.

Value	Description
0	Data are sampled on the leading (first) edge
1	Data are sampled on the trailing (last) edge

27.5.10 Baud Register

Name:	BAUD
Offset:	0x08
Reset:	0x00
Property:	-

The USARTn.BAUDL and USARTn.BAUDH register pair represents the 16-bit value, USARTn.BAUD. The low byte [7:0] (suffix L) is accessible at the original offset. The high byte [15:8] (suffix H) can be accessed at offset + 0×01 .

Ongoing transmissions of the transmitter and receiver will be corrupted if the baud rate is changed. Writing to this register will trigger an immediate update of the baud rate prescaler. For more information on how to set the baud rate, see Table 27-1.

Bit	15	14	13	12	11	10	9	8
				BAUD	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				BAUD	D[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:8 - BAUD[15:8] USART Baud Rate High Byte

This bit field holds the MSB of the 16-bit Baud register.

Bits 7:0 - BAUD[7:0] USART Baud Rate Low Byte

This bit field holds the LSB of the 16-bit Baud register.

27.5.11 Control D

	Name: Offset: Reset: Property:	CTRLD 0x0A 0x00 -						
Bit	7	6	5	4	3	2	1	0
	AB	W[1:0]						

Access	R/W	R/W
Reset	0	0

Bits 7:6 – ABW[1:0] Auto-Baud Window Size

These bits control the tolerance for the difference between the baud rates between the two synchronizing devices when using Lin Constrained Auto-baud mode. The tolerance is based on the number of baud samples between every two bits. When baud rates are identical, there must be 32 baud samples between each bit pair since each bit is sampled 16 times.

Value	Name	Description
0x00	WDW0	32±6 (18% tolerance)
0x01	WDW1	32±5 (15% tolerance)
0x02	WDW2	32±7 (21% tolerance)
0x03	WDW3	32±8 (25% tolerance)

27.5.12 Debug Control Register

Name: Offset: Reset: Property:	DBGCTRL 0x0B 0x00 -						
7	6	5	4	3	2	1	0
							DBGRUN
							R/W
							0
	Offset: Reset: Property:	Offset: 0x0B Reset: 0x00 Property: -					

Bit 0 - DBGRUN Debug Run

Value	Description
0	The peripheral is halted in Break Debug mode and ignores events
1	The peripheral will continue to run in Break Debug mode when the CPU is halted

27.5.13 IrDA Control Register

	Name: Offset: Reset: Property:	EVCTRL 0x0C 0x00 -						
Bit	7	6	5	4	3	2	1	0
								IREI
Access					•			R/W
Reset								0

Bit 0 – IREI IrDA Event Input Enable

This bit controls whether the IrDA event input is enabled or not. See 27.3.3.2.7. IRCOM Mode of Operation for more information.

Value	Description
0	IrDA Event input is disabled
1	IrDA Event input is enabled

27.5.14 IRCOM Transmitter Pulse Length Control Register

	Name: Offset: Reset: Property:	TXPLCTRL 0x0D 0x00 -							
Bit	7	6	5	4	3	2	1	0	
				TXPL	[7:0]]
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-
Reset	0	0	0	0	0	0	0	0	

Bits 7:0 – TXPL[7:0] Transmitter Pulse Length

This 8-bit value sets the pulse modulation scheme for the transmitter. Setting this register will only have an effect if IRCOM mode is selected by the USART, and it must be configured before the USART transmitter is enabled (TXEN).

Value	Description
0x00	3/16 of the baud rate period pulse modulation is used
0x01- 0xFE	Fixed pulse length coding is used. The 8-bit value sets the number of peripheral clock periods for the pulse. The start of the pulse will be synchronized with the rising edge of the baud rate clock.
OxFF	Pulse coding disabled. RX and TX signals pass through the IRCOM module unaltered. This enables other features through the IRCOM module, such as half-duplex USART, loop-back testing, and USART RX input from an event channel.

Name: RXPLCTRL Offset: 0x0E Reset: 0x00 Property: -6 5 Bit 7 4 3 2 1 0 RXPL[6:0] R/W R/W R/W R/W R/W R/W R/W Access 0 Reset 0 0 0 0 0 0

27.5.15 IRCOM Receiver Pulse Length Control Register

Bits 6:0 - RXPL[6:0] Receiver Pulse Length

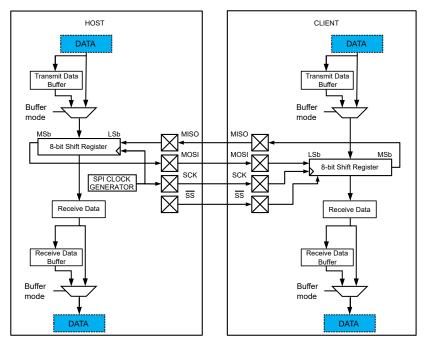
This 7-bit value sets the filter coefficient for the IRCOM transceiver. Setting this register will only have an effect if IRCOM mode is selected by a USART, and it must be configured before the USART receiver is enabled (RXEN).

Value	Description
0x00	Filtering disabled
0x01-	Filtering enabled. The value of RXPL+1 represents the number of samples required for a received pulse to be
0x7F	accepted.

28. SPI - Serial Peripheral Interface

28.1 Features

- Full Duplex, Three-Wire Synchronous Data Transfer
- Host or Client Operation
- LSb First or MSb First Data Transfer
- Seven Programmable Bit Rates
- End of Transmission Interrupt Flag
- Write Collision Flag Protection
- Wake-up from Idle Mode
- Double-Speed (CK/2) Host SPI Mode


28.2 Overview

The Serial Peripheral Interface (SPI) is a high-speed synchronous data transfer interface using three or four pins. It allows full-duplex communication between an AVR[®] device and peripheral devices or between several microcontrollers. The SPI peripheral can be configured as either host or client. The host initiates and controls all data transactions.

The interconnection between host and client devices with SPI is shown in the block diagram below. The system consists of two shift registers and a server clock generator. The SPI host initiates the communication cycle by pulling the desired client's Client Select (SS) signal low. The host and client prepare the data to be sent to their respective shift registers, and the host generates the required clock pulses on the SCK line to exchange data. Data are always shifted from host to client on the host output, client input (MOSI) line, and from client to host on the host input, client output (MISO) line.

28.2.1 Block Diagram

Figure 28-1. SPI Block Diagram

The SPI is built around an 8-bit shift register that will shift data out and in at the same time. The Transmit Data register and the Receive Data register are not physical registers but are mapped to other registers when written or read: Writing the Transmit Data (SPIn.DATA) register will write the shift register in Normal mode and the Transmit Buffer register in Buffer mode. Reading the Receive Data (SPIn.DATA) register will read the Receive Data register in Normal mode and the Receive Data register in Normal mode and the Receive Data register in Normal mode and the Receive Data Buffer in Buffer mode.

In Host mode, the SPI has a clock generator to generate the SCK clock. In Client mode, the received SCK clock is synchronized and sampled to trigger the shifting of data in the shift register.

28.2.2 Signal Description

 Table 28-1. Signals in Host and Client Mode

Signal	Description	Pin Configuration	
Signal		Host Mode	Client Mode
MOSI	Host Out Client In	User defined ⁽¹⁾	Input
MISO	Host In Client Out	Input	User defined ^(1,2)
SCK	Serial Clock	User defined ⁽¹⁾	Input
<u>55</u>	Client Select	User defined ⁽¹⁾	Input

Notes:

- 1. If the pin data direction is configured as output, the pin level is controlled by the SPI.
- 2. If the SPI is in Client mode and the MISO pin data direction is configured as output, the \overline{SS} pin controls the MISO pin output in the following way:
 - If the \overline{SS} pin is driven low, the MISO pin is controlled by the SPI
 - If the SS pin is driven high, the MISO pin is tri-stated

When the SPI module is enabled, the pin data direction for the signals marked with "Input" in Table 28-1 is overridden.

28.3 Functional Description

28.3.1 Initialization

Initialize the SPI to a basic functional state by following these steps:

- 1. Configure the \overline{SS} pin in the port peripheral.
- 2. Select the SPI host/client operation by writing the Host/Client Select (MASTER) bit in the Control A (SPIn.CTRLA) register.
- 3. In Host mode, select the clock speed by writing the Prescaler (PRESC) bits and the Clock Double (CLK2X) bit in SPIn.CTRLA.
- 4. Optional: Select the Data Transfer mode by writing to the MODE bits in the Control B (SPIn.CTRLB) register.
- 5. Optional: Write the Data Order (DORD) bit in SPIn.CTRLA.
- 6. Optional: Set up the Buffer mode by writing the BUFEN and BUFWR bits in the Control B (SPIn.CTRLB) register.
- 7. Optional: To disable the multi-host support in Host mode, write '1' to the Client Select Disable (SSD) bit in SPIn.CTRLB.
- 8. Enable the SPI by writing a '1' to the ENABLE bit in SPIn.CTRLA.

28.3.2 Operation

28.3.2.1 Host Mode Operation

When the SPI is configured in Host mode, a write to the SPIn.DATA register will start a new transfer. The SPI host can operate in two modes, Normal and Buffer, as explained below.

28.3.2.1.1 Normal Mode

In Normal mode, the system is single-buffered in the transmit direction and double-buffered in the receive direction. This influences the data handling in the following ways:

- 1. New bytes to be sent cannot be written to the DATA (SPIn.DATA) register before the entire transfer has been completed. A premature write will cause corruption of the transmitted data, and the Write Collision (WRCOL) flag in SPIn.INTFLAGS will be set.
- 2. Received bytes are written to the Receive Data Buffer register immediately after the transmission is completed.
- 3. The Receive Data Buffer register has to be read before the next transmission is completed, or the data will be lost. This register is read by reading SPIn.DATA.
- 4. The Transmit Data Buffer and Receive Data Buffer registers are not used in Normal mode.

After a transfer has been completed, the Interrupt Flag (IF) will be set in the Interrupt Flags (SPIn.INTFLAGS) register. This will cause the corresponding interrupt to be executed if this interrupt and the global interrupts are enabled. Setting the Interrupt Enable (IE) bit in the Interrupt Control (SPIn.INTCTRL) register will enable the interrupt.

28.3.2.1.2 Buffer Mode

The Buffer mode is enabled by writing the BUFEN bit in the SPIn.CTRLB register to '1'. The BUFWR bit in SPIn.CTRLB does not affect Host mode. In Buffer mode, the system is double-buffered in the transmit direction and triple-buffered in the receive direction. This influences the data handling in the following ways:

- 1. New bytes can be written to the DATA (SPIn.DATA) register as long as the Data Register Empty Interrupt Flag (DREIF) in the Interrupt Flag (SPIn.INTFLAGS) register is set. The first write will be transmitted right away, and the following write will go to the Transmit Data Buffer register.
- 2. A received byte is placed in a two-entry Receive First-In, First-Out (RX FIFO) queue comprised of the Receive Data register and Receive Data Buffer immediately after the transmission is completed.
- 3. The DATA register is used to read from the RX FIFO. The RX FIFO must be read at least every second transfer to avoid any loss of data.

When both the shift register and the Transmit Data Buffer register become empty, the Transfer Complete Interrupt Flag (TXCIF) in the Interrupt Flags (SPIn.INTFLAGS) register will be set. This will cause the corresponding interrupt to be executed if this interrupt and the global interrupts are enabled. Setting the Transfer Complete Interrupt Enable (TXCIE) in the Interrupt Control (SPIn.INTCTRL) register enables the Transfer Complete Interrupt.

28.3.2.1.3 SS Pin Functionality in Host Mode - Multi-Host Support

In Host mode, the Client Select Disable (SSD) bit in the Control B (SPIn.CTRLB) register controls how the SPI uses the SS pin.

- If SSD in SPIn.CTRLB is '0', the SPI can use the <u>SS</u> pin to transition from Host to Client mode. This allows multiple SPI hosts on the same SPI bus.
- If SSD in SPIn.CTRLB is '0', and the SS pin is configured as an output pin, it can be used as a regular I/O pin or by other peripheral modules and will not affect the SPI system
- If SSD in SPIn.CTRLB is '1', the SPI does not use the SS pin. It can be used as a regular I/O pin or by other peripheral modules.

If the SSD bit in SPIn.CTRLB is '0', and the \overline{SS} is configured as an input pin, the \overline{SS} pin must be held high to ensure Host SPI operation. A low level will be interpreted as another host is trying to take

control of the bus. This will switch the SPI into Client mode, and the hardware of the SPI will perform the following actions:

- 1. The Host (MASTER) bit in the SPI Control A (SPIn.CTRLA) register is cleared, and the SPI system becomes a client. The direction of the SPI pins will be switched when the conditions in Table 28-2 are met.
- 2. The Interrupt Flag (IF) bit in the Interrupt Flags (SPIn.INTFLAGS) register will be set. If the interrupt is enabled and the global interrupts are enabled, the interrupt routine will be executed.

Table 28-2. Overview of the \overline{SS} Pin Functionality When the SSD Bit in SPIn.CTRLB Is '0'

SS Configuration	SS Pin-Level	Description
	High	Host activated (selected)
Input	Low	Host deactivated, switched to Client mode
Output	High	Host activated (selected)
Output	Low	Host activated (selected)

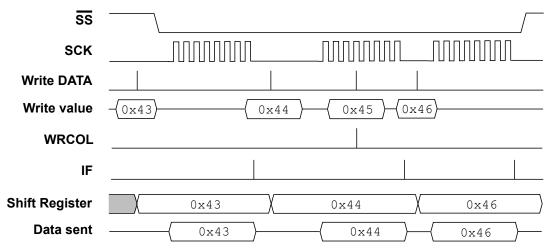
Note: If the device is in Host mode and it cannot be ensured that the \overline{SS} pin will stay high between two transmissions, the status of the Host (MASTER) bit in SPIn.CTRLA has to be checked before a new byte is written. After the Host bit has been cleared by a low level on the \overline{SS} line, it must be set by the application to re-enable the SPI Host mode.

28.3.2.2 Client Mode

In Client mode, the SPI peripheral receives SPI clock and Client Select from a Host. Client mode supports three operational modes: One Normal mode and two configurations for the Buffered mode. In Client mode, the control logic will sample the incoming signal on the SCK pin. To ensure correct sampling of this clock signal, the minimum low and high periods must each be longer than two peripheral clock cycles.

28.3.2.2.1 Normal Mode

In Normal mode, the SPI peripheral will remain Idle as long as the SS pin is driven high. In this state, the software may update the contents of the DATA register, but the data will not be shifted out by incoming clock pulses on the SCK pin until the SS pin is driven low. If the SS pin is driven low, the client will start to shift out data on the first SCK clock pulse. When one byte has been completely shifted, the SPI Interrupt Flag (IF) in SPIn.INTFLAGS is set.


The user application may continue placing new data to be sent into the DATA register before reading the incoming data. New bytes to be sent cannot be written to the DATA register before the entire transfer has been completed. A premature write will be ignored, and the hardware will set the Write Collision (WRCOL) flag in SPIn.INTFLAGS.

When the \overline{SS} pin is driven high, the SPI logic is halted, and the SPI client will not receive any new data. Any partially received packet in the shift register will be lost.

Figure 28-2 shows a transmission sequence in Normal mode. Notice how the value 0x45 is written to the DATA register but never transmitted.

Figure 28-2. SPI Timing Diagram in Normal Mode (Buffer Mode Not Enabled)

The figure above shows three transfers and one write to the DATA register while the SPI is busy with a transfer. This write will be ignored, and the Write Collision (WRCOL) flag in SPIn.INTFLAGS is set.

28.3.2.2.2 Buffer Mode

To avoid data collisions, the SPI peripheral can be configured in Buffered mode by writing a '1' to the Buffer Mode Enable (BUFEN) bit in the Control B (SPIn.CTRLB) register. In this mode, the SPI has additional interrupt flags and extra buffers. The extra buffers are shown in Figure 28-1. There are two different modes for the Buffer mode, selected with the Buffer Mode Wait for Receive (BUFWR) bit. The two different modes are described below with timing diagrams.

Client Buffer Mode with Wait for Receive Bit Written to '0'

In Client mode, if the Buffer mode Wait for Receive (BUFWR) bit in SPIn.CTRLB is written to '0', a dummy byte will be sent before the transmission of user data starts. Figure 28-3 shows a transmission sequence with this configuration. Notice how the value 0x45 is written to the Data (SPIn.DATA) register but never transmitted.

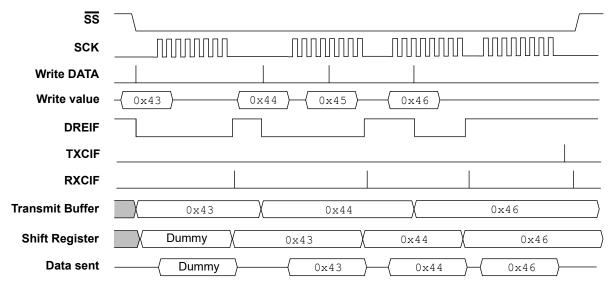


Figure 28-3. SPI Timing Diagram in Buffer Mode with BUFWR in SPIn.CTRLB Written to '0'

When the Wait for Receive (BUFWR) bit in SPIn.CTRLB is written to '0', all writes to the Data (SPIn.DATA) register go to the Transmit Data Buffer register. The figure above shows that the value 0×43 is written to the Data (SPIn.DATA) register but not immediately transferred to the shift register,

so the first byte sent will be a dummy byte. The value of the dummy byte equals the values that were in the shift register at the same time. After the first dummy transfer is completed, the value 0×43 is transferred to the shift register. Then 0×44 is written to the Data (SPIn.DATA) register and goes to the Transmit Data Buffer register. A new transfer is started, and 0×43 will be sent. The value 0×45 is written to the Data (SPIn.DATA) register, but the Transmit Data Buffer register is not updated since it is already full containing 0×44 and the Data Register Empty Interrupt Flag (DREIF) in SPIn.INTFLAGS is low. The value 0×45 will be lost. After the transfer, the value 0×44 is moved to the shift register. During the next transfer, 0×46 is written to the Data (SPIn.DATA) register, and 0×44 is sent out. After the transfer is complete, 0×46 is copied into the shift register and sent out in the next transfer.

The DREIF goes low every time the Transmit Data Buffer register is written and goes high after a transfer when the previous value in the Transmit Data Buffer register is copied into the shift register. The Receive Complete Interrupt Flag (RXCIF) in SPIn.INTFLAGS is set one cycle after the DREIF goes high. The Transfer Complete Interrupt Flag is set one cycle after the Receive Complete Interrupt Flag is set one cycle after the Receive Complete Interrupt Flag is set one cycle after the Receive Complete Interrupt Flag is set one cycle after the Receive Complete Interrupt Flag is set when both the value in the shift register and in the Transmit Data Buffer register has been sent.

Client Buffer Mode with Wait for Receive Bit Written to '1'

In Client mode, if the Buffer Mode Wait for Receive (BUFWR) bit in SPIn.CRTLB is written to '1', the transmission of user data starts as soon as the \overline{SS} pin is driven low. Figure 28-4 shows a transmission sequence with this configuration. Notice how the value 0x45 is written to the Data (SPIn.DATA) register but never transmitted.

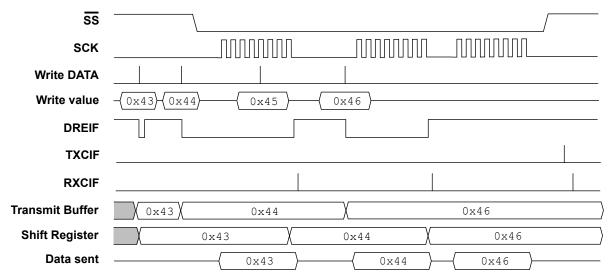


Figure 28-4. SPI Timing Diagram in Buffer Mode with CTRLB.BUFWR Written to '1'

All writes to the Data (SPIn.DATA) register go to the Transmit Data Buffer register. The figure above shows that the value 0×43 is written to the Data (SPIn.DATA) register, and since the \overline{SS} pin is high, it is copied to the shift register in the next cycle. The next write (0×44) will go to the Transmit Data Buffer register. During the first transfer, the value 0×43 will be shifted out. In the figure above, the value 0×45 is written to the Data (SPIn.DATA) register, but the Transmit Data Buffer register is not updated since the DREIF is low. After the transfer is completed, the value 0×44 from the Transmit Data Buffer register is copied to the shift register. The value 0×46 is written to the Transmit Data Buffer register. During the next two transfers, 0×44 and 0×46 are shifted out. The flags behave identically to the Buffer Mode Wait for Receive (BUFWR) bit in SPIn.CTRLB set to '0'.

28.3.2.2.3 SS Pin Functionality in Client Mode

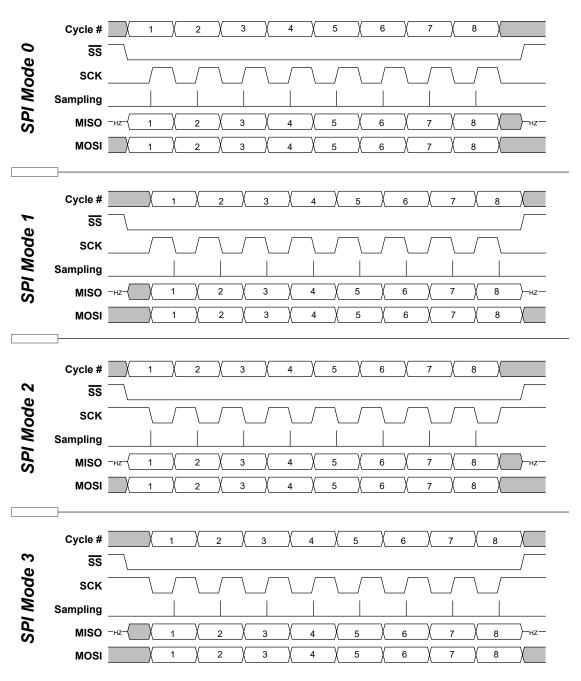
The Client Select (\overline{SS}) pin plays a central role in the operation of the SPI. Depending on the SPI mode and the configuration of this pin, it can be used to activate or deactivate devices. The \overline{SS} pin is used as a Chip Select pin.

In Client mode, the \overline{SS} , MOSI, and SCK are always inputs. The behavior of the MISO pin depends on the configured data direction of the pin in the port peripheral and the value of \overline{SS} . When the \overline{SS} pin is driven low, the SPI is activated and will respond to received SCK pulses by clocking data out on MISO if the user has configured the data direction of the MISO pin as an output. When the \overline{SS} pin is driven high, the SPI is deactivated, meaning that it will not receive incoming data. If the MISO pin data direction is configured as an output, the MISO pin will be tri-stated. Table 28-3 shows an overview of the \overline{SS} pin functionality.

Table 28-3.	Overview	of the	SS Pi	n Functionality

			MISO Pin Mode		
SS Configuration	SS Pin-Level	Description	Port Direction = Output	Port Direction = Input	
High		Client deactivated (deselected)	Tri-stated	Input	
Always Input	Low	Client activated (selected)	Output	Input	

Note: In Client mode, the SPI state machine will be reset when the \overline{SS} pin is driven high. If the \overline{SS} pin is driven high during a transmission, the SPI will stop sending and receiving data immediately and both data received and data sent must be considered lost. As the \overline{SS} pin is used to signal the start and end of a transfer, it is useful for achieving packet/byte synchronization and keeping the Client bit counter synchronized with the host clock generator.


28.3.2.3 Data Modes

There are four combinations of SCK phase and polarity concerning the serial data. The desired combination is selected by writing to the MODE bits in the Control B (SPIn.CTRLB) register.

The SPI data transfer formats are shown below. Data bits are shifted out and latched in on opposite edges of the SCK signal, ensuring sufficient time for data signals to stabilize.

The leading edge is the first clock edge of a clock cycle. The trailing edge is the last clock edge of a clock cycle.

Figure 28-5. SPI Data Transfer Modes

28.3.2.4 Events

The SPI can generate the following events:

Table 28-4. Event Generators in SPI

Generat	or Name	Description	Event Type	Generating	Length of Event
Module	Event	Description	Evencitype	Clock Domain	Length of Event
SPIn	SCK	SPI Host clock	Level	CLK_PER	Minimum two CLK_PER periods

The SPI has no event users.

Refer to the *EVSYS - Event System* section for more details regarding event types and Event System configuration.

28.3.2.5 Interrupts

Table 28-5. Available Interrupt Vectors and Sources

Namo	lame Vector Description	Conditions				
Name		Normal Mode	Buffer Mode			
SPIn	SPI interrupt	IF: Interrupt Flag interruptWRCOL: Write Collision interrupt	 SSI: Client Select Trigger Interrupt DRE: Data Register Empty interrupt TXC: Transfer Complete interrupt RXC: Receive Complete interrupt 			

When an interrupt condition occurs, the corresponding interrupt flag is set in the peripheral's Interrupt Flags (*peripheral*.INTFLAGS) register.

An interrupt source is enabled or disabled by writing to the corresponding enable bit in the peripheral's Interrupt Control (*peripheral*.INTCTRL) register.

An interrupt request is generated when the corresponding interrupt source is enabled, and the interrupt flag is set. The interrupt request remains active until the interrupt flag is cleared. See the peripheral's INTFLAGS register for details on how to clear interrupt flags.

28.4 Register Summary

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00	CTRLA	7:0		DORD	MASTER	CLK2X		PRES	C[1:0]	ENABLE
0x01	CTRLB	7:0	BUFEN	BUFWR				SSD	MOD	E[1:0]
0x02	INTCTRL	7:0	RXCIE	TXCIE	DREIE	SSIE				IE
0x03	INTFLAGS	7:0	IF	WRCOL						
0x03	INTFLAGS	7:0	RXCIF	TXCIF	DREIF	SSIF				BUFOVF
0x04	DATA	7:0		DATA[7:0]						

28.5 Register Description

28.5.1 Control A

Name:	CTRLA
Offset:	0x00
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
		DORD	MASTER	CLK2X		PRES	C[1:0]	ENABLE
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		0	0	0		0	0	0

Bit 6 – DORD Data Order

Value	Description
0	The MSb of the data word is transmitted first
1	The LSb of the data word is transmitted first

Bit 5 – MASTER Host/Client Select

This bit selects the desired SPI mode.

If \overline{SS} is configured as input and driven low while this bit is '1', then this bit is cleared, and the IF in SPIn.INTFLAGS is set. The user has to write MASTER = 1 again to re-enable SPI Host mode. This behavior is controlled by the Client Select Disable (SSD) bit in SPIn CTRLB

Value	Description
0	SPI Client mode selected
1	SPI Host mode selected

Bit 4 – CLK2X Clock Double

When this bit is written to '1', the SPI speed (SCK frequency, after internal prescaler) is doubled in Host mode.

Value	Description
0	SPI speed (SCK frequency) is not doubled
1	SPI speed (SCK frequency) is doubled in Host mode

Bits 2:1 - PRESC[1:0] Prescaler

This bit field controls the SPI clock rate configured in Host mode. These bits have no effect in Client mode. The relationship between SCK and the peripheral clock frequency (f_{CLK_PER}) is shown below. The output of the SPI prescaler can be doubled by writing the CLK2X bit to '1'.

Value	Name	Description
0x0	DIV4	CLK_PER/4
0x1	DIV16	CLK_PER/16
0x2	DIV64	CLK_PER/64
0x3	DIV128	CLK_PER/128

Bit 0 - ENABLE SPI Enable

Value	Description
0	SPI is disabled
1	SPI is enabled

28.5.2 Control B

Name:	CTRLB
Offset:	0x01
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
	BUFEN	BUFWR				SSD	MOD	E[1:0]
Access	R/W	R/W				R/W	R/W	R/W
Reset	0	0				0	0	0

Bit 7 – BUFEN Buffer Mode Enable

Writing this bit to '1' enables Buffer mode. This will enable two receive buffers and one transmit buffer. Both will have separate interrupt flags, transmit complete and receive complete.

Bit 6 - BUFWR Buffer Mode Wait for Receive

When writing this bit to '0', the first data transferred will be a dummy sample.

Value	Description
0	One SPI transfer must be completed before the data are copied into the shift register
1	If writing to the Data register when the SPI is enabled and \overline{SS} is high, the first write will go directly to the shift register

Bit 2 – SSD Client Select Disable

If this bit is set when operating as SPI Host (MASTER = 1 in SPIn.CTRLA), \overline{SS} does not disable Host mode.

Value	Description
0	Enable the Client Select line when operating as SPI host
1	Disable the Client Select line when operating as SPI host

Bits 1:0 - MODE[1:0] Mode

These bits select the Transfer mode. The four combinations of SCK phase and polarity concerning the serial data are shown below. These bits decide whether the first edge of a clock cycle (leading edge) is rising or falling and whether data setup and sample occur on the leading or trailing edge. When the leading edge is rising, the SCK signal is low when Idle, and when the leading edge is falling, the SCK signal is high when Idle.

Value	Name	Description
0x0	0	Leading edge: Rising, sample Trailing edge: Falling, setup
0x1	1	Leading edge: Rising, setup Trailing edge: Falling, sample
0x2	2	Leading edge: Falling, sample Trailing edge: Rising, setup
0x3	3	Leading edge: Falling, setup Trailing edge: Rising, sample

28.5.3 Interrupt Control

Name:	INTCTRL
Offset:	0x02
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
	RXCIE	TXCIE	DREIE	SSIE				IE
Access	R/W	R/W	R/W	R/W			•	R/W
Reset	0	0	0	0				0

Bit 7 – RXCIE Receive Complete Interrupt Enable

In Buffer mode, this bit enables the Receive Complete interrupt. The enabled interrupt will be triggered when the RXCIF in the SPIN.INTFLAGS register is set. In the Non-Buffer mode, this bit is '0'.

- Bit 6 TXCIE Transfer Complete Interrupt Enable In Buffer mode, this bit enables the Transfer Complete interrupt. The enabled interrupt will be triggered when the TXCIF in the SPIn.INTFLAGS register is set. In the Non-Buffer mode, this bit is '0'.
- Bit 5 DREIE Data Register Empty Interrupt Enable

In Buffer mode, this bit enables the Data Register Empty interrupt. The enabled interrupt will be triggered when the DREIF in the SPIn.INTFLAGS register is set. In the Non-Buffer mode, this bit is '0'.

Bit 4 – SSIE Client Select Trigger Interrupt Enable

In Buffer mode, this bit enables the Client Select interrupt. The enabled interrupt will be triggered when the SSIF in the SPIN.INTFLAGS register is set. In the Non-Buffer mode, this bit is '0'.

Bit 0 – IE Interrupt Enable

This bit enables the SPI interrupt when the SPI is not in Buffer mode. The enabled interrupt will be triggered when RXCIF/IF is set in the SPIn.INTFLAGS register.

28.5.4 Interrupt Flags - Normal Mode

Name: Offset: Reset: Property:		INTFLAGS 0x03 0x00 -						
Bit	7	6	5	4	3	2	1	0
	IF	WRCOL						
Access	R/W	R/W			•	•	•	

Bit 7 – IF Interrupt Flag

0

0

Reset

This flag is set when a serial transfer is complete, and one byte is completely shifted in/out of the SPIn.DATA register. If \overline{SS} is configured as input and is driven low when the SPI is in Host mode, this will also set this flag. The IF is cleared by writing a `1' to it. Alternatively, the IF can be cleared by first reading the SPIn.INTFLAGS register when IF is set and then accessing the SPIn.DATA register.

Bit 6 – WRCOL Write Collision

The WRCOL flag is set if the SPIn.DATA register is written before a complete byte has been shifted out. This flag is cleared by first reading the SPIn.INTFLAGS register when WRCOL is set and then accessing the SPIn.DATA register.

^

28.5.5 Interrupt Flags - Buffer Mode

C F	Name: Offset: Reset: Property:	INTFLAGS 0x03 0x00 -				
Bit	7	6	5	4	3	2

DIL	/	0	5	4	5	Z	I	0	
	RXCIF	TXCIF	DREIF	SSIF				BUFOVF	
Access	R/W	R/W	R/W	R/W				R/W	
Reset	0	0	0	0				0	

Bit 7 – RXCIF Receive Complete Interrupt Flag

This flag is set when there are unread data in the Receive Data Buffer register and cleared when the Receive Data Buffer register is empty (that is, it does not contain any unread data). When interrupt-driven data reception is used, the Receive Complete Interrupt routine must read the received data from the DATA register to clear RXCIF. If not, a new interrupt will occur directly after the return from the current interrupt. This flag can also be cleared by writing a '1' to its bit location.

Bit 6 - TXCIF Transfer Complete Interrupt Flag

This flag is set when all the data in the transmit shift register has been shifted out, and there is no new data in the transmit buffer (SPIn.DATA). The flag is cleared by writing a '1' to its bit location.

Bit 5 – DREIF Data Register Empty Interrupt Flag

This flag indicates whether the Transmit Data Buffer register is ready to receive new data. The flag is '1' when the transmit buffer is empty and '0' when the transmit buffer contains data to be transmitted that has not yet been moved into the shift register. The DREIF is cleared after a Reset to indicate that the transmitter is ready.

The DREIF is cleared by writing to DATA. When interrupt-driven data transmission is used, the Data Register Empty Interrupt routine must either write new data to DATA to clear DREIF or disable the Data Register Empty interrupt. If not, a new interrupt will occur directly after the return from the current interrupt.

Bit 4 – SSIF Client Select Trigger Interrupt Flag

This flag indicates that the SPI has been in Host mode, and the \overline{SS} pin has been pulled low externally, so the SPI is now working in Client mode. The flag will only be set if the Client Select Disable (SSD) bit is not '1'. The flag is cleared by writing a '1' to its bit location.

Bit 0 - BUFOVF Buffer Overflow

This flag indicates data loss due to a Receive Data Buffer full condition. This flag is set if a Buffer Overflow condition is detected. A Buffer Overflow occurs when the receive buffer is full (two bytes), and a third byte has been received in the shift register. If there is no transmit data, the Buffer Overflow will not be set before the start of a new serial transfer. This flag is cleared when the DATA register is read or by writing a '1' to its bit location.

28.5.6 Data

Name:	DATA
Offset:	0x04
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0	
	DATA[7:0]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 7:0 - DATA[7:0] SPI Data

The DATA register is used for sending and receiving data. Writing to the register initiates the data transmission when in Host mode while preparing data for sending in Client mode. The byte written to the register shifts out on the SPI output line when a transaction is initiated. The SPIn.DATA register is not a physical register. Depending on what mode is configured, it is mapped to other registers, as described below.

- Normal mode:
 - Writing the DATA register will write the shift register
 - Reading from DATA will read from the Receive Data register
- Buffer mode:
 - Writing the DATA register will write to the Transmit Data Buffer register
 - Reading from DATA will read from the Receive Data Buffer register. The contents of the Receive Data register will then be moved to the Receive Data Buffer register.

29. TWI - Two-Wire Interface

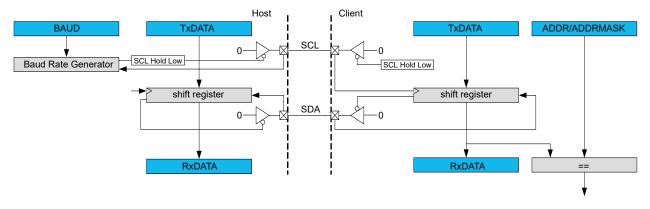
29.1 Features

- Two-Wire Communication Interface
- Philips I²C Compatible
 - Standard mode
 - Fast mode
 - Fast mode Plus
- System Management Bus (SMBus) 2.0 Compatible
 - Support arbitration between Start/repeated Start and data bit
 - Client arbitration allows support for the Address Resolution Protocol (ARP) in software
 - Configurable SMBus Layer 1 time-outs in hardware
 - Independent time-outs for Dual mode
- Independent Host and Client Operation
 - Combined (same pins) or Dual mode (separate pins)
 - Single or multi-host bus operation with full arbitration support
- Hardware Support for Client Address Match
 - Operates in all sleep modes
 - 7-bit address recognition
 - General Call Address recognition
 - Support for address range masking or secondary address match
- Input Filter for Bus Noise Suppression
- Smart Mode Support

29.2 Overview

The Two-Wire Interface (TWI) is a bidirectional, two-wire communication interface (bus) with a Serial Data Line (SDA) and a Serial Clock Line (SCL).

The TWI bus connects one or several client devices to one or several host devices. Any device connected to the bus can act as a host, a client, or both. The host generates the SCL using a Baud Rate Generator (BRG) and initiates data transactions by addressing one client and telling whether it wants to transmit or receive data. The BRG can generate the Standard mode (Sm) and Fast mode (Fm, Fm+) bus frequencies from 100 kHz to 1 MHz.


The TWI will detect Start and Stop conditions, bus collisions, and bus errors. Arbitration lost, errors, collision, and clock hold are also detected and indicated in separate status flags available in the Host and Client modes.

The TWI supports multi-host bus operations and arbitration. An arbitration scheme handles cases where more than one host tries to transmit data simultaneously. The TWI also supports Smart mode, which can auto-trigger operations and thus reduce software complexity. The TWI supports Dual mode with simultaneous host and client operations implemented as independent units with separate enabling and configuration. The TWI supports Quick Command mode, where the host can address a client without exchanging data.

29.2.1 Block Diagram

Figure 29-1. TWI Block Diagram

29.2.2 Signal Description

Signal	Description	Туре
SCL	Serial Clock Line	Digital I/O
SDA	Serial Data Line	Digital I/O

29.3 Functional Description

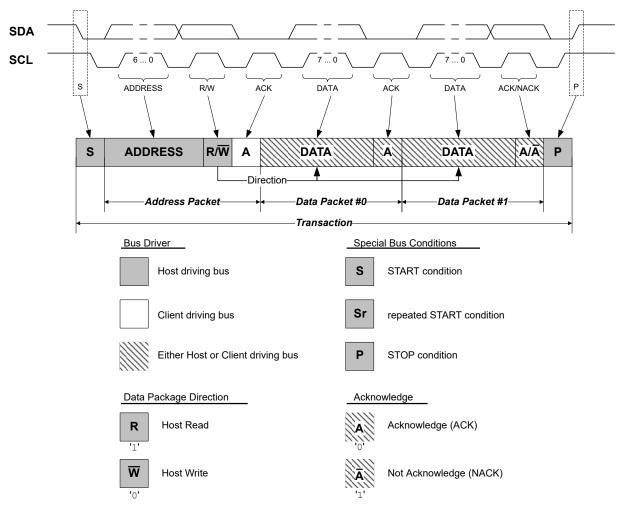
29.3.1 General TWI Bus Concepts

The TWI provides a simple, bidirectional, two-wire communication bus consisting of:

- · Serial Data Line (SDA) for packet transfer
- Serial Clock Line (SCL) for the bus clock

The two lines are open-collector lines (wired-AND).

The TWI bus topology is a simple and efficient method of connecting multiple devices on a serial bus. A device connected to the bus can be a host or a client. Only host devices can control the bus and the bus communication.


A unique address is assigned to each client device connected to the bus, and the host will use it to control the client and initiate a transaction. Several hosts can connect to the same bus, called a multi-host environment. An arbitration mechanism is provided for resolving bus ownership among hosts since only one host device may own the bus at any given time.

A host indicates the start of a transaction by issuing a Start condition (S) on the bus. The host provides the clock signal for the transaction. An address packet with a 7-bit client address (ADDRESS) and a direction bit, representing whether the host wishes to read or write data (R/W), are then sent.

The addressed I²C client will then acknowledge (ACK) the address, and data packet transactions can begin. Every 9-bit data packet consists of eight data bits followed by a 1-bit reply indicating whether the data was acknowledged or not by the receiver.

After transferring all the data packets (DATA), the host issues a Stop condition (P) on the bus to end the transaction.

Figure 29-2. Basic TWI Transaction Diagram Topology for a 7-Bit Address Bus

29.3.2 TWI Basic Operation

29.3.2.1 Initialization

If used, configure the following bits before enabling the TWI peripheral:

- The SDA Hold Time (SDAHOLD) bit field from the Control A (TWIn.CTRLA) register
- The FM Plus Enable (FMPEN) bit from the Control A (TWIn.CTRLA) register

29.3.2.1.1 Host Initialization

Write the Host Baud Rate (TWIn.MBAUD) register to a value that will result in a valid TWI bus clock frequency. Writing a '1' to the Enable TWI Host (ENABLE) bit in the Host Control A (TWIn.MCTRLA) register will enable the TWI host. The Bus State (BUSSTATE) bit field from the Host Status (TWIn.MSTATUS) register must be set to 0×1 to force the bus state to Idle.

29.3.2.1.2 Client Initialization

Follow these steps to initialize the client:

- 1. Before enabling the TWI client, configure the SDA Setup Time (SDASETUP) bit in the Control A (TWIn.CTRLA) register.
- 2. Write the client address to the Client Address (TWIn.SADDR) register.
- 3. Write a '1' to the Enable TWI Client (ENABLE) bit in the Client Control A (TWIn.SCTRLA) register to enable the TWI client.

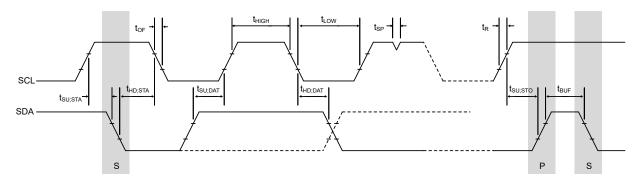
The TWI client will now wait for a host device to issue a Start condition and the matching client address.

29.3.2.2 TWI Host Operation

The TWI host is byte-oriented, with an optional interrupt after each byte. There are separate interrupt flags for the host write and read operation. Interrupt flags can also be used for polled operations. Dedicated status flags indicate ACK/NACK received, bus error, arbitration lost, clock hold, and bus state.

When an interrupt flag is set to '1', the SCL is forced low, giving the host time to respond or handle any data and will, in most cases, require software interaction. Clearing the interrupt flags releases the SCL. The number of interrupts generated is kept to a minimum by automatically handling most conditions.

29.3.2.2.1 Clock Generation


The TWI supports several transmission modes with different frequency limitations:

- Standard mode (Sm) up to 100 kHz
- Fast mode (Fm) up to 400 kHz
- Fast mode Plus (Fm+) up to 1 MHz

The Host Baud Rate (TWIn.MBAUD) register must be written to a value that will result in a TWI bus clock frequency equal to or less than those frequency limits, depending on the transmission mode.

The low (t_{LOW}) and high (t_{HIGH}) times are determined by the Host Baud Rate (TWIn.MBAUD) register, while the rise (t_R) and fall (t_{OF}) times are determined by the bus topology.

Figure 29-3. SCL Timing

- t_{LOW} is the low period of the SCL clock
- t_{HIGH} is the high period of the SCL clock
- t_R is determined by the bus impedance; for internal pull-ups. Refer to *Electrical Characteristics* for details.
- t_{OF} is the output fall time and is determined by the open-drain current limit and bus impedance. Refer to *Electrical Characteristics* for details.

Properties of the SCL Clock

The SCL frequency is given by:

$$f_{\rm SCL} = \frac{1}{t_{\rm LOW} + t_{\rm HIGH} + t_{\rm OF} + t_{\rm R}} [\rm Hz]$$

The SCL clock is designed to have a 50/50 duty cycle, where the low period of the duty cycle comprises t_{OF} and t_{LOW} . t_{HIGH} will not start until a high state of SCL has been detected. The BAUD bit field in the TWIn.MBAUD register and the SCL frequency are related by the following formula:

$$f_{SCL} = \frac{f_{CLK_PER}}{10 + 2 \times BAUD + f_{CLK_PER} \times t_R}$$
(1)

Equation 1 can be transformed to express BAUD:

$$BAUD = \frac{f_{CLK_PER}}{2 \times f_{SCL}} - \left(5 + \frac{f_{CLK_PER} \times t_R}{2}\right)$$
(2)

Calculation of the BAUD Value

To ensure operation within the specifications of the desired speed mode (Sm, Fm, Fm+), follow these steps:

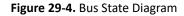
- 1. Calculate a value for the BAUD bit field using equation 2
- 2. Calculate t_{LOW} using the BAUD value from step 1:

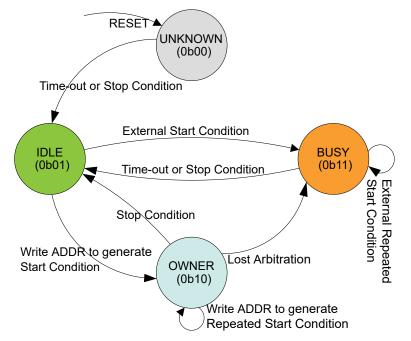
$$t_{LOW_Fm} = t_{LOW_Fm+} = \frac{BAUD + 6 + min(SCLDUTY, BAUD)}{f_{CLKPER}} - t_{OF}$$
(3.1)

$$t_{LOW} = \frac{BAUD + 6}{f_{CLK_PER}} - t_{OF} \qquad (3.2)$$

- 3. Check if your t_{LOW} from equation 3 is above the specified minimum of the desired mode $(t_{LOW_Sm} = 4700 \text{ ns}, t_{LOW_Fm} = 1300 \text{ ns}, t_{LOW_Fm} = 500 \text{ ns})$
 - If the calculated $t_{\mbox{\scriptsize LOW}}$ is above the limit, use the BAUD value from equation 2
 - If the limit is not met, calculate a new BAUD value using equation 4, below, where t_{LOW_mode} is either t_{LOW_Sm} , t_{LOW_Fm} , or $t_{LOW_Fm^+}$ from the mode specifications:

$$BAUD = f_{CLK_PER} \times (t_{LOW_mode} + t_{OF}) - 3 \qquad (4)$$

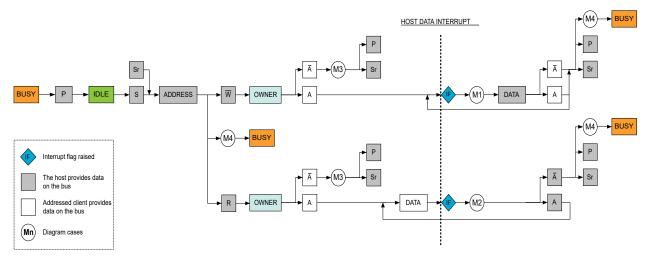

29.3.2.2.2 TWI Bus State Logic


The bus state logic continuously monitors the activity on the TWI bus when the host is enabled. It continues to operate in all sleep modes, including Power-Down.

The bus state logic includes Start and Stop condition detectors, collision detection, inactive bus time-out detection, and a bit counter. These are used to determine the bus state. The software can get the current bus state by reading the Bus State (BUSSTATE) bit field in the Host Status (TWIn.MSTATUS) register.

The bus state can be Unknown, Idle, Busy or Owner, and it is determined according to the state diagram shown below.

- 1. **Unknown**: The bus state machine is active when the TWI host is enabled. After enabling the TWI host, performing a system Reset, or disabling the TWI host, the bus state is Unknown.
- 2. Idle: The bus state machine can be forced to enter the Idle state by writing 0x1 to the Bus State (BUSSTATE) bit field. The bus state logic cannot be forced into any other state. If no state is set by the application software when the first Stop condition is detected, the bus state will become Idle. If the Inactive Bus Time-Out (TIMEOUT) bit field from the Host Control A (TWIn.MCTRLA) register is configured to a nonzero value, the bus state will change to Idle on the occurrence of a time-out. When the bus is Idle, it is ready for a new transaction.
- 3. **Busy**: If a Start condition, generated externally, is detected when the bus is Idle, the bus state becomes Busy. The bus state changes back to Idle when a Stop condition is detected or when a time-out, if configured, is set.
- 4. **Owner**: If a Start condition is generated internally when the bus is Idle, the bus state becomes Owner. If the complete transaction is performed without interference, the host issues a Stop condition, and the bus state changes back to Idle. If a collision is detected, the arbitration is lost, and the bus state becomes Busy until a Stop condition is detected.


29.3.2.2.3 Transmitting Address Packets

The host starts performing a bus transaction when the Host Address (TWIn.MADDR) register is written with the client address and the R/W direction bit. The value of the MADDR register is then copied into the Host Data (TWIn.MDATA) register. If the bus state is Busy, the TWI host will wait until the bus state becomes Idle before issuing the Start condition. The TWI will issue a Start condition, and the shift register performs a byte transmit operation on the bus.

Depending on the arbitration and the R/W direction bit, one of four cases (M1 to M4) arises after the transmission of the address packet.

Figure 29-5. TWI Host Operation

Case M1: Address Packet Transmit Complete - Direction Bit Set to '0'

If a client device responds to the address packet with an ACK, the Write Interrupt Flag (WIF) is set to '1', the Received Acknowledge (RXACK) flag is set to '0', and the Clock Hold (CLKHOLD) flag is set to '1'. The WIF, RXACK and CLKHOLD flags are located in the Host Status (TWIn.MSTATUS) register.

The clock hold is active at this point, forcing the SCL low, which will stretch the low period of the clock to slow down the overall clock frequency, forcing delays required to process the data and preventing further activity on the bus.

The software can prepare to:

• Transmit data packets to the client

Case M2: Address Packet Transmit Complete - Direction Bit Set to '1'

If a client device responds to the address packet with an ACK, the RXACK flag is set to '0', and the client can start sending data to the host without any delays because the client owns the bus at this moment. The clock hold is active at this point, forcing the SCL low.

The software can prepare to:

· Read the received data packet from the client

Case M3: Address Packet Transmit Complete - Address not Acknowledged by Client

If no client device responds to the address packet, the WIF and the RXACK flags will be set to '1'. The clock hold is active at this point, forcing the SCL low.

The missing ACK response can indicate that the I²C client is busy with other tasks or is in a sleep mode and cannot respond.

The software can prepare to take one of the following actions:

- Retransmit the address packet
- Complete the transaction by issuing a Stop condition in the Command (MCMD) bit field from the Host Control B (TWIn.MCTRLB) register, which is the recommended action

Case M4: Arbitration Lost or Bus Error

If the arbitration is lost, the WIF and the Arbitration Lost (ARBLOST) flags in the Host Status (TWIn.MSTATUS) register are set to '1'. The SDA is disabled, and the SCL is released. The bus state changes to Busy, and the host is no longer allowed to perform any operation on the bus until the bus state is changed back to Idle.

A bus error will behave similarly to the arbitration lost condition. In this case, the Bus Error (BUSERR) flag in the Host Status (TWIn.MSTATUS) register is set to '1', in addition to the WIF and ARBLOST flags.

The software can prepare to:

• Abort the operation and wait until the bus state changes to Idle by reading the Bus State (BUSSTATE) bit field in the Host Status (TWIn.MSTATUS) register

29.3.2.2.4 Transmitting Data Packets

Assuming the M1 case above, the TWI host can start transmitting data by writing to the Host Data (TWIn.MDATA) register, which also clears the Write Interrupt Flag (WIF). The host continuously monitors the bus for collisions and errors during the data transfer. After completing the data packet transfer, the WIF flag will be set to '1'.

If the transmission is successful and the host receives an ACK bit from the client, the Received Acknowledge (RXACK) flag will be set to '0', meaning that the client is ready to receive new data packets.

The software can prepare to take one of the following actions:

- Transmit a new data packet
- Transmit a new address packet
- Complete the transaction by issuing a Stop condition in the Command (MCMD) bit field from the Host Control B (TWIn.MCTRLB) register

If the transmission is successful and the host receives a NACK bit from the client, the RXACK flag will be set to '1', meaning that the client cannot or does not need to receive more data.

The software can prepare to take one of the following actions:

- Transmit a new address packet
- Complete the transaction by issuing a Stop condition in the Command (MCMD) bit field from the Host Control B (TWIn.MCTRLB) register

The RXACK status is valid only if the WIF flag is set to '1' and the Arbitration Lost (ARBLOST) and Bus Error (BUSERR) flags are set to '0'.

The transmission can be unsuccessful if a collision is detected. Then, the host will lose the arbitration, the Arbitration Lost (ARBLOST) flag will be set to '1', and the bus state changes to Busy. An arbitration lost during the data packet transfer is treated the same way as the above M4 case.

The WIF, ARBLOST, BUSERR and RXACK flags are all located in the Host Status (TWIn.MSTATUS) register.

29.3.2.2.5 Receiving Data Packets

Assuming the M2 case above, the clock is released for one byte, allowing the client to put one byte of data on the bus. The host will receive one data byte from the client, and the Read Interrupt Flag (RIF) will be set to '1' together with the Clock Hold (CLKHOLD) flag. The action selected by the Acknowledge Action (ACKACT) bit in the Host Control B (TWIn.MCTRLB) register is automatically sent on the bus when a command is written to the Command (MCMD) bit field in the TWIn.MCTRLB register.

The software can prepare to take one of the following actions:

- Respond with an ACK by writing '0' to the ACKACT bit in the TWIn.MCTRLB register and prepare to receive a new data packet
- Respond with a NACK by writing '1' to the ACKACT bit and then transmit a new address packet
- Respond with a NACK by writing '1' to the ACKACT bit and then complete the transaction by issuing a Stop condition in the MCMD bit field from the TWIn.MCTRLB register

A NACK response might not execute successfully, as the arbitration can be lost during the transmission. If a collision is detected, the host loses the arbitration, the Arbitration Lost (ARBLOST) flag is set to '1', and the bus state changes to Busy. The Host Write Interrupt Flag (WIF) is set if

the arbitration was lost when sending a NACK or a bus error occurred during the procedure. An arbitration lost while transferring the data packet is treated as the above M4 case.

The RIF, CLKHOLD, ARBLOST and WIF flags are all located in the Host Status (TWIn.MSTATUS) register.

Note: The RIF and WIF flags are mutually exclusive and cannot be set simultaneously.

29.3.2.3 TWI Client Operation

The TWI client is byte-oriented with optional interrupts after each byte. There are separate interrupt flags for the client data and address/Stop recognition. Interrupt flags can also be used for polled operations. Dedicated status flags indicate ACK/NACK received, clock hold, collision, bus error, and R/\overline{W} direction.

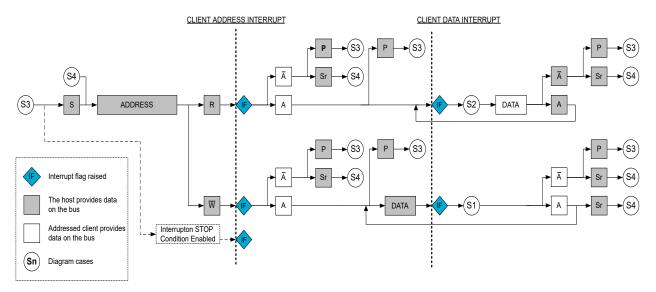
When an interrupt flag is set to '1', the SCL is forced low, giving the client time to respond or handle any data, and will, in most cases, require software interaction. The number of interrupts generated is kept to a minimum by automatically handling most conditions.

The Address Recognition Mode (PMEN) bit in the Client Control A (TWIn.SCTRLA) register can be configured to allow the client to respond to all received addresses.

29.3.2.3.1 Receiving Address Packets

When the TWI is configured as a client, it will wait for a Start condition to be detected. When this happens, the successive address packet will be received and checked by the address match logic. The client will ACK a correct address and store the address in the Client Data (TWIn.SDATA) register. If the received address is not a match, the client will not acknowledge or save the address but wait for a new Start condition.

The Address or Stop Interrupt Flag (APIF) in the Client Status (TWIn.SSTATUS) register is set to '1' when a Start condition is followed by:


- A valid address matches the address stored in the Address (ADDR[7:1]) bit field in the Client Address (TWIn.SADDR) register
- The General Call Address (0x00) and the Address (ADDR[0]) bit in the Client Address (TWIn.SADDR) register is set to '1'
- A valid address matches the secondary address stored in the Address Mask (ADDRMASK) bit field, and the Address Mask Enable (ADDREN) bit is set to '1' in the Client Address Mask (TWIn.SADDRMASK) register
- Any address if the Address Recognition Mode (PMEN) bit in the Client Control A (TWIn.SCTRLA) register is set to '1'

A Start condition immediately followed by a Stop condition is an illegal operation, and the Bus Error (BUSERR) flag in the Client Status (TWIn.SSTATUS) register is set.

Depending on the Read/Write Direction (DIR) bit in the Client Status (TWIn.SSTATUS) register and the bus condition, one of four cases (S1 to S4) arises after the reception of the address packet.

Figure 29-6. TWI Client Operation

Case S1: Address Packet Accepted - Direction Bit Set to '0'

If an ACK is sent by the client after the address packet is received, and the Read/Write Direction (DIR) bit in the Client Status (TWIn.SSTATUS) register is set to '0', the host indicates a write operation.

The clock hold is active at this point, forcing the SCL low and stretching the low period of the clock to slow down the overall clock frequency, forcing delays required to process the data and preventing further activity on the bus.

The software can prepare to:

· Read the received data packet from the host

Case S2: Address Packet Accepted - Direction Bit Set to '1'

If an ACK is sent by the client after the address packet is received, and the DIR bit is set to '1', the host indicates a read operation, and the Data Interrupt Flag (DIF) in the Client Status (TWIn.SSTATUS) register will be set to '1'.

The clock hold is active at this point, forcing the SCL low.

The software can prepare to:

• Transmit data packets to the host

Case S3: Stop Condition Received

When the Stop condition is received, the Address or Stop (AP) flag will be set to '0', indicating that a Stop condition, and not an address match, activated the Address or Stop Interrupt Flag (APIF).

The AP and APIF flags are located in the Client Status (TWIn.SSTATUS) register.

The software can prepare to:

• Wait until a new address packet has been addressed to it

Case S4: Collision

If the client cannot send a high-level data bit or a NACK, the Collision (COLL) bit in the Client Status (TWIn.SSTATUS) register is set to '1'. The client will commence ordinary operation, except no low values will be shifted out on the SDA. The data and acknowledge output from the client logic will be disabled. The clock hold is released. A Start or repeated Start condition will be accepted.

The COLL bit is intended for systems where the Address Resolution Protocol (ARP) is employed. A detected collision in non-ARP situations indicates that there has been a protocol violation and must be treated as a bus error.

29.3.2.3.2 Receiving Data Packets

Assuming the S1 case above, the client must be ready to receive data. When a data packet is received, the Data Interrupt Flag (DIF) in the Client Status (TWIn.SSTATUS) register is set to '1'. The action selected by the Acknowledge Action (ACKACT) bit in the Client Control B (TWIn.SCTRLB) register is automatically sent on the bus when a command is written to the Command (SCMD) bit field in the TWIn.SCTRLB register.

The software can prepare to take one of the following actions:

- Respond with an ACK by writing '0' to the ACKACT bit in the TWIn.SCTRLB register, indicating that the client is ready to receive more data
- Respond with a NACK by writing '1' to the ACKACT bit, indicating that the client cannot receive any more data and the host must issue a Stop or repeated Start condition

29.3.2.3.3 Transmitting Data Packets

Assuming the S2 case above, the client can start transmitting data by writing to the Client Data (TWIn.SDATA) register. When a data packet transmission is completed, the Data Interrupt Flag (DIF) in the Client Status (TWIn.SSTATUS) register is set to '1'.

The software can prepare to take one of the following actions:

- Check if the host responded with an ACK by reading the Received Acknowledge (RXACK) bit from the Client Status (TWIn.SSTATUS) register, and start transmitting new data packets
- Check if the host responded with a NACK by reading the RXACK bit and stop transmitting data packets. The host must send a Stop or repeated Start condition after the NACK.

29.3.3 Additional Features

29.3.3.1 SMBus

The Inactive Bus Time-Out (TIMEOUT) bit field from the Host Control A (TWIn.MCTRLA) register must be configured if the TWI is used in an SMBus environment.

A frequency of 100 kHz can be used for the SMBus environment. For the Standard mode (Sm) and Fast mode (Fm), the operating frequency has slew rate limited output, while for the Fast mode Plus (Fm+), it has x10 output drive strength.

The TWI also allows for an SMBus compatible SDA hold time configured in the SDA Hold Time (SDAHOLD) bit field from the Control A (TWIn.CTRLA) register.

29.3.3.1.1 Compliance to SMBus Specifications

Hardware-Specific Restrictions

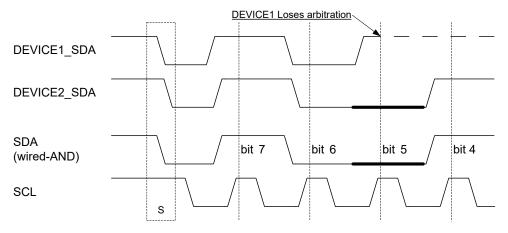
Section 2 of the SMBus 2.0 specifications states that powered-down devices must provide no leakage path to ground. There are ESD diodes placed between V_{DD} and the pads used for SCL and SDA on this device. Assuming V_{DD} is equivalent to ground when powered down, these ESD diodes provide a path to ground.

Implementation in Software

The following elements of the SMBus 2.0 specifications are not implemented in hardware:

- Table 1 of the SMBus 2.0 specifications gives a maximum clock low timeout (T_{timeout}) of 25-35 ms, This can be implemented by connecting the SCL pin to the TCB peripheral using the Event System. Configure the TCB in Time-Out Check mode with a desired timeout value.
- Layer 3 (network layer) features such as packet error checking (PEC), address resolution protocol (ARP). These can be implemented in software if required.

29.3.3.2 Multi-Host


A host can start a bus transaction only if it has detected that the bus is in the Idle state. If multiple hosts are on the bus, other devices may try to initiate a transaction simultaneously, resulting in multiple hosts owning the bus. The TWI solves this problem by using an arbitration scheme where

the host loses control of the bus if it is not able to transmit a high-level data bit on the SDA and the Bus State (BUSSTATE) bit field from the Host Status (TWIn.MSTATUS) register will change to Busy. The hosts that lose the arbitration must wait until the bus becomes Idle before attempting to reacquire bus ownership.

Both devices can issue a Start condition, but DEVICE1 loses arbitration when attempting to transmit a high-level (bit 5) while DEVICE2 is transmitting a low-level.

Figure 29-7. TWI Arbitration

29.3.3.3 Smart Mode

The TWI interface has a Smart mode that simplifies the application code and minimizes the user interaction needed to adhere to the I²C protocol.

For the TWI host, the Smart mode will automatically send the ACK action as soon as the Host Data (TWIn.MDATA) register is read. This feature is only active when the Acknowledge Action (ACKACT) bit in the Host Control B (TWIn.MCTRLB) register is set to ACK. The TWI host will not generate a NACK after the MDATA register is read if the ACKACT bit is set to NACK. This feature is enabled when the Smart Mode Enable (SMEN) bit in the Host Control A (TWIn.MCTRLA) register is set to '1'.

For the TWI client, the Smart mode will automatically send the ACK action as soon as the Client Data (TWIn.SDATA) register is read. The Smart mode will automatically set the Data Interrupt Flag (DIF) to '0' in the Client Status (TWIn.SSTATUS) register if the TWIn.SDATA register is read or written. This feature is enabled when the Smart Mode Enable (SMEN) bit in the Client Control A (TWIn.SCTRLA) register is set to '1'.

29.3.3.4 Dual Mode

The TWI supports Dual mode operation where the host and the client will operate simultaneously and independently. In this case, the Control A (TWIn.CTRLA) register will configure the TWI host, and the Dual Mode Control (TWIn.DUALCTRL) register will configure the TWI client. See the 29.3.2.1. Initialization section for more details about the host configuration.

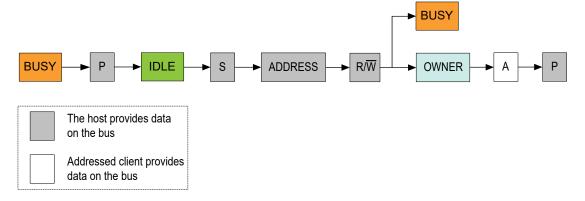
If used, the following bits must be configured before enabling the TWI Dual mode:

- The SDA Hold Time (SDAHOLD) bit field in the DUALCTRL register
- The FM Plus Enable (FMPEN) bit from the DUALCTRL register

The Dual mode can be enabled by writing a '1' to the Dual Control Enable (ENABLE) bit in the DUALCTRL register.

29.3.3.5 Quick Command Mode

In Quick Command mode, the R/\overline{W} bit from the address packet denotes the command. This mode is enabled by writing '1' to the Quick Command Enable (QCEN) bit in the Host Control A (TWIn.MCTRLA) register. There are no data sent or received.

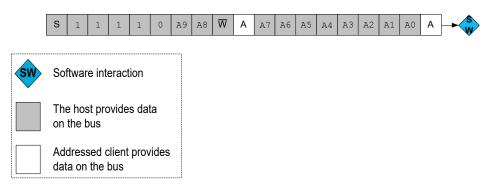


The Quick Command mode is SMBus specific, using the R/W bit to turn a device function on/off or enable/disable a low-power Standby mode. This mode can be enabled to auto-trigger operations and reduce software complexity.

After the host receives an ACK from the client, either the Read Interrupt Flag (RIF) or Write Interrupt Flag (WIF) will be set, depending on the value of the R/W bit. When the RIF or WIF flag is set after issuing a Quick Command, the TWI will accept a Stop command by writing the Command (MCMD) bit field in the Host Control B (TWIn.MCTRLB) register.

The RIF and WIF flags, together with the value of the last Received Acknowledge (RXACK) flag, are all located in the Host Status (TWIn.MSTATUS) register.

Figure 29-8. Quick Command Frame Format


29.3.3.6 10-Bit Address

Regardless of whether the transaction is a read or write, the host must start by sending the 10-bit address with the R/\overline{W} direction bit set to '0'.

The client address match logic supports recognition of 7-bit addresses and General Call Address. The Client Address (TWIn.SADDR) register is used by the client address match logic to determine if a host device has addressed the TWI client.

The TWI client address match logic only supports the recognition of the first byte of a 10-bit address, and the second byte must be handled in software. The first byte of the 10-bit address will be recognized if the upper five bits of the Client Address (TWIn.SADDR) register are 0b11110. Thus, the first byte will consist of five indication bits, the two Most Significant bits (MSbs) of the 10-bits address, and the R/W direction bit. The Least Significant Byte (LSB) of the address that follows from the host will come in the form of a data packet.

Figure 29-9. 10-Bit Address Transmission

29.3.4 Interrupts

10010 25							
Name	Vector Description	Conditions					
Client	TWI Client interrupt	 DIF: Data Interrupt Flag in TWIn.SSTATUS is set to '1' APIF: Address or Stop Interrupt Flag in TWIn.SSTATUS is set to '1' 					
Host	TWI Host interrupt	 RIF: Read Interrupt Flag in TWIn.MSTATUS is set to '1' WIF: Write Interrupt Flag in TWIn.MSTATUS is set to '1' 					

 Table 29-1.
 Available Interrupt Vectors and Sources

When an interrupt condition occurs, the corresponding interrupt flag is set in the Host Status (TWIn.MSTATUS) register or the Client Status (TWIn.SSTATUS) register.

When several interrupt request conditions are supported by an interrupt vector, the interrupt requests are ORed together into one combined interrupt request to the interrupt controller. The user must read the interrupt flags from the TWIn.MSTATUS register or the TWIn.SSTATUS register to determine which of the interrupt conditions are present.

29.3.5 Sleep Mode Operation

The bus state logic and the address recognition hardware continue to operate in all sleep modes. If the TWI client is in a sleep mode and a Start condition followed by the client address is detected, clock stretching is active during the wake-up period until the main clock is available. The TWI host will stop operation in all sleep modes. When the Dual mode is active, the TWI peripheral will wake up only when the Start condition is received by the TWI client.

29.3.6 Debug Operation

During run-time debugging, the TWI will continue its ordinary operation. Halting the CPU in Debugging mode will stop the normal operation of the TWI. The TWI can be forced to operate with a halted CPU by writing a '1' to the Debug Run (DBGRUN) bit in the Debug Control (TWIn.DBGCTRL) register. When the CPU is halted in Debug mode, and the DBGRUN bit is '1', reading or writing the Host Data (TWIn.MDATA) register or the Client Data (TWIn.SDATA) register will neither trigger a bus operation nor cause transmit and clear flags. If the TWI is configured to require periodical service by the CPU through interrupts or similar, improper operation or data loss may result during halted debugging.

29.4 Register Summary

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00	CTRLA	7:0		INPUTLVL		SDASETUP	SDAHC	DLD[1:0]	FMPEN	
0x01	DUALCTRL	7:0		INPUTLVL			SDAHC)LD[1:0]	FMPEN	ENABLE
0x02	DBGCTRL	7:0								DBGRUN
0x03	MCTRLA	7:0	RIEN	WIEN		QCEN	TIMEO	UT[1:0]	SMEN	ENABLE
0x04	MCTRLB	7:0					FLUSH	ACKACT	MCM	D[1:0]
0x05	MSTATUS	7:0	RIF	WIF	CLKHOLD	RXACK	ARBLOST	BUSERR	BUSSTATE[1:0]	
0x06	MBAUD	7:0		BAUD[7:0]						
0x07	MADDR	7:0				ADDI	R[7:0]			
0x08	MDATA	7:0				DATA	A[7:0]			
0x09	SCTRLA	7:0	DIEN	APIEN	PIEN			PMEN	SMEN	ENABLE
0x0A	SCTRLB	7:0						ACKACT	SCM	D[1:0]
0x0B	SSTATUS	7:0	DIF	APIF	CLKHOLD	RXACK	COLL	BUSERR	DIR	AP
0x0C	SADDR	7:0	ADDR[7:0]							
0x0D	SDATA	7:0		DATA[7:0]						
0x0E	SADDRMASK	7:0			/	ADDRMASK[6:0)]			ADDREN

29.5 Register Description

29.5.1 Control A

Name:	CTRLA
Offset:	0x00
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
		INPUTLVL		SDASETUP	SDAHO	LD[1:0]	FMPEN	
Access		R/W		R/W	R/W	R/W	R/W	
Reset		0		0	0	0	0	

Bit 6 – INPUTLVL Input Voltage Transition Level

This bit selects between I²C and SMBUS.

Value	Name	Description
0	12C	I ² C input voltage transition level
1	SMBUS	SMBus 3.0 input voltage transition level

Bit 4 - SDASETUP SDA Setup Time

This bit controls the number of cycles the SCL is stretched to ensure sufficient setup time on the SDA out signal. This bit is used when operating in client mode.

Value	Name	Description
0	4CYC	SDA setup time is four clock cycles
1	8CYC	SDA setup time is eight clock cycles

Bits 3:2 - SDAHOLD[1:0] SDA Hold Time

This bit field selects the SDA hold time for the TWI. See the *Electrical Characteristics* section for details.

Value	Name	Description
0x0	OFF	Hold time OFF
0x1	50NS	Short hold time
0x2	300NS	Meets the SMBus 2.0 specifications under typical conditions
0x3	500NS	Meets the SMBus 2.0 across all corners

Bit 1 – FMPEN Fast-mode Plus Enable

Writing a '1' to this bit selects the 1 MHz bus speed for the TWI in default configuration or the TWI host in Dual mode configuration.

Value	Name	Description
0	OFF	Operating in Standard mode or Fast mode
1	ON	Operating in Fast mode Plus

29.5.2 Dual Mode Control Configuration

Name:	DUALCTRL
Offset:	0x01
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
		INPUTLVL			SDAHO	LD[1:0]	FMPEN	ENABLE
Access		R/W			R/W	R/W	R/W	R/W
Reset		0			0	0	0	0

Bit 6 – INPUTLVL Input Voltage Transition Level

This bit selects between I²C and SMBUS. This bit is ignored if the Dual mode is not enabled.

Value	Name	Description
0	I2C	I ² C input voltage transition level
1	SMBUS	SMBus 3.0 input voltage transition level

Bits 3:2 - SDAHOLD[1:0] SDA Hold Time

This bit field selects the SDA hold time for the TWI client. See also the *Electrical Characteristics* section. This bit field is ignored if the Dual mode is not enabled.

Value	Name	Description
0x0	OFF	Hold time OFF
0x1	50NS	Short hold time
0x2	300NS	Meets the SMBus 2.0 specifications under typical conditions
0x3	500NS	Meets the SMBus 2.0 across all corners

Bit 1 - FMPEN FM Plus Enable

Writing a '1' to this bit selects the 1 MHz bus speed for the TWI client. This bit is ignored if the Dual mode is not enabled.

Value	Name	Description
0	OFF	Operating in Standard mode or Fast mode
1	ON	Operating in Fast mode Plus

Bit 0 - ENABLE Dual Control Enable

Writing a '1' to this bit will enable the Dual mode configuration.

29.5.3 Debug Control

	Name: Offset: Reset: Property:	DBGCTRL 0x02 0x00 -						
Bit	t 7	6	5	4	3	2	1	0
								DBGRUN
Access	5			•			•	R/W
Reset	t							0
Bit 0 – D	BGRUN De	ebug Run						
	Refer to th	e Debug Opera	<i>tion</i> section f	or details.				
		Description						

Value	Description
0	The TWI is halted in Break Debug mode and ignores events
1	The TWI will continue to run in Break Debug mode when the CPU is halted

29.5.4 Host Control A

Name:	MCTRLA
Offset:	0x03
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
Γ	RIEN	WIEN		QCEN	TIMEO	JT[1:0]	SMEN	ENABLE
Access	R/W	R/W		R/W	R/W	R/W	R/W	R/W
Reset	0	0		0	0	0	0	0

Bit 7 – RIEN Read Interrupt Enable

A TWI host read interrupt will only be generated if this bit and the Global Interrupt Enable (I) bit in the Status (CPU.SREG) register are set to '1'.

Writing a '1' to this bit enables the interrupt on the Read Interrupt Flag (RIF) in the Host Status (TWIn.MSTATUS) register. The RIF flag is set to '1' when the host read interrupt occurs.

Bit 6 – WIEN Write Interrupt Enable

A TWI host write interrupt will only be generated if this bit and the Global Interrupt Enable (I) bit in the Status (CPU.SREG) register are set to '1'.

Writing a '1' to this bit enables the interrupt on the Write Interrupt Flag (WIF) in the Host Status (TWIn.MSTATUS) register. The WIF flag is set to '1' when the host write interrupt occurs.

Bit 4 – QCEN Quick Command Enable

Writing a '1' to this bit enables the Quick Command mode. If the Quick Command mode is enabled and a client acknowledges the address, the corresponding Read Interrupt Flag (RIF) or Write Interrupt Flag (WIF) will be set depending on the value of the R/W bit.

The software must issue a Stop command by writing to the Command (MCMD) bit field in the Host Control B (TWIn.MCTRLB) register.

Bits 3:2 – TIMEOUT[1:0] Inactive Bus Time-Out

Setting this bit field to a non-zero value will enable the inactive bus time-out supervisor. If the bus is inactive for longer than the TIMEOUT setting, the bus state logic will enter the Idle state.

Value	Name	Description
0x0	DISABLED	Bus time-out disabled - I ² C
0x1	50US	50 μs - SMBus
0x2	100US	100 µs
0x3	200US	200 µs

Bit 1 – SMEN Smart Mode Enable

Writing a '1' to this bit enables the Host Smart mode. When the Smart mode is enabled, the existing value in the Acknowledge Action (ACKACT) bit from the Host Control B (TWIn.MCTRLB) register is sent immediately after reading the Host Data (TWIn.MDATA) register.

Bit 0 - ENABLE Enable TWI Host

Writing a '1' to this bit enables the TWI as host.

Name:	MCTRLB
Offset:	0x04
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
					FLUSH	ACKACT	MCM	D[1:0]
Access				•	R/W	R/W	R/W	R/W
Reset					0	0	0	0

Bit 3 - FLUSH Flush

This bit clears the internal state of the host and the bus states changes to Idle. The TWI will transmit invalid data if the Host Data (TWIn.MDATA) register is written before the Host Address (TWIn.MADDR) register. Writing to Host Address (TWIn.MADDR) and Host Data (TWIn.MDATA) after a Flush will cause a transaction to start as soon as hardware detects SCL bus free.

Writing a '1' to this bit generates a strobe for one clock cycle, disabling the host and then re-enabling the host. Writing a '0' to this bit has no effect.

Bit 2 – ACKACT Acknowledge Action

The ACKACT⁽¹⁾ bit represents the behavior in the Host mode under certain conditions defined by the bus state and the software interaction. If the Smart Mode Enable (SMEN) bit in the Host Control A (TWIn.MCTRLA) register is set to '1', the acknowledge action is performed when the Host Data (TWIn.MDATA) register is read. Otherwise a command must be written to the Command (MCDM) bit field in the Host Control B (TWIn.MCTRLB) register.

The acknowledge action is not performed when the Host Data (TWIn.MDATA) register is written since the host is sending data.

Value	Name	Description
0	ACK	Send ACK
1	NACK	Send NACK

Bits 1:0 - MCMD[1:0] Command

The MCMD⁽¹⁾ bit field is a strobe. This bit field is always read as '0'. Writing to this bit field triggers a host operation, as defined by the table below.

MCMD[1:0]	Group Configuration	DIR	Description
0x0	NOACT	Х	Reserved
0x1	REPSTART	Х	Execute Acknowledge Action followed by repeated Start condition
0x2	RECVTRANS	W	Execute Acknowledge Action (no action) followed by a byte write operation ⁽²⁾
		R	Execute Acknowledge Action followed by a byte read operation
0x3	STOP	Х	Execute Acknowledge Action followed by issuing a Stop condition

Table 29-2. Command Settings

Notes:

- 1. The ACKACT bit and the MCMD bit field can be written simultaneously.
- 2. For a host write operation, the TWI will wait for new data to be written to the Host Data (TWIn.MDATA) register.

29.5.6 Host Status

Name:	MSTATUS
Offset:	0x05
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
	RIF	WIF	CLKHOLD	RXACK	ARBLOST	BUSERR	BUSSTATE[1:0]	
Access	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 7 – RIF Read Interrupt Flag

This flag is set to '1' when the host byte read operation is completed.

The RIF flag can generate a host read interrupt. Find more information in the description of the Read Interrupt Enable (RIEN) bit in the Host Control A (TWIn.MCTRLA) register.

This flag automatically clears when some TWI registers are accessed. Any of the following methods can be used to clear the RIF flag:

- 1. Writing a '1' to it.
- 2. Writing to the Host Address (TWIn.MADDR) register.
- 3. Writing/Reading the Host Data (TWIn.MDATA) register.
- 4. Writing to the Command (MCMD) bit field from the Host Control B (TWIn.MCTRLB) register.

Bit 6 – WIF Write Interrupt Flag

This flag is set to '1' when a host address transmit or byte write operation is completed, regardless of any occurrence of a bus error or arbitration lost condition.

The WIF flag can generate a host write interrupt. Find more information in the description of the Write Interrupt Enable (WIEN) bit in the Host Control A (TWIn.MCTRLA) register.

This flag can be cleared using any of the methods described above for the RIF flag.

Bit 5 – CLKHOLD Clock Hold

When this bit is read as '1', it indicates that the host currently holds the SCL low, stretching the TWI clock period.

This bit can be cleared using any of the methods described above for the RIF flag.

Bit 4 – RXACK Received Acknowledge

When this flag is read as '0', it indicates that the most recent Acknowledge bit from the client was ACK, and the client is ready for more data.

When this flag is read as '1', it indicates that the most recent Acknowledge bit from the client was NACK, and the client is not able to or does not need to receive more data.

Bit 3 – ARBLOST Arbitration Lost

When this bit is read as '1', it indicates that the host has lost arbitration. This can happen in one of the following cases:

- 1. While transmitting a high data bit.
- 2. While transmitting a NACK bit.
- 3. While issuing a Start condition (S).
- 4. While issuing a repeated Start (Sr).

This flag can be cleared by choosing one of the methods described for the RIF flag.

Bit 2 - BUSERR Bus Error

The BUSERR flag indicates that an illegal bus operation has occurred. An illegal bus operation is detected if a protocol violating the Start (S), repeated Start (Sr), or Stop (P) conditions is detected on the TWI bus lines. A Start condition directly followed by a Stop condition is one example of a protocol violation.

The BUSERR flag can be cleared by choosing one of the following methods:

- 1. Writing a '1' to it.
- 2. Writing to the Host Address (TWIn.MADDR) register.

The TWI bus error detector is part of the TWI host circuitry. For bus errors to be detected, the TWI host must be enabled (ENABLE bit in TWIn.MCTRLA is '1') and the main clock frequency must be at least four times the SCL frequency.

Bits 1:0 - BUSSTATE[1:0] Bus State

This bit field indicates the current TWI bus state. Writing 0x1 to this bit field will force the bus state to IDLE. All other values will be ignored.

Value	Name	Description
0x0	UNKNOWN	Unknown bus state
0x1	IDLE	Idle bus state
0x2	OWNER	This TWI controls the bus
0x3	BUSY	Busy bus state

29.5.7 Host Baud Rate

	Name: Offset: Reset: Property:	MBAUD 0x06 0x00 -						
Bit	7	6	5	4	3	2	1	0
		BAUD[7:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:0 - BAUD[7:0] Baud Rate

This bit field is used to derive the SCL high and low time. It must be written while the host is disabled. The host can be disabled by writing '0' to the Enable TWI Host (ENABLE) bit from the Host Control A (TWIn.MCTRLA) register.

Refer to the *Clock Generation* section for more information on how to calculate the frequency of the SCL.

29.5.8 Host Address

Name: Offset: Reset: Property:		MADDR 0x07 0x00 -								
Bit	7	6	5	4	3	2	1	0		
	ADDR[7:0]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 7:0 - ADDR[7:0] Address

This register contains the address of the external client device. When this bit field is written, the TWI will issue a Start condition, and the shift register performs a byte transmit operation on the bus depending on the bus state.

This register can be read at any time without interfering with the ongoing bus activity since read access does not trigger the host logic to perform any bus protocol-related operations. The host control logic uses bit 0 of this register as the R/W direction bit.

29.5.9 Host Data

Name:	MDATA
Offset:	0x08
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0	
	DATA[7:0]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 7:0 - DATA[7:0] Data

This bit field provides direct access to the host's physical shift register, which is used to shift out data on the bus (transmit) and to shift in data received from the bus (receive). The direct access implies that the MDATA register cannot be accessed during byte transmissions.

Reading valid data or writing data to be transmitted can only be successful when the CLKHOLD bit is read as '1' or when an interrupt occurs.

A write to the MDATA register will command the host to perform a byte transmit operation on the bus, directly followed by receiving the Acknowledge bit from the client. This is independent of the Acknowledge Action (ACKACT) bit from the Host Control B (TWIn.MCTRLB) register. The write operation is performed regardless of winning or losing arbitration before the Write Interrupt Flag (WIF) is set to '1'.

If the Smart Mode Enable (SMEN) bit in the Host Control A (TWIn.MCTRLA) register is set to '1', read access to the MDATA register will command the host to perform an acknowledge action. This is dependent on the setting of the Acknowledge Action (ACKACT) bit from the Host Control B (TWIn.MCTRLB) register.

Notes:

- 1. The WIF and RIF flags are automatically cleared if the MDATA register is read while ACKACT is set to '1'.
- 2. The ARBLOST and BUSEER flags are left unchanged.
- 3. The WIF, RIF, ARBLOST, and BUSERR flags together with the Clock Hold (CLKHOLD) bit are all located in the Host Status (TWIn.MSTATUS) register.

29.5.10 Client Control A

Name:	SCTRLA
Offset:	0x09
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
	DIEN	APIEN	PIEN			PMEN	SMEN	ENABLE
Access	R/W	R/W	R/W	•		R/W	R/W	R/W
Reset	0	0	0			0	0	0

Bit 7 – DIEN Data Interrupt Enable

Writing this bit to '1' enables an interrupt on the Data Interrupt Flag (DIF) from the Client Status (TWIn.SSTATUS) register.

A TWI client data interrupt will only be generated if this bit, the DIF flag, and the Global Interrupt Enable (I) bit in the Status (CPU.SREG) register are all '1'.

Bit 6 – APIEN Address or Stop Interrupt Enable

Writing this bit to '1' enables an interrupt on the Address or Stop Interrupt Flag (APIF) from the Client Status (TWIn.SSTATUS) register.

A TWI client address or stop interrupt will only be generated if this bit, the APIF flag, and the Global Interrupt Enable (I) bit in the Status (CPU.SREG) register are all '1'.

Notes:

- 1. The client stop interrupt shares the interrupt flag and vector with the client address interrupt.
- 2. The Stop Interrupt Enable (PIEN) bit in the Client Control A (TWIn.SCTRLA) register must be written to '1' for the APIF to be set on a Stop condition.
- 3. When the interrupt occurs, the Address or Stop (AP) bit in the Client Status (TWIn.SSTATUS) register will determine whether an address match or a Stop condition caused the interrupt.

Bit 5 – PIEN Stop Interrupt Enable

Writing this bit to '1' allows the Address or Stop Interrupt Flag (APIF) in the Client Status (TWIn.SSTATUS) register to be set when a Stop condition occurs. The main clock frequency must be at least four times the SCL frequency to use this feature.

Bit 2 – PMEN Address Recognition Mode

If this bit is written to '1', the client address match logic responds to all received addresses. If this bit is written to '0', the address match logic uses the Client Address (TWIn.SADDR) register to determine which address to recognize as the client's address.

Bit 1 – SMEN Smart Mode Enable

Writing this bit to '1' enables the client Smart mode. When the Smart mode is enabled, issuing a command by writing to the Command (SCMD) bit field in the Client Control B (TWIn.SCTRLB) register or accessing the Client Data (TWIn.SDATA) register resets the interrupt, and the operation continues. If the Smart mode is disabled, the client always waits for a new client command before continuing.

Bit 0 - ENABLE Enable TWI Client

Writing this bit to '1' enables the TWI client.

29.5.11 Client Control B

Name:	SCTRLB
Offset:	0x0A
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
						ACKACT	SCMI	D[1:0]
Access				•		R/W	R/W	R/W
Reset						0	0	0

Bit 2 – ACKACT Acknowledge Action

The ACKACT⁽¹⁾ bit represents the behavior of the TWI client under certain conditions defined by the bus protocol state and the software interaction. If the Smart Mode Enable (SMEN) bit in the Client Control A (TWIn.SCTRLA) register is set to '1', the acknowledge action is performed when the Client Data (TWIn.SDATA) register is read. Otherwise a command must be written to the Command (SCMD) bit field in the Client Control B (TWIn.SCTRLB) register.

The acknowledge action is not performed when the Client Data (TWIn.SDATA) register is written since the client is sending data.

Value	Name	Description
0	ACK	Send ACK
1	NACK	Send NACK

Bits 1:0 - SCMD[1:0] Command

The SCMD⁽¹⁾ bit field is a strobe. This bit field is always read as '0'. Writing to this bit field triggers a client operation as defined by the table below.

Table 29-3. Command Settings	Table	29-3.	Command	Settings
------------------------------	-------	-------	---------	----------

Value	Name	DIR	Description				
0x0	NOACT	Х	No action				
0x1	—	Х	Reserved				
0x2	COMPTRANS		Execute Acknowledge Action succeeded by waiting for any Start (S/Sr) condition	Used to complete a transactior			
				Wait for any Start (S/Sr) condition			
		\overline{W}	Execute Acknowledge Action succeeded by the reception of the next byte				
0x3	RESPONSE	R	Used in response to an address interrupt (APIF): Execute Acknowled data interrupt.	ress interrupt (APIF): Execute Acknowledge Action succeeded by client			
		ĸ	Used in response to a data interrupt (DIF): Execute a byte read operation followed by Acknowledge Action.				

Note: 1. The ACKACT bit and the SCMD bit field can be written simultaneously. The ACKACT will be updated before the command is triggered.

29.5.12 Client Status

Name:	SSTATUS
Offset:	0x0B
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
	DIF	APIF	CLKHOLD	RXACK	COLL	BUSERR	DIR	AP
Access	R/W	R/W	R	R	R/W	R/W	R	R
Reset	0	0	0	0	0	0	0	0

Bit 7 – DIF Data Interrupt Flag

This flag is set to '1' when the client byte transmit or receive operation is completed without bus errors. This flag can be set to '1' with an unsuccessful transaction in case of collision detection. Find more information in the description of the Collision (COLL) bit.

The DIF flag can generate a client data interrupt. Find more information in the description of the Data Interrupt Enable (DIEN) bit in the Client Control A (TWIn.SCTRLA) register.

This flag automatically clears when some TWI registers are accessed. Any of the following methods can be used to clear the DIF flag:

- 1. Writing/Reading the Client Data (TWIn.SDATA) register.
- 2. Writing to the Command (SCMD) bit field in the Client Control B (TWIn.SCTRLB) register.

Bit 6 - APIF Address or Stop Interrupt Flag

This flag is set to '1' when the client address has been received or by a Stop condition. The APIF flag can generate a client address or stop interrupt. Find more information in the description of the Address or Stop Interrupt Enable (APIEN) bit in the Client Control A (TWIn.SCTRLA) register.

This flag can be cleared using any of the methods described for the DIF flag.

Bit 5 – CLKHOLD Clock Hold

When this bit is read as '1', it indicates that the client is currently holding the SCL low, stretching the TWI clock period.

This bit is set to '1' when an address or data interrupt occurs. Resetting the corresponding interrupt will indirectly set this bit to '0'.

Bit 4 – RXACK Received Acknowledge

When this flag is read as '0', it indicates that the most recent Acknowledge bit from the host was ACK. When this flag is read as '1', it indicates that the most recent Acknowledge bit from the host was NACK.

Bit 3 - COLL Collision

When this bit is read as '1', it indicates that the client has not been able to do one of the following:

- 1. Transmit high bits on the SDA. The Data Interrupt Flag (DIF) will be set to '1' at the end because of the internal completion of an unsuccessful transaction.
- 2. Transmit the NACK bit. The collision occurs because the client address match already took place, and the APIF flag is set to '1' as a result.

Writing a '1' to this bit will clear the COLL flag. The flag is automatically cleared if any Start condition (S/Sr) is detected.

Note: The APIF and DIF flags can only generate interrupts whose handlers can be used to check for the collision.

Bit 2 - BUSERR Bus Error

The BUSERR flag indicates that an illegal bus operation has occurred. Illegal bus operation is detected if a protocol violating the Start (S), repeated Start (Sr), or Stop (P) conditions is detected on the TWI bus lines. A Start condition directly followed by a Stop condition is one example of a protocol violation. Writing a '1' to this bit will clear the BUSERR flag.

The TWI bus error detector is part of the TWI host circuitry. For the bus errors to be detected by the client, the TWI Dual mode or the TWI host must be enabled, and the main clock frequency must be at least four times the SCL frequency. The TWI Dual mode can be enabled by writing '1' to the ENABLE bit in the TWIn.DUALCTRL register. The TWI host can be enabled by writing '1' to the ENABLE bit in the TWIn.MCTRLA register.

Bit 1 – DIR Read/Write Direction

This bit indicates the current TWI bus direction. The DIR bit reflects the direction bit value from the last address packet received from a host TWI device.

When this bit is read as '1', it indicates that a host read operation is in progress.

When this bit is read as '0', it indicates that a host write operation is in progress.

Bit 0 – AP Address or Stop

When the TWI client Address or Stop Interrupt Flag (APIF) is set to '1', this bit determines whether the interrupt is due to an address detection or a Stop condition.

Value	Name	Description
0	STOP	A Stop condition generated the interrupt on the APIF flag
1	ADR	Address detection generated the interrupt on the APIF flag

29.5.13 Client Address

C F	Name: Dffset: Reset: Property:	SADDR 0x0C 0x00 -							
Bit	7	6	5	4	3	2	1	0	
		ADDR[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 7:0 - ADDR[7:0] Address

The Client Address (TWIn.SADDR) register is used by the client address match logic to determine if a host device has addressed the TWI client. If an address packet is received, the Address or Stop Interrupt Flag (APIF) and the Address or Stop (AP) bit in the Client Status (TWIn.SSTATUS) register are set to '1'.

The upper seven bits (ADDR[7:1]) of the TWIn.SADDR register represent the main client address. The TWIn.SADDR register's Least Significant bit (ADDR[0]) is used for recognition of the General Call Address (0x00) of the I²C protocol. This feature is enabled when this bit is set to '1'.

29.5.14 Client Data

C F	Name: Offset: Reset: Property:	SDATA 0x0D 0x00 -						
Bit	7	6	5	4	3	2	1	0
		DATA[7:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:0 - DATA[7:0] Data

This bit field provides access to the client data register.

Reading valid data or writing data to be transmitted can only be achieved when the SCL is held low by the client (i.e., when the client CLKHOLD bit is set to '1'). It is unnecessary to check the Clock Hold (CLKHOLD) bit from the Client Status (TWIn.SSTATUS) register in software before accessing the SDATA register if the software keeps track of the present protocol state by using interrupts or observing the interrupt flags.

If the Smart Mode Enable (SMEN) bit in the Client Control A (TWIn.SCTRLA) register is set to '1', read access to the SDATA register, when the clock hold is active, auto-triggers bus operations and commands the client to perform an acknowledge action. This is dependent on the setting of the Acknowledge Action (ACKACT) bit from the Client Control B (TWIn.SCTRLB) register.

29.5.15 Client Address Mask

	Name: Offset: Reset: Property:	SADDRMASK 0x0E 0x00 -						
Bit	7	6	5	4	3	2	1	0
				ADDREN				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:1 – ADDRMASK[6:0] Address Mask

The ADDRMASK bit field acts as a second address match or an address mask register depending on the ADDREN bit.

If the ADDREN bit is written to '0', the ADDRMASK bit field can be loaded with a 7-bit Client Address mask. Each of the bits in the Client Address Mask (TWIn.SADDRMASK) register can mask (disable) the corresponding address bits in the TWI Client Address (TWIn.SADDR) register. When a bit from the mask is written to '1', the address match logic ignores the comparison between the incoming address bit and the corresponding bit in the Client Address (TWIn.SADDR) register. In other words, masked bits will always match, making it possible to recognize the ranges of addresses. If the ADDREN bit is written to '1', the Client Address Mask (TWIn.SADDRMASK) register can be loaded with a second client address in addition to the Client Address (TWIn.SADDR) register. In this mode, the client will have two unique addresses -- one in the Client Address (TWIn.SADDR) register and the other in the Client Address Mask (TWIn.SADDRMASK) register.

Bit 0 - ADDREN Address Mask Enable

If this bit is written to '0', the TWIN.SADDRMASK register acts as a mask to the TWIN.SADDR register. If this bit is written to '1', the client address match logic responds to the two unique addresses in the client TWIN.SADDR and TWIN.SADDRMASK registers.

30. CRCSCAN - Cyclic Redundancy Check Memory Scan

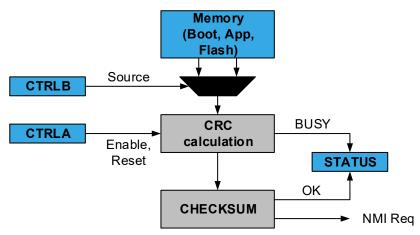
30.1 Features

- CRC-16-CCITT or CRC-32 (IEEE 802.3)
- Check of the Entire Flash Section, Application Code, and/or Boot Section
- Selectable NMI Trigger on Failure
- User-Configurable Check During Internal Reset Initialization

30.2 Overview

The Cyclic Redundancy Check (CRC) is an important safety feature. It scans the Nonvolatile Memory (NVM) making sure the code is correct.

The device will not execute code if Flash fault has occurred. By ensuring no code corruption has occurred, a potentially unintended behavior in the application that can cause a dangerous situation can be avoided. The CRC scan can be set up to scan the entire Flash, only the boot section, or both the boot and application code sections.


The CRC generates a checksum that is compared to a pre-calculated one. If the two checksums match, the Flash is OK, and the application code can start running.

The BUSY bit in the Status (CRCSCAN.STATUS) register indicates if a CRC scan is ongoing or not, while the OK bit in the Status (CRCSCAN.STATUS) register indicates if the checksum comparison matches or not.

The CRCSCAN can be set up to generate a Non-Maskable Interrupt (NMI) if the checksums do not match.

30.2.1 Block Diagram

Figure 30-1. Cyclic Redundancy Check Block Diagram

30.3 Functional Description

30.3.1 Initialization

To enable a CRC in software (or via the debugger):

- 1. Write the Source (SRC) bit field of the Control B (CRCSCAN.CTRLB) register to select the desired source settings.
- 2. Enable the CRCSCAN by writing a '1' to the ENABLE bit in the Control A (CRCSCAN.CTRLA) register.

3. The CRC will start after three cycles. The CPU will continue executing during these three cycles.

The selection between CRC32 and CRC16 is done through fuse settings. The CRCSCAN can be configured to perform a code memory scan before the device leaves Reset. If this check fails, the CPU is not allowed to start normal code execution. This feature is enabled and controlled by the CRCSRC field in FUSE.SYSCFG0 (see the *Fuses* section for more information).

If the CRCSCAN is enabled, a successful CRC check will have the following outcome:

- Normal code execution starts
- The ENABLE bit in CRCSCAN.CTRLA will be '1'
- The SRC bit field in CRCSCAN.CTRLB will reflect the checked section(s)
- The OK flag in CRCSCAN.STATUS will be '1'

If the CRCSCAN is enabled, a non-successful CRC check will have the following outcome:

- Normal code execution does not start. The CPU will hang executing no code.
- The ENABLE bit in CRCSCAN.CTRLA will be '1'
- The SRC bit field in CRCSCAN.CTRLB will reflect the checked section(s)
- The OK flag in CRCSCAN.STATUS will be '0'
- This condition may be observed using the debug interface

30.3.2 Operation

When operating, the CRCSCAN has priority access to the Flash and will stall the CPU until completed.

The CRC will use three clock cycles for each 16-bit fetch. The CRCSCAN can be configured to do a scan from start-up.

An *n*-bit CRC applied to a data block of arbitrary length will detect any single alteration (error burst) up to *n* bits in length. For longer error bursts a fraction $1-2^{-n}$ will be detected.

The CRC generator supports CRC-16-CCITT and CRC-32 (IEEE 802.3).

The polynomial options are:

- CRC-16-CCITT: x¹⁶ + x¹² + x⁵ + 1
- CRC-32: $x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$

The CRC reads byte-by-byte the content of the section(s) it is set up to check, starting with byte 0, and generates a new checksum per byte. The byte is sent through a shift register as depicted below, starting with the Most Significant bit. If the last bytes in the section contain the correct checksum, the CRC will pass. See 30.3.2.1. Checksum for how to place the checksum. The initial value of the Checksum register is $0 \times FFFF$.

30.3.2.1 Checksum

The pre-calculated checksum must be present in the last location of the section to be checked. If the BOOT section is to be checked, the checksum must be saved in the last bytes of the BOOT section. The same is done for APPLICATION and the entire Flash. Table 30-1 shows explicitly how the checksum must be stored for the different sections. Refer to the CRCSCAN.CTRLB register description for how to configure the sections to be checked.

Section to Check	CHECKSUM[15:8]	CHECKSUM[7:0]
BOOT	BOOTEND-1	BOOTEND
BOOT and APPLICATION	APPEND-1	APPEND
Full Flash	FLASHEND-1	FLASHEND

Table 30-1. Placement of the Pre-Calculated	Checksum for CRC16 in Flash
---	-----------------------------

Table 30-2. Placement of the Pre-Calculated Checksum for CRC32 in Flash

Section to Check	CHECKSUM[31:24]	CHECKSUM[23:16]	CHECKSUM[15:8]	CHECKSUM[7:0]			
BOOT	BOOTEND	BOOTEND-1	BOOTEND-2	BOOTEND-3			
BOOT and APPLICATION	APPEND	APPEND-1	APPEND-2	APPEND-3			
Full Flash	FLASHEND	FLASHEND-1	FLASHEND-2	FLASHEND-3			

30.3.3 Interrupts

 Table 30-3.
 Available Interrupt Vectors and Sources

Name	Vector Description	Conditions
NMI	Non-Maskable Interrupt	CRC failure

When the interrupt condition occurs the OK flag in the Status (CRCSCAN.STATUS) register is cleared to '0'.

A Non-Maskable Interrupt (NMI) is enabled by writing a '1' to the respective Enable (NMIEN) bit in the Control A (CRCSCAN.CTRLA) register, but can only be disabled with a System Reset. An NMI is generated when the OK flag in the CRCSCAN.STATUS register is cleared, and the NMIEN bit is '1'. The NMI request remains active until a System Reset and cannot be disabled.

An NMI can be triggered even if interrupts are not globally enabled.

30.3.4 Sleep Mode Operation

In all CPU sleep modes, the CRCSCAN is halted and will resume operation when the CPU wakes up.

The CRCSCAN starts operation three cycles after writing the Enable (ENABLE) bit in the Control A (CRCSCAN.CTRLA) register. During these three cycles, it is possible to enter sleep mode. In this case:

- 1. The CRCSCAN will not start until the CPU is woken up.
- 2. Any interrupt handler will execute after CRCSCAN has finished.

30.3.5 Debug Operation

Whenever the debugger reads or writes a peripheral or memory location, the CRCSCAN will be disabled.

If the CRCSCAN is busy when the debugger accesses the device, the CRCSCAN will restart the ongoing operation when the debugger accesses an internal register or when the debugger disconnects.

The BUSY bit in the Status (CRCSCAN.STATUS) register will read '1' if the CRCSCAN was busy when the debugger caused it to disable, but it will not actively check any section as long as the debugger keeps it disabled. There are synchronized CRC status bits in the debugger's internal register space, which can be read by the debugger without disabling the CRCSCAN. Reading the debugger's internal CRC status bits will make sure that the CRCSCAN is enabled.

It is possible to write the CRCSCAN.STATUS register directly from the debugger:

- BUSY bit in CRCSCAN.STATUS:
 - Writing the BUSY bit to '0' will stop the ongoing CRC operation (so that the CRCSCAN does not restart its operation when the debugger allows it).
 - Writing the BUSY bit to '1' will make the CRC start a single check with the settings in the Control B (CRCSCAN.CTRLB) register, but not until the debugger allows it.

As long as the BUSY bit in CRCSCAN.STATUS is '1', CRCSCAN.CTRLB and the Non-Maskable Interrupt Enable (NMIEN) bit in the Control A (CRCSCAN.CTRLA) register cannot be altered.

• OK bit in CRCSCAN.STATUS:

- Writing the OK bit to '0' can trigger a Non-Maskable Interrupt (NMI) if the NMIEN bit in CRCSCAN.CTRLA is '1'. If an NMI has been triggered, no writes to the CRCSCAN are allowed.
- Writing the OK bit to '1' will make the OK bit read as '1' when the BUSY bit in CRCSCAN.STATUS is '0'.

Writes to CRCSCAN.CTRLA and CRCSCAN.CTRLB from the debugger are treated in the same way as writes from the CPU.

30.4 Register Summary

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00	CTRLA	7:0	RESET						NMIEN	ENABLE
0x01	CTRLB	7:0							SRC	[1:0]
0x02	STATUS	7:0							OK	BUSY

30.5 Register Description

30.5.1 Control A

Name:	CTRLA
Offset:	0x00
Reset:	0x00
Property:	-

If an NMI has been triggered this register is not writable.

Bit	7	6	5	4	3	2	1	0
	RESET						NMIEN	ENABLE
Access	R/W				•		R/W	R/W
Reset	0						0	0

Bit 7 – RESET Reset CRCSCAN

Writing this bit to '1' resets the CRCSCAN. The CRCSCAN Control and Status (CRCSCAN.CTRLA, CRCSCAN.CTRLB, CRCSCAN.STATUS) register will be cleared one clock cycle after the RESET bit is written to '1'.

If NMIEN is '0', this bit is writable both when the CRCSCAN is busy (the BUSY bit in CRCSCAN.STATUS is '1') and not busy (the BUSY bit is '0'), and will take effect immediately.

If NMIEN is '1', this bit is only writable when the CRCSCAN is not busy (the BUSY bit in CRCSCAN.STATUS is '0').

The RESET bit is a strobe bit.

Bit 1 – NMIEN Enable NMI Trigger

When this bit is written to '1', any CRC failure will trigger an NMI.

This bit can only be cleared by a System Reset. It is not cleared by a write to the RESET bit. This bit can only be written to '1' when the CRCSCAN is not busy (the BUSY bit in CRCSCAN.STATUS is '0').

Bit 0 - ENABLE Enable CRCSCAN

Writing this bit to '1' enables the CRCSCAN with the current settings. It will stay '1' even after a CRC check has completed, but writing it to '1' again will start a new check.

Writing the bit to '0' has no effect.

The CRCSCAN can be configured to run a scan during the microcontroller (MCU) start-up sequence to verify the Flash sections before letting the CPU start normal code execution (see the 30.3.1. Initialization section). If this feature is enabled, the ENABLE bit will read as '1' when normal code execution starts.

To see whether the CRCSCAN is busy with an ongoing check, poll the BUSY bit in the Status (CRCSCAN.STATUS) register.

30.5.2 Control B

Name:	CTRLB
Offset:	0x01
Reset:	0x00
Property:	-

The Control B register contains the source settings for the CRC. It is not writable when the CRCSCAN is busy, or when an NMI has been triggered.

Bit	7	6	5	4	3	2	1	0
[SRC	[1:0]
Access							R/W	R/W
Reset							0	0

Bits 1:0 - SRC[1:0] CRC Source

The SRC bit field selects which section of the Flash will be checked by the CRCSCAN. To set up section sizes, refer to the *Fuses* section.

The CRCSCAN can be enabled during internal Reset initialization to verify Flash sections before letting the CPU start (see the *Fuses* section). If the CRCSCAN is enabled during internal Reset initialization, the SRC bit field will read out as FLASH, BOOTAPP, or BOOT when normal code execution starts (depending on the configuration).

Value	Name	Description
0x0	FLASH	The CRC is performed on the entire Flash (boot, application code, and application data sections)
0x1	BOOTAPP	The CRC is performed on the boot and application code sections of Flash
0x2	BOOT	The CRC is performed on the boot section of Flash
0x3	-	Reserved

30.5.3 Status

Name:	STATUS
Offset:	0x02
Reset:	0x02
Property:	-

Bit	7	6	5	4	3	2	1	0
							OK	BUSY
Access		•	•	•			R	R
Reset							1	0

Bit 1 - OK CRC OK

When this bit is read as '1', the previous CRC completed successfully. The bit is set to '1' by default before a CRC scan is run. The bit is not valid unless BUSY is '0'.

Bit 0 - BUSY CRC Busy

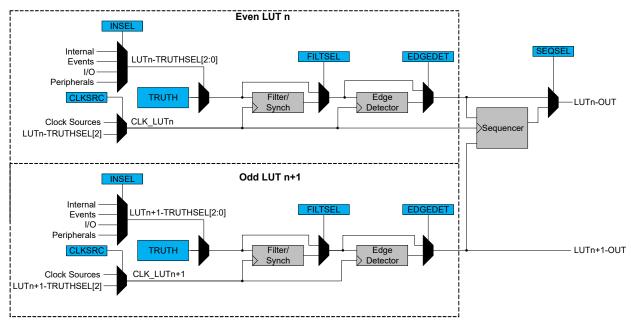
When this bit is read as '1', the CRCSCAN is busy. As long as the module is busy, the access to the control registers is limited.

31. CCL - Configurable Custom Logic

31.1 Features

- Glue Logic for General Purpose PCB Design
- Four Programmable Look-Up Tables (LUTs)
- Combinatorial Logic Functions: Any Logic Expression Which Is a Function of up to Three Inputs.
- Sequencer Logic Functions:
 - Gated D flip-flop
 - JK flip-flop
 - Gated D latch
 - RS latch
- Flexible LUT Input Selection:
 - I/Os
 - Events
 - Subsequent LUT output
 - Internal peripherals such as:
 - Analog comparator
 - Timers/Counters
 - USART
 - SPI
- Clocked by a System Clock or Other Peripherals
- Output Can Be Connected to I/O Pins or an Event System
- Optional Synchronizer, Filter, or Edge Detector Available on Each LUT Output
- Optional Interrupt Generation from Each LUT Output:
 - Rising edge
 - Falling edge
 - Both edges

31.2 Overview


The Configurable Custom Logic (CCL) is a programmable logic peripheral which can be connected to the device pins, to events, or to other internal peripherals. The CCL can serve as 'glue logic' between the device peripherals and external devices. The CCL can eliminate the need for external logic components, and can also help the designer to overcome real-time constraints by combining Core Independent Peripherals (CIPs) to handle the most time-critical parts of the application independent of the CPU.

The CCL peripheral provides a number of Look-up Tables (LUTs). Each LUT consists of three inputs, a truth table, a synchronizer/filter, and an edge detector. Each LUT can generate an output as a user programmable logic expression with three inputs. The output is generated from the inputs using the combinatorial logic and can be filtered to remove spikes. The CCL can be configured to generate an interrupt request on changes in the LUT outputs.

Neighboring LUTs can be combined to perform specific operations. A sequencer can be used for generating complex waveforms.

31.2.1 Block Diagram

Figure 31-1. CCL Block Diagram

Table 31-2. Sequencer and LUT Connection

Sequencer	Even and Odd LUT
SEQ0	LUT0 and LUT1
SEQ1	LUT2 and LUT3

31.2.2 Signal Description

Name	Туре	Description		
LUTn-OUT	Digital output	Output from the Look-up Table		
LUTn-IN[2:0]	Digital input	Input to the Look-up Table. LUTn-IN[2] can serve as CLK_LUTn.		

Refer to the *I/O Multiplexing and Considerations* section for details on the pin mapping for this peripheral. One signal can be mapped to several pins.

31.2.2.1 CCL Input Selection MUX

The following peripherals outputs are available as inputs into the CCL LUT.

Value	Input source	INSEL0[3:0]	INSEL2[3:0]	
0x00	MASK		Masked input	
0x01	FEEDBACK		LUTn	
0x02	LINK		LUT[n+1]	
0x03	EVENTA		EVENTA	
0x04	EVENTB	EVENTB		
0x05	IO	INO	IN1	IN2
0x06	AC	AC0 OUT	AC1 OUT	AC1 OUT
0x07	USARTn ⁽¹⁾	USART0 TXD	USART0 TXD	USART0 TXD
0x08	SPI0 ⁽²⁾	SPI0 MOSI	SPI0 MOSI	SPI0 SCK
0x09	TCE0	WO0	WO1	WO2
0x0A	TCBn	TCB0 WO	TCB1 WO	TCB1 WO

con	continued							
Value	Input source	INSEL0[3:0]	INSEL1[3:0]	INSEL2[3:0]				
0x0B	TCF0	WO0	WO1	WO0				
0x0C	WEX0	BLANK	BLANK	BLANK				

Notes:

- 1. USART connections to the CCL work only in asynchronous/synchronous USART host mode.
- 2. SPI connections to the CCL work only in host SPI mode.

31.3 Functional Description

31.3.1 Operation

31.3.1.1 Enable-Protected Configuration

The configuration of the LUTs and sequencers is enable-protected, meaning that they can only be configured when the corresponding even LUT is disabled (ENABLE = '0' in the LUT n Control A (CCL.LUTnCTRLA) register). This is a mechanism to suppress the undesired output from the CCL under (re-)configuration.

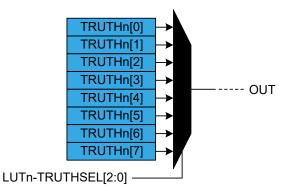
The following bits and registers are enable-protected:

- Sequencer Selection (SEQSEL) in the Sequencer Control n (CCL.SEQCTRLn) registers
- LUT n Control x (CCL.LUTnCTRLx) registers, except the ENABLE bit in the CCL.LUTnCTRLA register
- TRUTHn (CCL.TRUTHn) registers

The enable-protected bits in the CCL.LUTnCTRLx registers can be written at the same time as ENABLE in CCL.LUTnCTRLA is written to '1', but not at the same time as ENABLE is written to '0'.

The enable protection is denoted by the enable-protected property in the register description.

31.3.1.2 Enabling, Disabling, and Resetting


The CCL is enabled by writing a '1' to the ENABLE bit in the Control A (CCL.CTRLA) register. The CCL is disabled by writing a '0' to that ENABLE bit.

Each LUT is enabled by writing a '1' to the LUT Enable (ENABLE) bit in the CCL.LUTnCTRLA register. Each LUT is disabled by writing a '0' to the ENABLE bit in the CCL.LUTnCTRLA register.

31.3.1.3 Truth Table Logic

The truth table in each LUT unit can generate a combinational logic output as a function of up to three inputs (LUTn-TRUTHSEL[2:0]). It is possible to realize any 3-input Boolean logic function using one LUT.

Figure 31-2. Truth Table Output Value Selection of an LUT

Configure the truth table inputs (LUTn-TRUTHSEL[2:0]) by writing the Input Source Selection bit fields in the LUT Control registers:

- INSEL0 in CCL.LUTnCTRLB
- INSEL1 in CCL.LUTnCTRLB
- INSEL2 in CCL.LUTnCTRLC

Each combination of the input bits (LUTn-TRUTHSEL[2:0]) corresponds to one bit in the CCL.TRUTHn register, as shown in the table below:

Table 31-3. Truth Table of an LUT

LUTn-TRUTHSEL[2]	LUTn-TRUTHSEL[1]	LUTn-TRUTHSEL[0]	OUT
0	0	0	TRUTHn[0]
0	0	1	TRUTHn[1]
0	1	0	TRUTHn[2]
0	1	1	TRUTHn[3]
1	0	0	TRUTHn[4]
1	0	1	TRUTHn[5]
1	1	0	TRUTHn[6]
1	1	1	TRUTHn[7]

Important: Consider the unused inputs turned off (tied low) when logic functions are created.

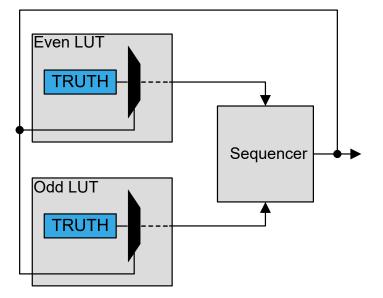
Example 31-1. LUT Output for CCL.TRUTHn = 0×42

If CCL.TRUTHn is configured to 0x42, the LUT output will be 1 when the inputs are `b001 or `b110 and 0 for any other combination of inputs.

31.3.1.4 Truth Table Inputs Selection

Input Overview

The inputs can be individually:

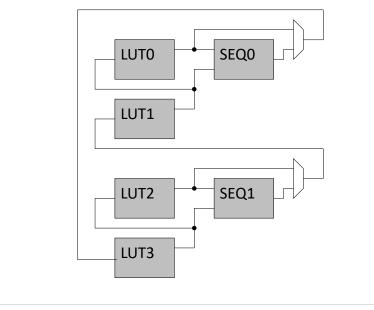

- OFF
- Driven by peripherals
- Driven by internal events from the Event System
- Driven by I/O pin inputs
- Driven by other LUTs

Internal Feedback Inputs (FEEDBACK)

The output from a sequencer can be used as an input source for the two LUTs it is connected to.

Figure 31-3. Feedback Input Selection

When selected (INSELy = FEEDBACK in LUTnCTRLx), the sequencer (SEQ) output is used as input for the corresponding LUTs.


Linked LUT (LINK)

When selecting the LINK input option, the next LUT's direct output is used as LUT input. In general, LUT[n+1] is linked to the input of LUT[n]. LUT0 is linked to the input of the last LUT.

Example 31-2. Linking all LUTs on a Device with Four LUTs

- LUT1 is the input for LUT0
- LUT2 is the input for LUT1
- LUT3 is the input for LUT2
- LUT0 is the input for LUT3 (wrap-around)

Figure 31-4. Linked LUT Input Selection

Event Input Selection (EVENTx)

Events from the Event System can be used as inputs to the LUTs by writing to the INSELn bit groups in the LUT n Control B and C registers.

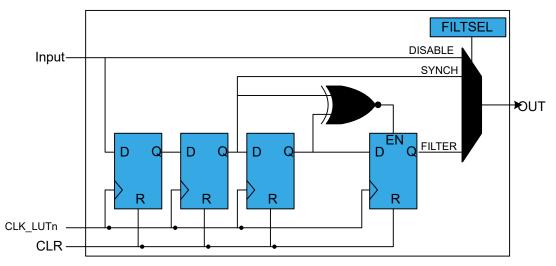
I/O Pin Inputs (IO)

When selecting the IO option, the LUT input will be connected to its corresponding I/O pin. Refer to the *I/O Multiplexing and Considerations* section in the data sheet for more details about where the LUTn-INy pins are located.

Peripherals

The different peripherals on the three input lines of each LUT are selected by writing to the Input Select (INSEL) bits in the LUT Control (LUTnCTRLB and LUTnCTRLC) registers.

31.3.1.5 Filter


By default, the LUT output is a combinational function of the LUT inputs. This may cause some short glitches when the inputs change the value. These glitches can be removed by clocking through filters if demanded by application needs.

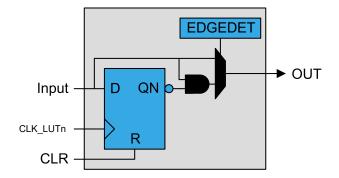
The Filter Selection (FILTSEL) bits in the LUT n Control A (CCL.LUTnCTRLA) registers define the digital filter options.

When FILTSEL = SYNCH, the output is synchronized with CLK_LUTn. The output will be delayed by two positive CLK_LUTn edges.

When FILTSEL = FILTER, only the input that is persistent for more than two positive CLK_LUTn edges will pass through the gated flip-flop to the output. The output will be delayed by four positive CLK_LUTn edges.

One clock cycle later, after the corresponding LUT is disabled, all internal filter logic is cleared.

Figure 31-5. Filter


31.3.1.6 Edge Detector

The edge detector can be used to generate a pulse when detecting a rising edge on its input. To detect a falling edge, the TRUTH table can be programmed to provide an inverted output.

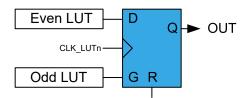
The edge detector is enabled by writing '1' to the Edge Detection (EDGEDET) bit in the LUTn Control A (CCL.LUTnCTRLA) register. To avoid unpredictable behavior, a valid filter option must be enabled.

The edge detection is disabled by writing a '0' to EDGEDET in CCL.LUTnCTRLA. After disabling an LUT, the corresponding internal edge detector logic is cleared one clock cycle later.

31.3.1.7 Sequencer Logic

Each LUT pair can be connected to a sequencer. The sequencer can function as either D flip-flop, JK flip-flop, gated D latch, or RS latch. The function is selected by writing the Sequencer Selection (SEQSEL) bit group in the Sequencer Control (CCL.SEQCTRLn) register.

The sequencer receives its input from either the LUT, filter or edge detector, depending on the configuration.

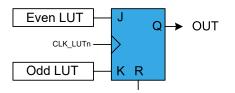

A sequencer is clocked by the same clock as the corresponding even LUT. The clock source is selected by the Clock Source (CLKSRC) bit group in the LUT n Control A (CCL.LUTnCTRLA) register.

The flip-flop output (OUT) is refreshed on the rising edge of the clock. When the even LUT is disabled, the latch is cleared asynchronously. The flip-flop Reset signal (R) is kept enabled for one clock cycle.

Gated D Flip-Flop (DFF)

The D input is driven by the even LUT output, and the G input is driven by the odd LUT output.

Figure 31-7. D Flip-Flop

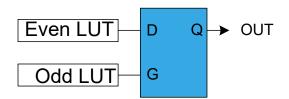

Table 31-4. DFF Characteristics

R	G	D	OUT
1	Х	Х	Clear
0	1	1	Set
0	1	0	Clear
0	0	Х	Hold state (no change)

JK Flip-Flop (JK)

The J input is driven by the even LUT output, and the K input is driven by the odd LUT output.

Figure 31-8. JK Flip-Flop

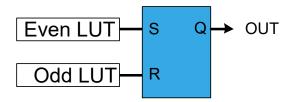

Table 31-5. JK Characteristics

R	J	К	OUT
1	Х	Х	Clear
0	0	0	Hold state (no change)
0	0	1	Clear
0	1	0	Set
0	1	1	Toggle

Gated D Latch (DLATCH)

The D input is driven by the even LUT output, and the G input is driven by the odd LUT output.

Figure 31-9. D Latch


Table 31-6. D Latch Characteristics

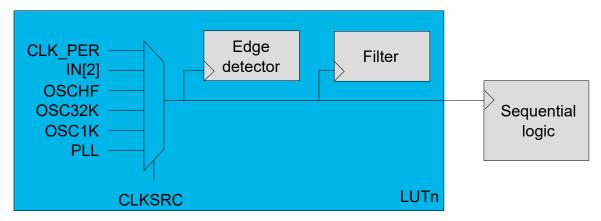
G	D	OUT
0	Х	Hold state (no change)
1	0	Clear
1	1	Set

RS Latch (RS)

The S input is driven by the even LUT output, and the R input is driven by the odd LUT output.

Figure 31-10. RS Latch

Table 31-7. RS Latch Characteristics


S	R	OUT
0	0	Hold state (no change)
0	1	Clear
1	0	Set
1	1	Forbidden state

31.3.1.8 Clock Source Settings

The filter, edge detector, and sequencer are, by default, clocked by the peripheral clock (CLK_PER). It is also possible to use other clock inputs (CLK_LUTn) to clock these blocks. This is configured by writing the Clock Source (CLKSRC) bits in the LUT Control A register.

Figure 31-11. CCL Clock Sources

When the Clock Source (CLKSRC) bit is written to 0×1 , LUTn-TRUTHSEL[2] is used to clock the corresponding filter and edge detector (CLK_LUTn). The sequencer is clocked by the CLK_LUTn of the even LUT in the pair. When CLKSRC is written to 0×1 , LUTn-TRUTHSEL[2] is treated as OFF (low) in the TRUTH table.

The CCL peripheral must be disabled while changing the clock source to avoid undefined outputs from the peripheral.

31.3.2 Interrupts

Table 31-8. Available Interrupt Vectors and Sources

Nam	Vector Description	Conditions
CCL	CCL interrupt	INTn in INTFLAG is raised as configured by the INTMODEn bits in the CCL.INTCTRLn register

When an interrupt condition occurs, the corresponding interrupt flag is set in the peripheral's Interrupt Flags (*peripheral*.INTFLAGS) register.

An interrupt source is enabled or disabled by writing to the corresponding enable bit in the peripheral's Interrupt Control (*peripheral*.INTCTRL) register.

An interrupt request is generated when the corresponding interrupt source is enabled, and the interrupt flag is set. The interrupt request remains active until the interrupt flag is cleared. See the peripheral's INTFLAGS register for details on how to clear interrupt flags.

When several interrupt request conditions are supported by an interrupt vector, the interrupt requests are ORed together into one combined interrupt request to the interrupt controller. The user must read the peripheral's INTFLAGS register to determine which of the interrupt conditions are present.

31.3.3 Events

The CCL can generate the events shown in the table below.

Table 31-9. Event Generators in the CCL

Generator Name		Description	Event Type	Generating Clock Domain	Length of Event
Peripheral	Event				
CCL	LUTn	LUT output level	Level	Asynchronous	Depends on the CCL configuration

The CCL has the event users below for detecting and acting upon input events.

Table 31-10. Event Users in the CCL

User Name		Description	Input Detection	Async/Sync	
Peripheral	Input				
CCL	LUTnx	LUTn input x or clock signal	No detection	Async	

The event signals are passed directly to the LUTs without synchronization or input detection logic.

Two event users are available for each LUT. They can be selected as LUTn inputs by writing to the INSELn bit groups in the LUT n Control B and Control C (CCL.LUTnCTRLB or LUTnCTRLC) registers.

Refer to the *EVSYS - Event System* section for more details regarding the event types and the EVSYS configuration.

31.3.4 Sleep Mode Operation

Writing the Run In Standby (RUNSTDBY) bit in the Control A (CCL.CTRLA) register to '1' will allow the selected clock source to be enabled in Standby sleep mode.

If RUNSTDBY is '0', the peripheral clock will be disabled in Standby sleep mode. If the filter, edge detector, and/or sequencer are enabled, the LUT output will be forced to '0' in Standby sleep mode. In Idle sleep mode, the TRUTH table decoder will continue the operation, and the LUT output will be refreshed accordingly, regardless of the RUNSTDBY bit.

If the Clock Source (CLKSRC) bit in the LUT n Control A (CCL.LUTnCTRLA) register is written to '1', the LUTn-TRUTHSEL[2] will always clock the filter, edge detector, and sequencer. The availability of the LUTn-TRUTHSEL[2] clock in sleep modes will depend on the sleep settings of the peripheral used.

31.4 Register Summary

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00	CTRLA	7:0		RUNSTDBY						ENABLE
0x01	SEQCTRL0	7:0						SEQSE	L0[3:0]	
0x02	SEQCTRL1	7:0						SEQSE	L1[3:0]	
0x03										
	Reserved									
0x04										
0x05	INTCTRL0	7:0	INTMO	DE3[1:0]	INTMO	DE2[1:0]	INTMO	DE1[1:0]	INTMO	DE0[1:0]
0x06	Reserved									
0x07	INTFLAGS	7:0					INT3	INT2	INT1	INT0
0x08	LUTOCTRLA	7:0	EDGEDET	OUTEN	FILTSE	L[1:0]		CLKSRC[2:0]		ENABLE
0x09	LUT0CTRLB	7:0		INSEL1[3:0]			INSEL0[3:0]			
0x0A	LUTOCTRLC	7:0					INSEL2[3:0]			
0x0B	TRUTH0	7:0				TRUTI	TH0[7:0]			
0x0C	LUT1CTRLA	7:0	EDGEDET	OUTEN	FILTSE	L[1:0]		CLKSRC[2:0]		ENABLE
0x0D	LUT1CTRLB	7:0		INSEL	1[3:0]			INSEL	0[3:0]	
0x0E	LUT1CTRLC	7:0						INSEL	2[3:0]	
0x0F	TRUTH1	7:0				TRUTI	H1[7:0]			
0x10	LUT2CTRLA	7:0	EDGEDET	OUTEN	FILTSE	L[1:0]		CLKSRC[2:0]		ENABLE
0x11	LUT2CTRLB	7:0		INSEL	1[3:0]			INSEL	0[3:0]	
0x12	LUT2CTRLC	7:0						INSEL	2[3:0]	
0x13	TRUTH2	7:0				TRUTI	H2[7:0]			
0x14	LUT3CTRLA	7:0	EDGEDET	OUTEN	FILTSE	L[1:0]		CLKSRC[2:0]		ENABLE
0x15	LUT3CTRLB	7:0		INSEL	1[3:0]			INSEL	0[3:0]	
0x16	LUT3CTRLC	7:0						INSEL	2[3:0]	
0x17	TRUTH3	7:0				TRUTI	H3[7:0]			

31.5 Register Description

31.5.1 Control A

Name:	CTRLA
Offset:	0x00
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
		RUNSTDBY						ENABLE
Access		R/W		•	•			R/W
Reset		0						0

Bit 6 – RUNSTDBY Run in Standby

Writing this bit to '1' will enable the peripheral to run in Standby sleep mode.

Value	Description
0	The CCL will not run in Standby sleep mode
1	The CCL will run in Standby sleep mode

Bit 0 - ENABLE Enable

Value	Description
0	The peripheral is disabled
1	The peripheral is enabled

31.5.2 Sequencer Control 0

Name:	SEQCTRL0
Offset:	0x01
Reset:	0x00
Property:	Enable-Protected

Bit	7	6	5	4	3	2	1	0
						SEQSE	L0[3:0]	
Access		•			R/W	R/W	R/W	R/W
Reset					0	0	0	0

Bits 3:0 – SEQSEL0[3:0] Sequencer Selection This bit group selects the sequencer configuration for LUT0 and LUT1.

Value	Name	Description
0x0	DISABLE	The sequencer is disabled
0x1	DFF	D flip-flop
0x2	JK	JK flip-flop
0x3	LATCH	D latch
0x4	RS	RS latch
Other	-	Reserved

31.5.3 Sequencer Control 1

Name:	SEQCTRL1
Offset:	0x02
Reset:	0x00
Property:	Enable-Protected

Bit	7	6	5	4	3	2	1	0
						SEQSE	L1[3:0]	
Access		•			R/W	R/W	R/W	R/W
Reset					0	0	0	0

Bits 3:0 – SEQSEL1[3:0] Sequencer Selection

This bit group selects the sequencer configuration for LUT2 and LUT3.

Value	Name	Description
0x0	DISABLE	The sequencer is disabled
0x1	DFF	D flip-flop
0x2	JK	JK flip-flop
0x3	LATCH	D latch
0x4	RS	RS latch
Other	-	Reserved

31.5.4 Interrupt Control 0

Name:	INTCTRL0
Offset:	0x05
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
	INTMOI	DE3[1:0]	INTMO	DE2[1:0]	INTMO	DE1[1:0]	INTMO	DE0[1:0]
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 0:1, 2:3, 4:5, 6:7 - INTMODEn

The bits in INTMODEn select the interrupt sense configuration for LUTn-OUT.

Value	Name	Description
0x0	INTDISABLE	Interrupt disabled
0x1	RISING	Sense rising edge
0x2	FALLING	Sense falling edge
0x3	BOTH	Sense both edges

31.5.5 Interrupt Flag

Name:	INTFLAGS
Offset:	0x07
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
					INT3	INT2	INT1	INT0
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0

Bits 0, 1, 2, 3 – INT Interrupt Flag

The INTn flag is set when the LUTn output change matches the Interrupt Sense mode as defined in CCL.INTCTRLn. Writing a '1' to this flag's bit location will clear the flag.

31.5.6 LUT n Control A

Name:	LUTnCTRLA
Offset:	0x08 + n*0x04 [n=03]
Reset:	0x00
Property:	Enable-Protected

Bit	7	6	5	4	3	2	1	0
	EDGEDET	OUTEN	FILTSE	EL[1:0]		CLKSRC[2:0]		ENABLE
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 7 - EDGEDET Edge Detection

Value	Description
0	Edge detector is disabled
1	Edge detector is enabled

Bit 6 - OUTEN Output Enable

This bit enables the LUT output to the LUTn OUT pin. When written to '1', the pin configuration of the PORT I/O-Controller is overridden.

Value	Description
0	Output to pin disabled
1	Output to pin enabled

Bits 5:4 - FILTSEL[1:0] Filter Selection

These bits select the LUT output filter options.

Value	Name	Description
0x0	DISABLE	Filter disabled
0x1	SYNCH	Synchronizer enabled
0x2	FILTER	Filter enabled
0x3	-	Reserved

Bits 3:1 - CLKSRC[2:0] Clock Source Selection

This bit selects between various clock sources to be used as the clock (CLK_LUTn) for an LUT. The CLK_LUTn of the even LUT is used for clocking the sequencer of an LUT pair.

Value	Name	Description
0x00	CLKPER	CLK_PER is clocking the LUT
0x01	IN2	LUT input 2 is clocking the LUT
0x02	-	Reserved
0x03	-	Reserved
0x04	OSCHF	Internal high-frequency oscillator before prescaler is clocking the LUT
0x05	OSC32K	Internal 32.768 kHz oscillator is clocking the LUT
0x06	OSC1K	Internal 32.768 kHz oscillator divided by 32 (1.024 kHz) is clocking the LUT
0x07	PLL	PLL is clocking the LUT

Bit 0 - ENABLE LUT Enable

Value	Description
0	The LUT is disabled
1	The LUT is enabled

31.5.7 LUT n Control B

 Name:
 LUTnCTRLB

 Offset:
 0x09 + n*0x04 [n=0..3]

 Reset:
 0x00

 Property:
 Enable-Protected

Notes:

- 1. SPI connections to the CCL work in Host SPI mode only.
- 2. USART connections to the CCL work only when the USART is in one of the following modes:
 - Asynchronous USART
 - Synchronous USART host

Bit	7	6	5	4	3	2	1	0
	INSEL1[3:0]			INSEL0[3:0]				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:4 – INSEL1[3:0] LUT n Input 1 Source Selection

-	-			
Those hite	coloct the	source for	1 m m + 1	of LLIT o
These bits	- select the	source for	Indut I	OLULI.

Value	Name	Description
0x00	MASK	Masked input
0x01	FEEDBACK	Feedback input
0x02	LINK	Output from LUT(n+1) as input source
0x03	EVENTA	Event A as input source
0x04	EVENTB	Event B as input source
0x05	IN1	IN1 input source
0x06	AC1	AC1 OUT input source
0x07	USART0	USART0 TXD input source
0x08	SPIO	SPI0 MOSI input source
0x09	TCE0	TCE0 WO1 input source
0x0A	TCB1	TCB1 WO input source
0x0B	TCF0	TCF0 WO1 input source
0x0C	WEX0	WEX Fault Blanking input source
Other	-	Reserved

Bits 3:0 – INSEL0[3:0] LUT n Input 0 Source Selection These bits select the source for input 0 of LUT n.

Value	Name	Description
0x00	MASK	Masked input
0x01	FEEDBACK	Feedback input
0x02	LINK	Output from LUT(n+1) as input source
0x03	EVENTA	Event A as input source
0x04	EVENTB	Event B as input source
0x05	INO	IN0 input source
0x06	AC0	AC0 OUT input source
0x07	USART0	USART0 TXD input source
0x08	SPI0	SPI0 MOSI input source
0x09	TCE0	TCE0 WO0 input source
0x0A	TCB0	TCB0 WO input source
0x0B	TCF0	TCF0 WO0 input source
0x0B	WEX0	WEX Fault Blanking input source

continued				
Value	Name	Description		
Other	-	Reserved		

31.5.8 LUT n Control C

Name:	LUTnCTRLC
Offset:	0x0A + n*0x04 [n=03]
Reset:	0x00
Property:	Enable-Protected

Bit	7	6	5	4	3	2	1	0
						INSEL	2[3:0]	
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0

Bits 3:0 – INSEL2[3:0] LUT n Input 2 Source Selection These bits select the source for input 2 of LUT n.

Value	Name	Description
0x00	MASK	Masked input
0x01	FEEDBACK	Feedback input
0x02	LINK	Output from LUT(n+1) as input source
0x03	EVENTA	Event A as input source
0x04	EVENTB	Event B as input source
0x05	IN2	IN2 input source
0x6	AC1	AC1 OUT input source
0x07	USART0	USART0 TXD input source
0x08	SPI0	SPI0 SCK input source
0x09	TCE0	TCE0 WO2 input source
0x0A	TCB0	TCB1 WO input source
0x0B	TCF0	TCF0 WO0 input source
0x0C	WEX0	WEX Fault Blanking input source
Other	-	Reserved

31.5.9 TRUTHn

Name:	TRUTHn
Offset:	0x0B + n*0x04 [n=03]
Reset:	0x00
Property:	Enable-Protected

Bit	7	6	5	4	3	2	1	0		
	TRUTHn[7:0]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 7:0 - TRUTHn[7:0] Truth Table

These bits determine the output of LUTn according to the LUTn-TRUTHSEL[2:0] inputs.

Bit Name	Value	Description
TRUTHn[0]	0	The output of LUTn is 0 when the inputs are ۱۵۵۵ د
	1	The output of LUTn is 1 when the inputs are `b000
	0	The output of LUTn is 0 when the inputs are 'b001
TRUTHn[1]	1	The output of LUTn is 1 when the inputs are `b001
	0	The output of LUTn is 0 when the inputs are ۱۵۵۱۵
TRUTHn[2]	1	The output of LUTn is 1 when the inputs are `b010
TRUTHn[3]	0	The output of LUTn is 0 when the inputs are ۱۵۵۱
IKUIHI[5]	1	The output of LUTn is 1 when the inputs are `b011
TRUTHn[4]	0	The output of LUTn is 0 when the inputs are <code>`b100</code>
TKOTTII[4]	1	The output of LUTn is 1 when the inputs are `b100
TRUTHn[5]	0	The output of LUTn is 0 when the inputs are `b101
I KOTTIII[5]	1	The output of LUTn is 1 when the inputs are `b101
TRUTHn[6]	0	The output of LUTn is 0 when the inputs are `b110
	1	The output of LUTn is 1 when the inputs are `b110
TRUTHn[7]	0	The output of LUTn is 0 when the inputs are נונו לשני
	1	The output of LUTn is 1 when the inputs are `b111

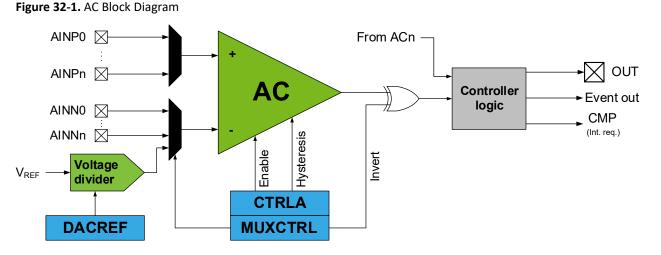
32. AC - Analog Comparator

32.1 Features

- Selectable Response Time
- Selectable Hysteresis
- Analog Comparator Output Available on Pin
- Comparator Output Inversion Available
- Flexible Input Selection:
 - Five positive pins
 - Four negative pins
 - Internal reference voltage generator (DACREF)
- Interrupt Generation on:
 - Rising edge
 - Falling edge
 - Both edges
- Window Function Interrupt Generation on:
 - Signal above the window
 - Signal inside the window
 - Signal below the window
 - Signal outside the window
- Event Generation:
 - Comparator output
 - Window function

32.2 Overview

The analog comparator (AC) compares the voltage levels on two inputs and gives a digital output based on this comparison. The AC can be configured to generate interrupt requests and/or events based on several different combinations of input change.


The input selection includes analog port pins and internally generated inputs. The AC digital output goes through controller logic, enabling customization of the signal for use internally with the Event System or externally on the pin.

The dynamic behavior of the AC can be adjusted by a hysteresis feature. The hysteresis can be customized to optimize the operation for each application.

The individual comparators can be used independently (Normal mode) or paired to form a window comparison (Window mode).

32.2.1 Block Diagram

32.2.2 Signal Description

Signal	Description	Туре
AINNn	Negative input n	Analog
AINPn	Positive input n	Analog
OUT	Comparator output of AC	Digital

32.3 Functional Description

32.3.1 Initialization

For basic operation, follow these steps:

- 1. Configure the desired input pins in the port peripheral as analog inputs.
- 2. Select the positive and negative input sources by writing to the Positive and Negative Input MUX Selection (MUXPOS and MUXNEG) bit fields in the MUX Control (ACn.MUXCTRL) register.
- 3. Optional: Enable the output to pin by writing a '1' to the Output Pad Enable (OUTEN) bit in the Control A (ACn.CTRLA) register.
- 4. Enable the AC by writing a '1' to the ENABLE bit in ACn.CTRLA.

During the start-up time after enabling the AC, the INITVAL bit in the CTRLB register can be used to set the AC output before the AC is ready. If V_{REF} is used as a reference source, the respective start-up time of the reference source must be added. For details about the start-up time of the AC and VREF peripherals, refer to the *Electrical Characteristics* section.

To avoid the pin being tri-stated when the AC is disabled, the OUT pin must be configured as output.

32.3.2 Operation

32.3.2.1 Input Hysteresis

Applying an input hysteresis helps to prevent constant toggling of the output when the noiseafflicted input signals are close to each other.

The input hysteresis can either be disabled or have one of three levels. The hysteresis is configured by writing to the Hysteresis Mode Select (HYSMODE) bit field in the Control A (ACn.CTRLA) register. For details about typical values of hysteresis levels, refer to the *Electrical Characteristics* section.

32.3.2.2 Input and Reference Selection

The input selection to the ACn is controlled by the Positive and Negative Multiplexers (MUXPOS and MUXNEG) bit fields in the MUX Control (ACn.MUXCTRL) register. For positive input of ACn, an analog pin can be selected, while for negative input, the selection can be made between analog pins and internal DAC reference voltage (DACREF). For details about the possible selections, refer to the MUX Control (ACn.MUXCTRL) register description.

The generated voltage depends on the DACREF register value and the reference voltage selected in the VREF module, and is calculated as:

$$V_{\text{DACREF}} = \frac{\text{DACREF}}{256} \times V_{\text{REF}}$$

The internal reference voltages (V_{REF}), except for V_{REFA} and V_{DD} , are generated from an internal band gap reference.

After switching inputs to I/O pins or setting a new voltage reference, the ACn requires time to settle. Refer to the *Electrical Characteristics* section for more details.

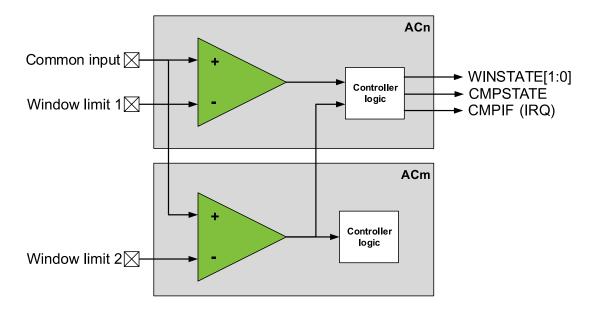
32.3.2.3 Normal Mode

The AC has one positive input and one negative input. The output of the comparator is '1' when the difference between the positive and the negative input voltage is positive, and '0' otherwise. This output is available on the output pin (OUT) through a logic XOR gate. This allows the inversion of the OUT pin when the INVERT bit in the MUX Control (ACn.MUXCTRL) register is '1'.

To avoid random output and set a specific level on the OUT pin during the ACn initialization, the INITVAL bit in the same register is used.

32.3.2.4 Power Modes

For power sensitive applications, the AC provides multiple power modes with balance power consumption and response time. A mode is selected by writing to the Power Profile (POWER) bit field in the Control A (ACn.CTRLA) register.


32.3.2.5 Window Mode

Each AC (i.e., ACn) can be configured to work together with another comparator (i.e., ACm) in Window mode. In this mode, a voltage range (the window) is defined, and the selected comparator indicates whether an input signal is within this range or not.

The WINSEL bit field in the Control B (ACn.CTRLB) register selects which ACn instance is connected to the current comparator (ACm) to create the window comparator. The user is responsible for configuring the MUXPOS and MUXNEG bit fields in the MUX Control (MUXCTRL) register for ACn and ACm, so they match the setup in the figure below. Note that the MUXPOS bit field in the MUXCTRL register of both ACs must be configured to the same pin.

Figure 32-2. Analog Comparators in Window Mode

The status of the input signal is reported by the Window State (WINSTATE) flags in the Status (ACn.STATUS) register. The status can be:

- Above the window the input signal is above the upper limit
- Inside the window the input signal is between the lower and upper limits
- Below the window the input signal is below the lower limit

Writing to the INTMODE bit field in the Interrupt Control (INTCTRL) register selects one of these window modes for triggering an event or requesting an interrupt:

- Above the window the interrupt/event is issued when the input signal is above the upper limit
- Inside the window the interrupt/event is issued when the input signal is between the lower and upper limits
- Below the window the interrupt/event is issued when the input signal is below the lower limit
- Outside the window the interrupt/event is issued when the input signal is not between the lower and upper limits

The CMPSTATE bit is '1' when the Window state matches the selected Interrupt Mode (INTMODE) bit field and '0' otherwise.

The window interrupt is enabled by writing a '1' to the Analog Comparator Interrupt Enable (CMP) bit in the Interrupt Control (ACn.INTCTRL) register.

32.3.3 Events

The AC can generate the following events:

Generat	Generator Name		Event Type	Generating Clock	Length of Event	
Module	Event	Description	Evenciype	Domain	Length of Event	
ACn	OUT	Comparator output level	Level	Asynchronous	Given by AC output level	

Table 32-1. Event Generators in AC

The AC has no event users.

Refer to the *EVSYS - Event System* section for more details regarding event types and Event System configuration.

32.3.4 Interrupts

Table 32-2. Available Interrupt Vectors and Sources

Name	Vector Description	Conditions
CMP	Analog comparator interrupt	AC output is toggling as configured by INTMODE in ACn.INTCTRL

When an interrupt condition occurs, the corresponding interrupt flag is set in the Status (ACn.STATUS) register.

An interrupt source is enabled or disabled by writing to the corresponding bit in the peripheral's Interrupt Control (ACn.INTCTRL) register.

The AC can generate a comparator interrupt, CMP, and can request this interrupt on either rising, falling, or both edges of the toggling comparator output. This is configured by writing to the Interrupt Mode (INTMODE) bit field in the Interrupt Control (ACn.INTCTRL) register. The interrupt is enabled by writing a '1' to the Analog Comparator Interrupt Enable (CMP) bit in the Interrupt Control (ACn.INTCTRL) register. The interrupt request remains active until the interrupt flag is cleared. Refer to the Status (ACn.STATUS) register description for details on how to clear the interrupt flags.

32.3.5 Sleep Mode Operation

In Idle sleep mode the AC will continue to operate as normal.

In Standby sleep mode the AC is disabled by default. If the Run in Standby Mode (RUNSTDBY) bit in the Control A (ACn.CTRLA) register is written to '1', the AC will continue to operate as normal with an event, interrupt and AC output on the pin even if the CLK_PER is not running in Standby sleep mode.

In Power-Down sleep mode the AC and the output to the pad are disabled.

32.4 Register Summary

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00	CTRLA	7:0	RUNSTDBY	OUTEN		POWE	R[1:0]	HYSMC	DE[1:0]	ENABLE
0x01	CTRLB	7:0							WINS	EL[1:0]
0x02	MUXCTRL	7:0	INVERT	INITVAL		MUXPOS[2:0]			MUXNEG[2:0]	
0x03										
	Reserved									
0x04										
0x05	DACREF	7:0	DACREF[7:0]							
0x06	INTCTRL	7:0			INTMC	DE[1:0]				CMP
0x07	STATUS	7:0	WINSTA	ATE[1:0]		CMPSTATE				CMPIF

32.5 Register Description

32.5.1 Control A

Name:	CTRLA
Offset:	0x00
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
	RUNSTDBY	OUTEN		POWER[1:0]		HYSMODE[1:0]		ENABLE
Access	R/W	R/W		R/W	R/W	R/W	R/W	R/W
Reset	0	0		0	0	0	0	0

Bit 7 – RUNSTDBY Run in Standby Mode

Writing this bit to '1' allows the AC to continue operation in Standby sleep mode. Since the clock is stopped, interrupts and status flags are not updated.

Value	Description	
0	In Standby sleep mode, the peripheral is halted	
1	In Standby sleep mode, the peripheral continues operation	

Bit 6 - OUTEN Output Pad Enable

Writing this bit to '1' makes the OUT signal available on the pin.

Bits 4:3 - POWER[1:0] Power Profile

This setting controls the current through the comparator, which allows the AC to trade power consumption for the response time. Refer to the *Electrical Characteristics* section for power consumption and response time.

Value	Name	Description		
0x0	PROFILE0	Power profile 0. The shortest propagation delay and the highest consumption.		
0x1	PROFILE1	ower profile 1		
Other	-	Reserved		

Bits 2:1 – HYSMODE[1:0] Hysteresis Mode Select

Writing to this bit field selects the Hysteresis mode for the AC input. For details about typical values of hysteresis levels, refer to the *Electrical Characteristics* section.

- J	J					
Value	Name	Description				
0x0	NONE	No hysteresis				
0x1	SMALL	Small hysteresis				
0x2	MEDIUM	Medium hysteresis				
0x3	LARGE	Large hysteresis				

Bit 0 – ENABLE Enable AC

Writing this bit to '1' enables the AC.

32.5.2 Control B

Name:	CTRLB
Offset:	0x01
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
							WINS	EL[1:0]
Access							R/W	R/W
Reset							0	0

Bits 1:0 - WINSEL[1:0] Window Selection Mode

This bit field selects the AC connected to the current comparator in Window mode.

Table 32-3.				
Value	Name	Description		
0x00	DISABLED	Window function disabled		
0x01	UPSEL1	Windows enabled, with ACn+1 connected		
Others	-	Reserved		

32.5.3 MUX Control

Name:	MUXCTRL
Offset:	0x02
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
	INVERT	INITVAL		MUXPOS[2:0]			MUXNEG[2:0]	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 7 – INVERT Invert AC Output

Writing this bit to '1' enables inversion of the output of the AC. This inversion has to be taken into account when using the AC output signal as an input signal to other peripherals or parts of the system.

Bit 6 – INITVAL AC Output Initial Value

To avoid that the AC output toggles before the comparator is ready, the INITVAL can be used to set the initial state of the comparator output.

Value	Name	Description	
0x0	LOW	Output initialized to '0'	
0x1	HIGH	Output initialized to '1'	

Bits 5:3 - MUXPOS[2:0] Positive Input MUX Selection

Writing to this bit field selects the input signal to the positive input of the AC.

Value	Name	Description
0x0	AINPO	Positive pin 0
0x1	AINP1	Positive pin 1
0x2	AINP2	Positive pin 2
0x3	AINP3	Positive pin 3
0x4	AINP4	Positive pin 4
0x5	AINP5	Positive pin 5
0x6	AINP6	Positive pin 6
Other	-	Reserved

Bits 2:0 - MUXNEG[2:0] Negative Input MUX Selection

Writing to this bit field selects the input signal to the negative input of the AC.

Value	Name	Description
0x0	AINNO	Negative pin 0
0x1	AINN1	Negative pin 1
0x2	AINN2	Negative pin 2
0x3	AINN3	Negative pin 3
0x4	DACREF	DAC reference
Other	-	Reserved

32.5.4 DAC Voltage Reference

DACREF
0x05
0xFF
R/W

Bit	7	6	5	4	3	2	1	0
	DACREF[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

Bits 7:0 - DACREF[7:0] DACREF Data Value

This bit field defines the output voltage from the internal voltage divider. The DAC voltage reference depends on the DACREF value and the reference voltage selected in the VREF module, and is calculated as:

 $V_{\text{DACREF}} = \frac{\text{DACREF}[7:0]}{256} \times V_{\text{REF}}$

32.5.5 Interrupt Control

Name:	INTCTRL
Offset:	0x06
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
[INTMO	DE[1:0]				CMP
Access		•	R/W	R/W				R/W
Reset			0	0				0

Bits 5:4 - INTMODE[1:0] Interrupt Mode

Writing to this bit field selects which edge(s) of the AC output or when entering a window state triggers an interrupt request.

Table 32-4. Interrupt Generation in Window Mode

Value	Name	Description
0x0	ABOVE	Enables Window mode above interrupt
0x1	INSIDE	Enables Window mode inside interrupt
0x2	BELOW	Enables Window mode below interrupt
0x3	OUTSIDE	Enables Window mode outside interrupt

Table 32-5. Interrupt Generation with Single Comparator

Value	Name	Description
0x0	BOTHEDGE	Positive and negative inputs crosses
0x1	-	Reserved
0x2	NEGEDGE	Positive input goes below negative input
0x3	POSEDGE	Positive input goes above negative input

Bit 0 – CMP AC Interrupt Enable

This bit enables the AC interrupt. The enabled interrupt will be triggered when the CMPIF bit in the ACn.STATUS register is set.

32.5.6 Status

Name:	STATUS
Offset:	0x07
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
	WINST	TATE[1:0]		CMPSTATE				CMPIF
Access	R	R		R	•			R/W
Reset	0	0		0				0

Bits 7:6 – WINSTATE[1:0] Window State

When the window function is enabled, these flags indicate the current status of the input signal with respect to the window.

Not valid when the Window mode is disabled.

Table 32-6. Window State Settings

Value	Name	Description
0x0	ABOVE	Above window
0x1	INSIDE	Inside window
0x2	BELOW	Below window
Other	-	Reserved

Bit 4 – CMPSTATE AC State

If this bit is '1', the OUT signal is high. If this bit is '0', the OUT signal is low. In Window mode, and if this bit is '1', the Window state matches the selected Interrupt mode (INTMODE) bit field. If INTMODE is '0UTSIDE', both 'ABOVE' and 'BELOW' are valid matches. It will have a synchronizer delay to get updated in the I/O register (three cycles).

Bit 0 – CMPIF AC Interrupt Flag

This bit is '1' when the OUT signal matches the Interrupt Mode (INTMODE) bit field as defined in the ACn.INTCTRL register. Writing a '1' to this flag bit location will clear the flag.

33. ADC - Analog-to-Digital Converter

33.1 Features

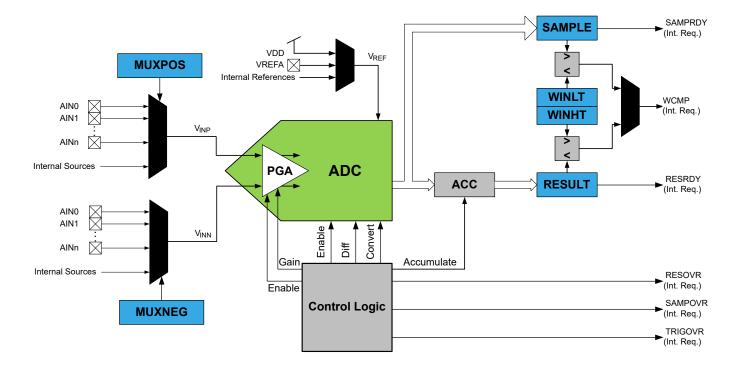
- 12-Bit Resolution
 - Up to 17 bits with oversampling
- Conversion Rate Up to 300 ksps at 12-bit Resolution
- Up to 20 / 24 Inputs
- Differential and Single-Ended Conversion
- Programmable Gain Amplifier (PGA) from 1x to 16x
- Input Voltage Range from -100 mV to VDD+100 mV
- Multiple Internal ADC Reference Voltages
 - V_{DD}
 - 1.024V
 - 2.048V
 - 2.500V
 - 4.096V
- External Reference Input
- Single and Free-Running Conversions
- Series and Burst Accumulation Modes
- Accumulation of Up to 1024 Conversions
- Left or Right Adjusted Result
- Interrupts on Conversion Complete
- Optional Event Triggered Conversion
- Configurable Window Comparator

33.2 Overview

The Analog-to-Digital Converter (ADC) peripheral is a 12-bit differential and single-ended ADC, with a Programmable Gain Amplifier (PGA) and a conversion rate up to 300 ksps at 12-bit resolution. The ADC is connected to an analog input multiplexer for selection between multiple single-ended or differential inputs. In single-ended conversions, the ADC measures the voltage between the selected input and 0V (GND). In differential conversions, the ADC measures the voltage between two selected inputs. The ADC inputs can be either internal (for example, a voltage reference) or external analog input pins.

An ADC conversion can be started by software or by using the Event System (EVSYS) to route an event from other peripherals, making it possible to periodically sample input signals, trigger an ADC conversion on a special condition, and trigger ADC conversions in Standby sleep mode. A digital window compare feature is available for monitoring the input signal and can be configured to trigger an interrupt if the sample is under or over a user-defined threshold, or inside or outside a user-defined window, with minimum software intervention required.

The ADC input signal is fed through a sample-and-hold circuit that ensures the input voltage to the ADC is held at a constant level during the conversion.


The ADC supports sampling in bursts where a configurable number of samples are accumulated into a single ADC result (Sample Accumulation).

The ADC reference voltage can be either internal or supplied from the external analog reference pin (VREFA).

33.2.1 Block Diagram

Figure 33-1. Block Diagram

33.2.2 Signal Description

Pin Name	Туре	Description
AIN[n:0]	Analog input	Analog input pin
EXTVREF	Analog input	External voltage reference pin

33.3 Functional Description

33.3.1 Definitions

- Conversion: The operation where analog values on the selected ADC inputs are transformed into a digital representation.
- Sample: The value placed in the Sample (ADCn.SAMPLE) register, that is, the outcome of a conversion operation.
- Result: The value placed in the Result (ADCn.RESULT) register. Depending on the ADC configuration, this value is a single sample or the sum of multiple accumulated samples.

33.3.2 Basic Operation

The following steps are recommended to initialize and run the ADC in basic operation:

- 1. Configure the timebase by writing to the TIMEBASE bit field in the TIMEBASE (CLKCTRL.TIMEBASE) register of the Clock Controller.
- 2. Enable the ADC by writing a '1' to the ENABLE bit in the Control A (ADCn.CTRLA) register.
- 3. Configure the Prescaler (PRESC) bit field in the Control B (ADCn.CTRLB) register.
- 4. Configure the Reference Select (REFSEL) bit fields in the Control C (ADCn.CTRLC) register.

- 5. Configure the Sample Duration (SAMPDUR) bit field in the Control E (ADCn.CTRLE) register.
- 6. Optional: Configure the number of samples to be accumulated by writing the Sample Accumulation Number Select (SAMPNUM) bit field in the Control F (ADCn.CTRLF) register.
- 7. Optional: Enable the Free-Running mode by writing a '1' to the Free-Running (FREERUN) bit in the Control F register.
- 8. Configure a positive input by writing to the MUXPOS bit field in the Positive Input Multiplexer (ADCn.MUXPOS) register.
- 9. Optional: Configure a negative input by writing to the MUXNEG bit field in the Negative Input Multiplexer (ADCn.MUXNEG) register.
- 10. Optional: Select Differential ADC conversion by writing a '1' to the Differential (DIFF) bit in the Command (ADCn.COMMAND) register.
- 11. Configure the mode of operation for the ADC by writing to the MODE bit field in the Command register.
- 12. Configure how an ADC conversion will start by writing to the START bit field in the Command register. If the IMMEDIATE command is written, a conversion will start immediately.
- 13. Wait until the Result Ready (RESRDY) bit in the Interrupt Flags (ADCn.INTFLAGS) register is '1' before reading the updated Result (ADCn.RESULT) register.

33.3.3 Operation

33.3.3.1 Operation Modes

The ADC supports six different operation modes, with differential and single-ended conversions possible for each mode. This is configured in the Command (ADCn.COMMAND) register.

The operation modes can be split into three groups:

- Single mode Single conversion per trigger, with 8- or 12-bit conversion output
- Series Accumulation mode One conversion per trigger, with an accumulation of n samples
- Burst Accumulation mode A burst with n samples accumulated as fast as possible after a single trigger

Series and Burst modes utilize 12-bit conversions and can be configured with or without scaling the accumulated result. The SAMPNUM bit field in the Control F (ADCn.CTRLF) register controls how many samples to accumulate. The accumulator is always reset to zero when a new Series or Burst accumulation is started.

The table below shows an overview of the available operation modes.

Table 33-1. Operation Modes

Operation Mode	COMMAND Mode	Conversions Per Trigger	Accumulation Type	RESULT Update	
Single 8-bit	0	1	N/A		
Single 12-bit	1		IN/A	Every conversion	
Series Accumulation	2	2		After SAMPNUM	
Series Accumulation with Scaling	3	Ι	Scaled	conversions	
Burst Accumulation	4	SAMPNUM	Full	After SAMPNUM	
Burst Accumulation with Scaling	5	SAMPNOM	Scaled	conversions	

33.3.3.2 Conversion Triggers

A conversion is started by one of the following triggers, depending on the configuration of the START bit field in the Command (ADCn.COMMAND) register:

• Writing the IMMEDIATE value to the START bit field in the Command register

- Receiving an event input
- Writing to one of the input multiplexer (ADCn.MUXPOS or ADCn.MUXNEG) registers

Continuously repeating Single conversions or Burst accumulations can be enabled by writing a '1' to the FREERUN bit in the Control F (ADCn.CTRLF) register before starting the first conversion. This bit does not affect Series accumulations.

An ongoing conversion can be aborted by writing the STOP value to the START bit field in the Command register, and a new conversion can start immediately. Attempting to trigger a new conversion before the ongoing conversion has finished will set the Trigger Overrun Interrupt (TRIGOVR) flag in the Interrupt Flags (ADCn.INTFLAGS) register, and the attempted trigger will be ignored.

The Result Ready and Sample Ready (RESRDY and SAMPRDY) interrupt flags in the Interrupt Flags register show if a conversion or accumulation has finished. These flags also trigger the corresponding interrupts if enabled in the Interrupt Control (ADCn.INTCTRL) register.

Aborting a Conversion

These actions will abort an ongoing conversion:

- Writing STOP to the START bit field in ADCn.COMMAND
- Writing to the Reference Selection bit field (REFSEL) in the CTRLC register during a conversion
- Selecting the DACREF, TEMPSENSE, or VDD in the Positive or Negative Input Multiplexer registers (ADCn.MUXPOS or ADCn.MUXNEG)

This will result in undefined values in the RESULT and SAMPLE registers. When triggering a new conversion: First, the settle time associated with the altered parameter will be waited out, then the conversion will start.

33.3.3.3 Output Formats

The following equations give the output from an ADC conversion:

Single-Ended 12-bit conversion =
$$\frac{V_{\text{INP}} \times \text{Gain}}{V_{\text{REF}}} \times 4096 \in [0, 4095]$$

Single-Ended 8-bit conversion = $\frac{V_{\text{INP}} \times \text{Gain}}{V_{\text{REF}}} \times 256 \in [0, 255]$
Differential 12-bit conversion = $\frac{(V_{\text{INP}} - V_{\text{INN}}) \times \text{Gain}}{V_{\text{REF}}} \times 2048 \in [-2048, 2047]$
Differential 8-bit conversion = $\frac{(V_{\text{INP}} - V_{\text{INN}}) \times \text{Gain}}{V_{\text{REF}}} \times 128 \in [-128, 127]$

 V_{INP} and V_{INN} are the positive and negative inputs to the ADC, and V_{REF} is the selected voltage reference. The gain is between 1x and 16x as configured in the PGA and 1x if the PGA is not in use.

The ADC has two output registers: The Sample (ADCn.SAMPLE) and Result (ADCn.RESULT) registers. The 16-bit Sample register will always be updated with the latest ADC conversion output (one sample). All accumulation modes will accumulate samples in an internal sample accumulator, configured by the Sample Accumulation Number Select (SAMPNUM) bit field in the Control F (ADCn.CTRLF) register. The sample accumulator is sufficiently wide to avoid overflow for all supported accumulation configurations. The accumulated result will automatically transfer to the 32-bit Result register at the end of a Burst or Series mode accumulation. In single conversion modes, the Result register will be updated with the latest sample, identical to the Sample register.

Operating modes with scaling can be selected to limit the accumulated result to 16 bits of resolution. Scaling is always applied after accumulating the last sample in Burst or Series modes and is carried out by right shifting the accumulated result by SAMPNUM-4 bits.

The Left Adjust (LEFTADJ) bit in the Control F register enables left shifting of the output data in the modes where this is supported. If enabled, this will left shift the output from both the Result and the Sample registers.

The data format for a sample in Single-Ended mode is an unsigned number, where 0×0000 represents zero, and 0×0 FFF represents the largest number (full scale). If the analog input is higher than the reference level of the ADC, the 12-bit ADC output will be equal the maximum value of 0×0 FFF. Likewise, if the input is below 0V, the ADC output will be 0×0000 . For Differential mode, the data format is two's complement, with sign extension.

The following tables show the Result register output formats for single-ended and differential conversions by mode of operation and left adjustment.

MODE	LEFTADJ	RES[31:24]	RES[23:16]	RES[15:12]	RES[11:8]	RES[7:0]			
0	χ <mark>(1)</mark>	0x00				Conversion[7:0]			
1	0	0x00			Conversion[11:0]				
T	1	0x00		Conversion[11:0] << 4					
2,4	χ <mark>(1)</mark>	0x00	Accumulation[23:0]						
3, 5	Х	0x00		Scaled accumulation[15:0] ⁽²⁾					

Table 33-2. RESULT Register - Single-Ended Mode

Notes:

- 1. Left adjust is not available in 8-bit mode or accumulation modes without scaling.
- 2. If SAMPNUM < 4, the result is left-shifted 4-SAMPNUM bits such that bit 15 is the MSb.

Table 33-3. RESULT Register - Differential Mode

M	ODE	LEFTADJ	RES[31:24]	RES[23:16]	RES[15:12]	RES[11:8]	RES[7:0]	
	0	χ <mark>(</mark> 1)	Sign extension			Signed conversion[7:0]		
	1	0	Sign extension			Signed conversion[11:0]		
	Ţ	1	Sign extension		Signed conversion[11:0] << 4			
2	2,4	X ⁽¹⁾	Sign extension	Sign extension Signed accumulation[23:0]				
3	8,5	Х	Sign extension		Signed scaled ad	ccumulation[15:0]	(2)	

Notes:

1. Left adjust is not available in 8-bit mode or accumulation modes without scaling.

2. If SAMPNUM < 4, the result is left-shifted 4-SAMPNUM bits such that bit 15 is the MSb.

The following table shows the Sample register output formats by mode of operation, left adjustment, and Differential or Single-Ended conversions.

Table 33-4. SAMPLE Register

MODE	LEFTADJ	DIFF	SAMPLE[15:12]	SAMPLE[11:8]	SAMPLE[7:0]		
0	0 X 0		0x00		Conversion[7:0]		
0	^	1	Sign extension		Signed conversion[7:0]		
	Other 0 1 0		0x00	Conversion[11:0]			
Othor			Sign extension	Signed conversion[11:0]			
other			Conversion[11:0] << 4				
	I	1	Signed conversion[11:0] << 4				

33.3.3.4 ADC Clock

The ADC clock (CLK_ADC) is scaled down from the peripheral clock (CLK_PER). The amount of scaling can be configured by the Prescaler (PRESC) bit field in the Control B (ADCn.CTRLB) register. The PGA

Bias Select (PGABIASSEL) bit field in the PGA Control (ADCn.PGACTRL) register can be configured to reduce PGA power consumption depending on the ADC clock frequency.

Some of the internal timings in the ADC and the PGA are independent of CLK_ADC. To ensure correct internal timing regardless of the ADC clock frequency, a 1 µs timebase, given in CLK_PER cycles, must be defined in the TIMEBASE register in the Clock Controller (CLKCTRL) peripheral. Refer to the TIMEBASE register description in the CLKCTRL section for details.

33.3.3.5 Input and Reference Selection

The input selection to the ADC is controlled by the Positive and Negative Input Multiplexer (ADCn.MUXPOS and ADCn.MUXNEG) registers. If the ADC is running single-ended conversions, only MUXPOS is used, while both are used in differential conversions.

The reference voltage for the ADC (V_{REF}) controls the conversion range of the ADC. V_{REF} can be selected by writing the Reference Selection (REFSEL) bit field in the Control C (ADCn.CTRLC) register. Except for V_{DD} , the internal reference voltages are generated from an internal band gap reference. V_{DD} must be at least 0.5V higher than the selected internal reference voltage.

The input and reference selections are not buffered. Changing any of these while a conversion is ongoing will corrupt the output. To safely change input or reference when using Free-Running mode, disable Free-Running mode, and wait for the conversion to complete before making any changes. Enable Free-Running mode again before starting the next conversion.

After switching input or reference, the ADC requires time to settle. Refer to the *Electrical Characteristics* section for further details.

33.3.3.5.1 Programmable Gain Amplifier

The Programmable Gain Amplifier (PGA) can be used to amplify the input signal to the ADC. The available range is from 1x to 16x gain. The PGA can be used in all operation modes.

In the default configuration, the PGA is disabled and the input signals are sampled directly into the conversion stage, i.e., without internal amplification. Depending on the input signal properties, it can be desirable to configure the internal PGA stage to amplify the signal.

The internal PGA has several desirable properties, especially in comparison to external amplifiers:

- Small BoM
- Low number of pins required
- Firmware selectable gain with input multiplexing allows for flexible and feature-rich applications
- Non-inverting amplification maintains signs/logic structure in firmware when the application requires to operate with PGA turned on and off

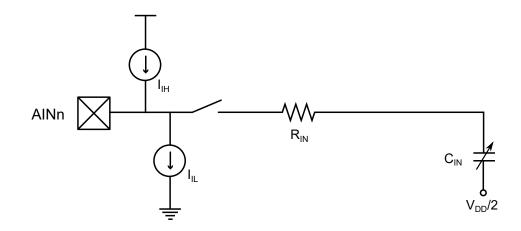
Using the PGA instead of direct inputs to the conversion stage has the following effects to consider:

- The input signal is amplified, with the natural side effects of an additional amplification stage (input noise, offset and gain error) and possible saturation
- The maximum conversion rate is slower because the ADC needs to sample the PGA
- Power consumption is slightly increased
- Depending on the sampling mode, the relative timing of the conversions is altered

The PGA is enabled by writing a '1' to the PGA Enable (PGAEN) bit and configuring the GAIN bit field in the PGA Control (ADCn.PGACTRL) register.

The VIA bit fields in the Positive and Negative Input Multiplexer (ADCn.MUXPOS and ADCn.MUXNEG) registers determine whether the input signal is connected via the PGA. The VIA bits are shared, so a value written to the VIA bit field in MUXPOS or MUXNEG is updated in both registers. It is, therefore, not possible to have one input using the PGA and the other not using the PGA.

33.3.3.5.2 Offset Reduction by Sign Chopping


The offset in the conversion result can be reduced using sign chopping. Sign chopping can be used only in accumulating modes (i.e., not in Single mode) in both single-ended and differential conversions, regardless of the PGA being enabled or not.

Sign chopping is enabled by writing a '1' to the Sign Chopping (CHOPPING) bit in the Control F (ADCn.CTRLF) register.

33.3.3.5.3 Analog Input Circuit

The figure below illustrates the analog input circuit. An analog source connected to an analog input (AINn) is subject to the pin capacitance and input leakage of that pin (represented by I_H and I_L). When the input is selected, the source must also drive the Sample-Hold capacitor (C_{IN}) through the combined resistance of the input path (represented by R_{IN}). Refer to the *Electrical Characteristics* section for details on the input characteristics of the ADC.

Figure 33-2. Analog Input Schematic

If a source with high impedance is used, the sampling time may need to be increased. The required sample time will depend on how long the source needs to charge the C_{IN} capacitor and can be configured using the Sample Duration (SAMPDUR) bit field in the Control E (ADCn.CTRLE) register.

33.3.3.6 Conversion Timing

Some of the analog modules in the ADC are disabled between conversions and require time to initialize before conversion starts. Only the modules used by the current ADC configuration are enabled, and as the initializations run in parallel, the limiting factor is the module with the slowest initialization time. The following table shows the different initialization times needed by the analog modules.

Analog Module	Initialization Time (µs)
ADC	10 ⁽¹⁾
PGA	20
Settling of internal references	60 ⁽²⁾
Internal Tempsense input	35
Internal DAC input	35

Notes:

- 1. If CLK_PER < 2 MHz, the ADC initialization time is 20 CLK_PER cycles.
- 2. If the LOWLAT bit is '1' then the settling time is reduced to 2 μ s when switching between internal references.

Example: Selecting Tempsense as input and using V_{DD} as the reference will give a 35 µs initialization time. Using the Tempsense with the 1.024V internal reference will result in a 60 µs initialization time.

The ADC can be put in Low-Latency mode by writing a '1' to the LOWLAT bit in the Control A (ADCn.CTRLA) register, which will keep the configured modules continuously enabled, effectively removing all initialization time at the start of a conversion. The initialization time is still needed when enabling the ADC for the first time and reconfiguring the ADC to use an input or reference that requires initialization, as shown in the table above. The ADC Busy (ADCBUSY) bit in the Status (ADCn.STATUS) register can be used to check if initialization is in progress.

The sampling interval of the input to the ADC without PGA is configured through the Sample Duration (SAMPDUR) bit field in the Control E (ADCn.CTRLE) register as (SAMPDUR + ½) CLK_ADC cycles. The input signal characteristics affect how long the sampling period has to be.

When using the internal reference without PGA, an autozero of the reference buffer runs at the beginning of the sampling, requiring the SAMPDUR to be set to a value $\ge 4 \ \mu s \ * f_{CLK_ADC}$.

When the PGA is used, it samples the input continuously except that it will be in the Hold state while the ADC samples the PGA output. This ADC PGA Sample Duration (ADCPGASAMPDUR) depends on the PGA Bias Select (PGABIASSEL) bit field in the PGA Control (ADCn.PGACTRL) register, as seen in the table below. SAMPDUR will still configure the minimum sampling period of the input to the PGA as (SAMPDUR + 1) CLK_ADC cycles. In Burst mode, SAMPDUR must be \geq 12, limited by the length of the Conversion state.

Table 33-6. ADCPGASAMDPUR

PGABIASSEL	ADCPGASAMDPUR (µs)
100PCT	3[4 ⁽¹⁾]
75PCT	5
50PCT	6
25PCT	12

Note:

1. If using internal reference, the minimum PGA sample duration is $4 \mu s$.

The Series and Burst Accumulation modes can be used for oversampling to achieve up to five bits higher resolution, given suitable input signal and sampling frequency. Increasing the resolution by n bits can be achieved by accumulating 4ⁿ samples and dividing the accumulated result by 2ⁿ. The Sample Accumulation Number (SAMPNUM) bit field in the Control F (ADCn.CTRLF) register can be configured for up to 4⁵ = 1024 samples, resulting in up to 17-bit resolution.

The two tables below show the calculated conversion rates (f_{conv}) for a subset of the possible combinations of f_{CLK_ADC} and sample durations. For more details, see the relevant timing diagrams on the following pages.

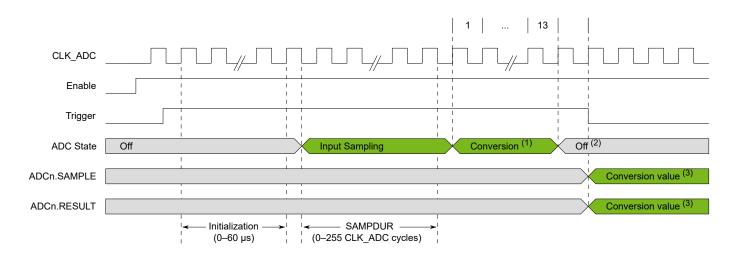
SAMPDUR	PGA	f _{conv} ⁽¹⁾ Single 8-bit [sps]	f _{conv} ⁽¹⁾ Single 12-bit [sps]	f _{conv} Burst Accumulation [sps]
20	OFF	161290	142857	147059
64	OFF	66667	63291	64103
128	OFF	35971	34965	35211
255	OFF	18797	18519	18587

Table 33-7. Example Conversion Rates (f_{conv}) for $f_{CLK ADC}$ = 5 MHz and PGABIASSEL = 100PCT

continued				
SAMPDUR	PGA	f _{conv} ⁽¹⁾ Single 8-bit [sps]	f _{conv} ⁽¹⁾ Single 12-bit [sps]	f _{conv} Burst Accumulation [sps]
15	ON	120482	109890	156250
20	ON	107527	99010	135135
64	ON	55249	52910	61728
255	ON	17762	17513	18382

Table 33-8. Example Conversion Rates (f_{conv}) for $f_{CLK ADC}$ = 312.5 kHz and PGABIASSEL = 25PCT

SAMPDUR	PGA	f _{conv} ⁽¹⁾ Single 8-bit [sps]	f _{conv} ⁽¹⁾ Single 12-bit [sps]	f _{conv} Burst Accumulation [sps]
2	OFF	24038	18382	19531
11	OFF	14205	12019	12500
64	OFF	4167	3956	4006
255	OFF	1175	1157	1162
2	ON	18116	14706	N/A
11	ON	11905	10331	18657
64	ON	3943	3754	4480
255	ON	1156	1139	1198


Note:

1. Conversion rates with the Free-Running (FREERUN) bit set to '1' in the Control F (ADCn.CTRLF) register; a new conversion will start immediately after the results are available in the ADC.

33.3.3.6.1 Single Conversion

The figure below shows the timing diagram for the ADC when running in Single 8- or 12-bit mode without using the PGA.

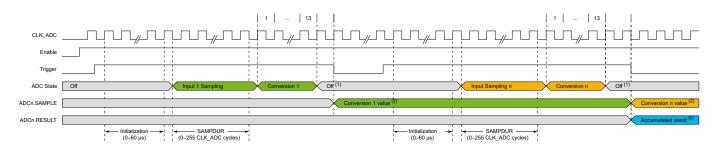
Figure 33-3. Timing Diagram - Single Conversion

Notes:

- 1. In Single 8-bit mode, the length of the Conversion state is nine CLK_ADC cycles. In all other modes, it is thirteen cycles.
- 2. If the Low Latency (LOWLAT) bit is set to '1' in the Control A (ADCn.CTRLA) register, the analog modules in the ADC will not turn OFF at the end of the conversion, eliminating the initialization time when triggering the following conversion.
- 3. The time from the conversion has finished to the outputs are available in the registers is 0.5 CLK_ADC cycles followed by 1 CLK_MAIN cycle. With minimum prescaling, this sums up to 1 CLK_ADC cycle.

The total conversion time (t_{conv}) for a single result, in μ s, is calculated by:

$$t_{conv} (12\text{-bit}) = t_{initialization} + \frac{\text{SAMPDUR+15}}{f_{\text{CLK}ADC}}$$
$$t_{conv} (8\text{-bit}) = t_{initialization} + \frac{\text{SAMPDUR+11}}{f_{\text{CLK}ADC}}$$


If the Free-Running (FREERUN) bit is set to '1' in the Control F (ADCn.CTRLF) register, a new conversion starts immediately after a result is available in the Result (ADCn.RESULT) register. The Free-Running conversion rate (f_{conv}) is calculated by:

$$f_{\text{conv}} (12\text{-bit}) = \frac{f_{\text{CLK_ADC}}}{\text{SAMPDUR+15}}$$
$$f_{\text{conv}} (8\text{-bit}) = \frac{f_{\text{CLK_ADC}}}{\text{SAMPDUR+11}}$$

33.3.3.6.2 Series Accumulation

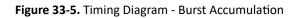
The figure below shows the timing diagram for the ADC when running in Series Accumulation mode without using the PGA.

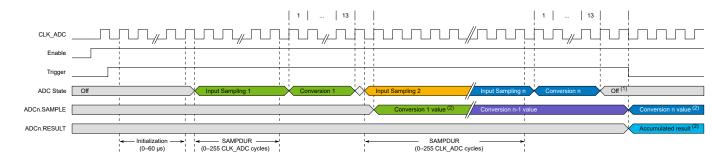
Figure 33-4. Timing Diagram - Series Accumulation

Notes:

- 1. If the Low Latency (LOWLAT) bit is set to '1' in the Control A (ADCn.CTRLA) register, the analog modules in the ADC will not turn OFF at the end of the conversion, eliminating the initialization time when triggering the following conversion.
- 2. The time from the conversion has finished to the outputs are available in the registers is 0.5 CLK_ADC cycles followed by 1 CLK_MAIN cycle. The last conversion and accumulation require an additional CLK_MAIN cycle. With minimum prescaling, this sums up to 1.5 CLK_ADC cycles before the final outputs are available.

The number of samples to accumulate is set by the Sample Number (SAMPNUM) bit field in the Control F (ADCn.CTRLF) register.


The total conversion (t_{samp}) time for each separate sample, in μ s, is calculated by:



 $t_{samp} = t_{initialization} + \frac{\text{SAMPDUR} + 15}{f_{\text{CLK ADC}}}$

33.3.3.6.3 Burst Accumulation

The figure below shows the timing diagram for the ADC when running in Burst Accumulation mode without using the PGA.

Notes:

- 1. If the Low Latency (LOWLAT) bit is set to '1' in the Control A (ADCn.CTRLA) register, the analog modules in the ADC will not turn OFF at the end of the conversion, eliminating the initialization time when triggering the following conversion.
- 2. The time from the conversion has finished to the outputs are available in the registers is 0.5 CLK_ADC cycles followed by 1 CLK_MAIN cycle. The last conversion and accumulation require an additional CLK_MAIN cycle. With minimum prescaling, this sums up to 1.5 CLK_ADC cycles before the final outputs are available.

The number of samples to accumulate is set by the Sample Number (SAMPNUM) bit field in the Control F (ADCn.CTRLF) register.

The total conversion time (t_{conv}) for a Burst Accumulation, in μ s, is calculated by:

 $t_{conv} = t_{initialization} + \frac{(\text{SAMPDUR} + 14) \times \text{SAMPNUM} + 1.5}{f_{\text{CLK}ADC}}$

The Burst Accumulation conversion rate (f_{conv}) is calculated by:

 $f_{\rm conv} = \frac{f_{\rm CLK_ADC}}{\rm SAMPDUR+14}$

33.3.3.6.4 Single Conversion Mode with PGA

The figure below shows the timing diagram for the ADC when running in Single 8- or 12-bit mode with the PGA.

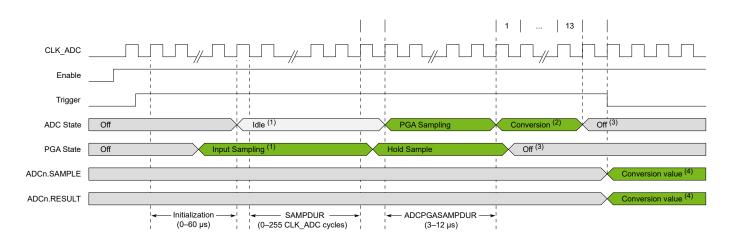


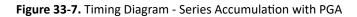
Figure 33-6. Timing Diagram - Single Conversion with PGA

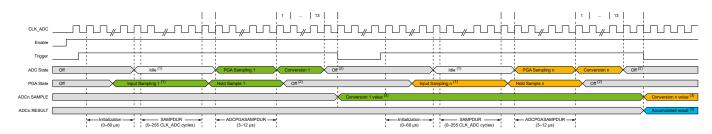
Notes:

- 1. The PGA will start sampling the input once the PGA initialization is done, even if the ADC initialization is still ongoing. In this case, the first sampling period will be longer than configured by SAMPDUR.
- 2. In Single 8-bit mode, the length of the Conversion state is nine CLK_ADC cycles. In all other modes, it is thirteen cycles.
- 3. If the Low Latency (LOWLAT) bit is set to '1' in the Control A (ADCn.CTRLA) register, the PGA and the analog modules in the ADC will not turn OFF at the end of the conversion, eliminating the initialization time when triggering the following conversion. The PGA will stay in the Input Sampling state until a new PGA sampling occurs.
- 4. The time from the conversion has finished to the outputs are available in the registers is 0.5 CLK_ADC cycles followed by 1 CLK_MAIN cycle. With minimum prescaling, this sums up to 1 CLK_ADC cycle.

The total conversion time for a single result in µs is calculated by:

 $t_{conv}(12\text{-bit}) = t_{initialization} + \frac{\text{SAMPDUR}+15.5}{f_{\text{CLK}\text{-ADC}}} + \text{ADCPGASAMPDUR}$ $t_{conv}(8\text{-bit}) = t_{initialization} + \frac{\text{SAMPDUR}+11.5}{f_{\text{CLK}\text{-ADC}}} + \text{ADCPGASAMPDUR}$


If the Free-Running (FREERUN) bit is set to '1' in the Control F (ADCn.CTRLF) register, a new conversion starts immediately after a result is available in the Result (ADCn.RESULT) register. The Free-Running conversion rate (f_{conv}) is calculated by:


$$f_{\text{conv}}(12\text{-bit}) = \frac{1}{\frac{\text{SAMPDUR} + 15.5}{f_{\text{CLK},\text{ADC}}} + \text{ADCPGASAMPDUR}}$$
$$f_{\text{conv}}(8\text{-bit}) = \frac{1}{\frac{\text{SAMPDUR} + 11.5}{f_{\text{CLK},\text{ADC}}} + \text{ADCPGASAMPDUR}}$$

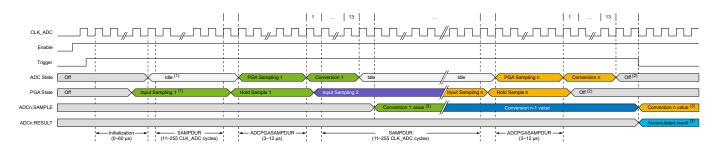
33.3.3.6.5 Series Accumulation with PGA

The figure below shows the timing diagram for the ADC when running in Series Accumulation mode with the PGA.

Notes:

- 1. The PGA will start sampling the input once the PGA initialization is done, even if the ADC initialization is still ongoing. In this case, the first sampling period will be longer than configured by SAMPDUR.
- 2. If the Low Latency (LOWLAT) bit is set to '1' in the Control A (ADCn.CTRLA) register, the PGA and the analog modules in the ADC will not turn OFF at the end of the conversion, eliminating the initialization time when triggering the following conversion. The PGA will stay in the Input Sampling state until a new PGA sampling occurs.
- 3. The time from the conversion has finished to the outputs are available in the registers is 0.5 CLK_ADC cycles followed by 1 CLK_MAIN cycle. The last conversion and accumulation require an additional CLK_MAIN cycle. With minimum prescaling, this sums up to 1.5 CLK_ADC cycles before the final outputs are available.

The number of samples to accumulate is set by the Sample Number (SAMPNUM) bit field in the Control F (ADCn.CTRLF) register.


The total conversion time in µs for each separate sample is calculated by:

 $t_{conv} = t_{initialization} + \frac{\text{SAMPDUR} + 15.5}{f_{\text{CLK}_{\text{ADC}}}} + \text{ADCPGASAMPDUR}$

33.3.3.6.6 Burst Accumulation with PGA

The figure below shows the timing diagram for the ADC when running in Burst Accumulation mode with the PGA.

Figure 33-8. Timing Diagram - Burst Accumulation with PGA

Notes:

- 1. The PGA will start sampling the input once the PGA initialization is done, even if the ADC initialization is still ongoing. In this case, the first sampling period will be longer than configured by SAMPDUR.
- 2. If the Low Latency (LOWLAT) bit is set to '1' in the Control A (ADCn.CTRLA) register, the PGA and the analog modules in the ADC will not turn OFF at the end of the conversion, eliminating the initialization time when triggering the following conversion. The PGA will stay in the Input Sampling state until a new PGA sampling occurs.
- 3. The time from the conversion has finished to the outputs are available in the registers is 0.5 CLK_ADC cycles followed by 1 CLK_MAIN cycle. The last conversion and accumulation require an additional CLK_MAIN cycle. With minimum prescaling, this sums up to 1.5 CLK_ADC cycles before the final outputs are available.

The number of samples to accumulate is set by the Sample Number (SAMPNUM) bit field in the Control F (ADCn.CTRLF) register.

For a Burst Accumulation with the PGA, SAMPDUR must be \geq 11. The total conversion time in μ s is calculated by:

 $t_{conv} = t_{initialization} + \frac{(\text{SAMPDUR}+2) \times \text{SAMPNUM} + 14}{f_{\text{CLK}\text{-ADC}}} + \text{ADCPGASAMPDUR} \times \text{SAMPNUM}$

The burst conversion rate (f_{conv}) is calculated by:

$$f_{\rm conv} = \frac{1}{\frac{\text{SAMPDUR+2}}{f_{\rm CLK_ADC}} + \text{ADCPGASAMPDUR}}$$

33.3.3.7 Temperature Measurement

An on-chip temperature sensor is available. To do a temperature measurement, follow these steps:

- 1. Configure the voltage reference to internal 1.024V by writing to the Reference Selection (REFSEL) bit field the ADCn.CTRLC register.
- 2. Select the temperature sensor as input in the Positive Input Multiplexer (ADCn.MUXPOS) register.
- 3. Configure the ADC Sample Duration by writing a value \ge 32 µs \times $f_{\text{CLK}_{ADC}}$ to the Sample Duration (SAMPDUR) bit field in the Control E (ADCn.CTRLE) register.
- 4. Acquire the temperature sensor output voltage by running a 12-bit Single-Ended conversion.
- 5. Process the measurement result, as described below.

The measured voltage has a linear relationship to the temperature. Due to process variations, the temperature sensor output voltage varies between individual devices at the same temperature. The individual compensation factors determined during the production test are stored in the Signature Row:

- SIGROW.TEMPSENSE0 is a gain/slope correction
- SIGROW.TEMPSENSE1 is an offset correction

To achieve more accurate results, the result of the temperature sensor measurement must be processed in the application software using compensation values from device production or user calibration. Refer to the *Electrical Characteristics* section for further details. The following equation is used to calculate the temperature (in Kelvin):

$$T = \frac{(\text{ADC Result} + \text{Offset}) \times \text{Slope}}{4096}$$

It is recommended to follow these steps in the user code when using the compensation values from the Signature Row:

```
#define SCALING_FACTOR 4096 // Enables integer in the signature row
int16_t sigrow_offset = (int16_t) SIGROW.TEMPSENSE1; // Read signed offset from signature row
int16_t sigrow_slope = (int16_t) SIGROW.TEMPSENSE0; // Read signed slope from signature row
uint16_t adc_reading = ADCO.RESULT; // ADC conversion result
int32_t temp = ((int32_t) adc_reading) + sigrow_offset;
temp *= sigrow_slope; // Result can overflow 16-bit variable
temp += SCALING_FACTOR / 2; // Ensures correct rounding on division below
temp /= SCALING_FACTOR; // Round to the nearest integer in Kelvin
uint16_t temperature_in_K = (uint_16t) temp;
int16_t temperature_in_C = temp - 273;
```

33.3.3.8 Window Comparator

The ADC can raise the Window Comparator Interrupt (WCMP) flag in the Interrupt Flags (ADCn.INTFLAGS) register and request an interrupt (WCMP) when the output of a conversion or accumulation is above and/or below certain thresholds. The available modes are:

- The value is above a threshold
- The value is below a threshold
- The value is inside a window (above the lower threshold and below the upper threshold)
- The value is outside a window (either below the lower threshold or above the upper threshold)

The thresholds are set by writing to the Window Comparator Low and High Threshold (ADCn.WINLT and ADCn.WINHT) registers. The Window mode to use is selected by the Window Comparator mode (WINCM) bit field in the Control D (ADCn.CTRLD) register.

The Window Mode Source (WINSRC) bit in the Control D (ADCn.CTRLD) register selects if the comparison is performed on the 16 LSb of the Result (ADCn.RESULT) register or the Sample (ADCn.SAMPLE) register. If interrupt requests are enabled for the WCMP flag, WINSRC selects which interrupt vector to request, RESRDY or SAMPRDY.

When accumulating multiple samples, if the Window Comparator source is the Result register, the comparison between the result and the threshold(s) will happen after the last conversion is complete. If the source is the Sample register, the comparison will happen after every conversion.

Assuming the ADC is already configured to run, follow these steps to use the Window Comparator mode:

- 1. Set the required threshold(s) by writing to the Window Comparator Low and High Threshold (ADCn.WINLT and ADCn.WINHT) registers.
- 2. Optional: Enable the interrupt request by writing a '1' to the Window Comparator Interrupt Enable (WCMP) bit in the Interrupt Control (ADCn.INTCTRL) register.
- 3. Enable the Window Comparator by writing the WINSRC bit field and a non-zero value to the WINCM bit field in the Control D (ADCn.CTRLD) register.

33.3.4 Events

The ADC can generate the following events:

Gener	Generator NameDescriptionPeripheralEvent		Description Event Type		Length of Event	
Peripheral				Domain		
ADCn	RESRDY	Result ready	Pulse	CLK_PER	One CLK_PER period	
ADCn	SAMPRDY	Sample ready	Pulse	CLK_PER	One CLK_PER period	

Table 33-9. ADC Event Generators

•••••	continue	a					
	Generator Name		Description	Event Type	Generating Clock	Length of Event	
	Peripheral	Event			Domain		
	ADCn	WCMP	Window compare match	Pulse	CLK_PER	One CLK_PER period	

The conditions for generating an event are identical to those that will raise the corresponding flag in the Interrupt Flags (ADCn.INTFLAGS) register.

The ADC has one event user for detecting and acting upon input events. The table below describes the event user and the associated functionality.

Table 33-10. ADC Event Users and Available Event Actions

User	Name	Description	Input Detection	Async/Sync	
Peripheral	Event	Description	input Detection		
ADCn	START	ADC start on event	Edge	Async	

The START event action can be triggered if the EVENT_TRIGGER setting is written to the START bit field in the Command (ADCn.COMMAND) register.

33.3.5 Interrupts

Table 33-11. Available Interrupt Vectors and Sources

Name	Vector Description	Interrupt Flag	Conditions
		TRIGOVR	A new conversion is triggered while another is in progress
ERROR	Error interrupt	SAMPOVR	A new conversion overwrites an unread sample in ADCn.SAMPLE
Enton	Enormerupe	RESOVR	A new conversion or accumulation overwrites an unread result in ADCn.RESULT
	Cample Deady interrupt	SAMPRDY	The sample is available in ADCn.SAMPLE
SAMPRDY Sample Ready interru	Sample Ready Interrupt	WCMP	As defined by WINSRC and WINCM in ADCn.CTRLD
	Result Ready interrupt	RESRDY	The result is available in ADCn.RESULT
RESRDY		WCMP	As defined by WINSRC and WINCM in ADCn.CTRLD

When an interrupt condition occurs, the corresponding interrupt flag is set in the peripheral's Interrupt Flags (*peripheral*.INTFLAGS) register.

An interrupt source is enabled or disabled by writing to the corresponding enable bit in the peripheral's Interrupt Control (*peripheral*.INTCTRL) register.

An interrupt request is generated when the corresponding interrupt source is enabled, and the interrupt flag is set. The interrupt request remains active until the interrupt flag is cleared. See the peripheral's INTFLAGS register for details on how to clear interrupt flags.

33.3.6 Sleep Mode Operation

The ADC will finish a conversion before going to Idle/Standby sleep mode. The ADC can start conversions in Idle sleep mode if the START bit field in the Command (ADCn.COMMAND) register is configured to start a conversion on an event trigger. This is also possible in Standby sleep mode if the RUNSTDBY bit is set in the Control A (ADCn.CTRLA) register.

If both the LOWLAT and RUNSTDBY bits in the Control A register are set, the ADC will keep all required modules ON during Standby sleep mode to start a conversion faster, at the expense of increased power consumption during sleep.

When the system enters POWERDOWN, the ADC will abort an ongoing conversion and enter sleep mode immediately. Make sure conversions have completed before entering Power-Down mode.

33.3.7 Debug Operation

If the Run in Debug mode (DBGRUN) bit in the Debug Control (ADCn.DBGCTRL) register is written to '1', the ADC will continue operating when the CPU is halted in Debug mode.

If DBGRUN is '0' when the CPU halts, an ongoing conversion will finish before the ADC halts.

33.4 Register Summary

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00	CTRLA	7:0	RUNSTDBY		LOWLAT					ENABLE
0x01	CTRLB	7:0						PRES		
0x02	CTRLC	7:0							REFSEL[2:0]	
0x03	CTRLD	7:0					WINSRC	WINCM[2:0]		
0x04	INTCTRL	7:0			TRIGOVR	SAMPOVR	RESOVR	WCMP	SAMPRDY	RESRDY
0x05	INTFLAGS	7:0			TRIGOVR	SAMPOVR	RESOVR	WCMP	SAMPRDY	RESRDY
0x06	STATUS	7:0								ADCBUSY
0x07	DBGCTRL	7:0								DBGRUN
0x08	CTRLE	7:0				SAMPD	UR[7:0]			
0x09	CTRLF	7:0		CHOPPING	FREERUN	LEFTADJ		SAMPN	IUM[3:0]	
0x0A	COMMAND	7:0	DIFF		MODE[2:0]				START[2:0]	
0x0B	PGACTRL	7:0		GAIN[2:0]		PGABIAS	SEL[1:0]			PGAEN
0x0C	MUXPOS	7:0	VIA	VIA[1:0] MUXPOS[5:0]						
0x0D	MUXNEG	7:0	VIA	[1:0]			MUXN	EG[5:0]		
0x0E 0x0F	Reserved									
		7:0				RESUL	.T[7:0]			
010	RESULT	15:8				RESUL	T[15:8]			
0x10	RESULT	23:16		RESULT[23:16]						
		31:24				RESULT[31:24]				
0x14	SAMPLE	7:0				SAMPI	_E[7:0]			
0x14	SAMPLE	15:8				SAMPL	E[15:8]			
0x16 0x17	Reserved									
0x18	TEMP0	7:0				TEMP				
0x19	TEMP1	7:0				TEMF	P[7:0]			
0x1A	TEMP2	7:0				TEMF	P[7:0]			
0x1B	Reserved									
0x1C	WINLT	7:0				WINL	T[7:0]			
UXIC	VVIINLI	15:8				WINLT	[15:8]			
0x1E	WINHT	7:0				WINH	T[7:0]			
UXIE	VVIINELL	15:8				WINH	F[15:8]			

33.5 Register Description

33.5.1 Control A

Name:	CTRLA
Offset:	0x00
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
	RUNSTDBY		LOWLAT					ENABLE
Access	R/W		R/W	•				R/W
Reset	0		0					0

Bit 7 – RUNSTDBY Run in Standby

This bit controls whether the ADC will run in Standby sleep mode or not.

Value	Description
0	The ADC will not run in Standby sleep mode. An ongoing conversion will finish before the ADC enters sleep mode.
1	The ADC will run in Standby sleep mode. The main clock will be requested when the ADC is triggered to perform a conversion.

Bit 5 – LOWLAT Low Latency

This bit controls whether the analog modules required by the ADC are enabled continuously or only when needed.

Value	Description
0	The ADC enables the required analog modules only when starting a conversion, which reduces the overall power consumption of the ADC and increases the initialization time when starting an ADC conversion.
1	The analog modules stay enabled when selected as input to the ADC. Using this setting will minimize the initialization time of the ADC. Note: LOWLAT does not keep the clock source enabled when the ADC is not converting, so a clock startup delay may be experienced even though LOWLAT is set. Be sure that the clock source is always enabled to avoid a delay.

Bit 0 - ENABLE ADC Enable

This bit controls whether the ADC is enabled or not.

Value	Description
0	The ADC is disabled
1	The ADC is enabled

33.5.2 Control B

Name:	CTRLB
Offset:	0x01
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
						PRES	C[3:0]	
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0

Bits 3:0 - PRESC[3:0] Prescaler

This bit field controls the division factor from the peripheral clock (CLK_PER) to the ADC clock (CLK_ADC).

·	-7.	
Value	Name	Description
0x0	DIV2	CLK_PER divided by 2
0x1	DIV4	CLK_PER divided by 4
0x2	DIV6	CLK_PER divided by 6
0x3	DIV8	CLK_PER divided by 8
0x4	DIV10	CLK_PER divided by 10
0x5	DIV12	CLK_PER divided by 12
0x6	DIV14	CLK_PER divided by 14
0x7	DIV16	CLK_PER divided by 16
0x8	DIV20	CLK_PER divided by 20
0x9	DIV24	CLK_PER divided by 24
0xA	DIV28	CLK_PER divided by 28
0xB	DIV32	CLK_PER divided by 32
0xC	DIV40	CLK_PER divided by 40
0xD	DIV48	CLK_PER divided by 48
0xE	DIV56	CLK_PER divided by 56
0xF	DIV64	CLK_PER divided by 64

33.5.3 Control C

Name:	CTRLC
Offset:	0x02
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
							REFSEL[2:0]	
Access		•				R/W	R/W	R/W
Reset						0	0	0

Bits 2:0 - REFSEL[2:0] Reference Selection

This bit field controls the voltage reference for the ADC. Changing to one of the internal references will require a 60 μ s initialization time.

Value	Name	Description
0x0	VDD	V _{DD}
0x1	-	Reserved
0x2	VREFA	External Reference VREFA
0x3	-	Reserved
0x4	1V024	Internal reference 1.024V
0x5	2V048	Internal reference 2.048V
0x6	4V096	Internal reference 4.096V
0x7	2V500	Internal reference 2.500V

Note: An internal reference can be used only if it is below V_{DD} - 0.5V.

33.5.4 Control D

Name:	CTRLD
Offset:	0x03
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
					WINSRC		WINCM[2:0]	
Access				•	R/W	R/W	R/W	R/W
Reset					0	0	0	0

Bit 3 – WINSRC Window Mode Source

This bit controls which source is used by the Window Comparator.

Value	Name	Description
0	RESULT	ADCn.RESULT[15:0] is used as the Window Comparator source
1	SAMPLE	ADCn.SAMPLE[15:0] is used as the Window Comparator source

Bits 2:0 - WINCM[2:0] Window Comparator Mode

This bit field controls whether the Window Comparator is enabled and which thresholds will set the Window Comparator (WCMP) interrupt flag.

In the table below, OUTPUT is the 16-bit result or sample selected by WINSRC. WINLT and WINHT are the 16-bit low threshold value and the 16-bit high threshold value, respectively.

Value	Name	Description
0x0	NONE	Window Comparator disabled
0x1	BELOW	OUTPUT < WINLT
0x2	ABOVE	OUTPUT > WINHT
0x3	INSIDE	WINLT < OUTPUT < WINHT
0x4	OUTSIDE	OUTPUT < WINLT or OUTPUT >WINHT
Other	-	Reserved

33.5.5 Interrupt Control

Name:	INTCTRL
Offset:	0x04
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
			TRIGOVR	SAMPOVR	RESOVR	WCMP	SAMPRDY	RESRDY
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0

Bit 5 – TRIGOVR Trigger Overrun Interrupt Enable

This bit controls whether the interrupt for a trigger overrun is enabled or not.

۷	alue	Description
()	The Trigger Overrun interrupt is disabled
1	L	The Trigger Overrun interrupt is enabled

Bit 4 – SAMPOVR Sample Overwrite Interrupt Enable

This bit controls whether the interrupt for a sample overwrite is enabled or not.

Value	Description
0	The Sample Overwrite interrupt is disabled
1	The Sample Overwrite interrupt is enabled

Bit 3 – RESOVR Result Overwrite Interrupt Enable

This bit controls whether the interrupt for a result overwrite is enabled or not.

Value	Description
0	The Result Overwrite interrupt is disabled
1	The Result Overwrite interrupt is enabled

Bit 2 – WCMP Window Comparator Interrupt Enable

This bit controls whether the interrupt for the Window Comparator is enabled or not.

Value	Description
0	The Window Comparator interrupt is disabled
1	The Window Comparator interrupt is enabled

Bit 1 – SAMPRDY Sample Ready Interrupt Enable

This bit controls whether the Sample Ready interrupt is enabled or not.

Value	Description
0	The Sample Ready interrupt is disabled
1	The Sample Ready interrupt is enabled

Bit 0 – RESRDY Result Ready Interrupt Enable

This bit controls whether the Result Ready interrupt is enabled or not.

Value	Description
0	The Result Ready interrupt is disabled
1	The Result Ready interrupt is enabled

33.5.6 Interrupt Flags

Name:	INTFLAGS
Offset:	0x05
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
			TRIGOVR	SAMPOVR	RESOVR	WCMP	SAMPRDY	RESRDY
Access		•	R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0

Bit 5 – TRIGOVR Trigger Overrun Interrupt Flag

Clear this flag by writing a '1' to it.

This flag is set when a start trigger is received while a conversion is ongoing.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the Trigger Overrun interrupt flag.

Bit 4 – SAMPOVR Sample Overwrite Interrupt Flag

Clear this flag by writing a '1' to it.

This flag is set when an unread sample is overwritten in the Sample (ADCn.SAMPLE) register. Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the Sample Overwrite interrupt flag.

Bit 3 – RESOVR Result Overwrite Interrupt Flag

Clear this flag by writing a '1' to it.

This flag is set when an unread result is overwritten in the Result (ADCn.RESULT) register. Writing a '0' to this bit has no effect. Writing a '1' to this bit will clear the Result Overwrite interrupt flag.

Bit 2 – WCMP Window Comparator Interrupt Flag

Clear this flag by writing a '1' to it.

This flag is set when the conversion or accumulation is complete, and the thresholds match the selected window comparator source and mode, as set by WINSRC and WINCM in the Control D (ADCn.CTRLD) register.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the Window Comparator interrupt flag.

Bit 1 – SAMPRDY Sample Ready Interrupt Flag

Clear this flag by writing a '1' to it or by reading the Sample (ADCn.SAMPLE) register. This flag is set when a conversion is complete, and a new sample is ready. Writing a '0' to this bit has no effect. Writing a '1' to this bit will clear the Sample Ready interrupt flag.

Bit 0 - RESRDY Result Ready Interrupt Flag

Clear this flag by writing a '1' to it or by reading the Result (ADCn.RESULT) register. This flag is set when a conversion or accumulation is complete, and a new result is ready. Writing a '0' to this bit has no effect. Writing a '1' to this bit will clear the Result Ready interrupt flag.

33.5.7 Status

Name:	STATUS
Offset:	0x06
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
								ADCBUSY
Access				•	•	•	•	R
Reset								0

Bit 0 – ADCBUSY ADC Busy

This bit is cleared when an ADC conversion is complete, and settling times related to configuration changes are finished.

This bit is set when the ADC is doing a conversion or waiting for settling times related to configuration changes.

33.5.8 Debug Control

	Name: Offset: Reset: Property:	DBGCTRL 0x07 0x00 -						
Bit	7	6	5	4	3	2	1	0
								DBGRUN
Access								R/W
Reset								0

Bit 0 – DBGRUN Run in Debug Mode This bit controls whether the ADC will continue operation or not when in Debug mode and the CPU is halted.

Value	Description
0	The ADC will not continue operating in Debug mode when the CPU is halted. An ongoing conversion or burst accumulation will finish before the ADC stops.
1	The ADC will continue operating in Debug mode when the CPU is halted

33.5.9 Control E

Name:	CTRLE
Offset:	0x08
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
				SAMPD	UR[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:0 – SAMPDUR[7:0] Sample Duration

This bit field controls the input sample duration in ADC clock (CLK_ADC) cycles. The sample duration without the PGA is (SAMPDUR + ½) CLK_ADC cycles.

If using the PGA, the input sample duration is (SAMPDUR + 1) CLK_ADC cycles, while the ADC PGA Sample Duration (ADCPGASAMPDUR) controls how long the ADC will sample the PGA. If using an internal reference without PGA, SAMPDUR must be set to a value \geq 4 µs * f_{CLK ADC}.

33.5.10 Control F

Name:	CTRLF
Offset:	0x09
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
		CHOPPING	FREERUN	LEFTADJ		SAMPN	UM[3:0]	
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0

Bit 6 - CHOPPING Sign Chopping

This bit controls whether sign chopping is enabled to reduce the offset.

Single mo	Single mode does not support sign chopping.					
Value	Name	Description				
0	DISABLE	Sign chopping is disabled				
1	ENABLE	Sign chopping is enabled				

Bit 5 - FREERUN Free-Running

This bit controls whether the ADC Free-Running mode is enabled or not.

Series moc	le does	not support Free-Running mode.
Value	Name	Description
0	DISABLE	The ADC Free-Running mode is disabled

-	DIG IDEE	
1	ENABLE	The ADC Free-Running mode is enabled. A new conversion starts as soon as the previous conversion
		or accumulation has been completed.

Bit 4 – LEFTADJ Left Adjust

This bit controls whether the ADC output is left adjusted or not.

Value	Name	Description
0	DISABLE	The ADC output left adjustment is disabled
1	ENABLE	The ADC output left adjustment is enabled

Bits 3:0 – SAMPNUM[3:0] Sample Accumulation Number Select

This bit field controls the number of consecutive ADC samples accumulated automatically into the ADC Result (ADCn.RESULT) register. The most recent sample will be available in the ADC Sample (ADCn.SAMPLE) register.

Value	Name	Description
0x0	NONE	No accumulation, single sample per conversion result
0x1	ACC2	2 samples accumulated
0x2	ACC4	4 samples accumulated
0x3	ACC8	8 samples accumulated
0x4	ACC16	16 samples accumulated
0x5	ACC32	32 samples accumulated
0x6	ACC64	64 samples accumulated
0x7	ACC128	128 samples accumulated
0x8	ACC256	256 samples accumulated
0x9	ACC512	512 samples accumulated
0xA	ACC1024	1024 samples accumulated
Other	-	Reserved

33.5.11 Command

Name: Offset:	COMMAND 0x0A
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
Γ	DIFF		MODE[2:0]				START[2:0]	
Access	R/W	R/W	R/W	R/W	•	R/W	R/W	R/W
Reset	0	0	0	0		0	0	0

Bit 7 – DIFF Differential

This bit controls whether the ADC conversion is Single-Ended or Differential.

Va	lue	Description
02	<0	Unsigned Single-Ended conversion. Only the ADCn.MUXPOS register is used.
0 3	<1	Signed Differential conversion. Both the ADCn.MUXPOS and ADCn.MUXNEG registers are used.

Bits 6:4 - MODE[2:0] Mode

This bit field controls the conversion mode for the ADC. Switching from one of the accumulation modes to a Single mode will reset the accumulator.

Value	Name	Description
0x0	SINGLE_8BIT	Single conversion with 8-bit resolution
0x1	SINGLE_12BIT	Single conversion with 12-bit resolution
0x2	SERIES	Series with accumulation, a separate trigger for every 12-bit conversion
0x3	SERIES_SCALING	Series with accumulation and scaling, a separate trigger for every 12-bit conversion
0x4	BURST	Burst with accumulation. One trigger will run SAMPNUM 12-bit conversions in one sequence.
0x5	BURST_SCALING	Burst with accumulation and scaling. One trigger will run SAMPNUM 12-bit conversions in one sequence.
Other	-	Reserved

Bits 2:0 - START[2:0] Start Conversion

This bit field starts or stops an ADC conversion or controls how an ADC conversion will start.

Value	Name	Description				
0x0	STOP	Stop an ongoing conversion				
0x1	IMMEDIATE	Start a conversion immediately. This will be set back to STOP when the conversion is done unless Free-Running mode is enabled.				
0x2	MUXPOS_WRITE	Start when a write to the MUXPOS register is done				
0x3	MUXNEG_WRITE	Start when a write to the MUXNEG register is done				
0x4	EVENT_TRIGGER	Start when an event is received by the ADC				
Other	-	Reserved				

Note: If the ENABLE bit in ADCn.CTRLA is '0' when writing the START bit field to IMMEDIATE, it will automatically be set to STOP.

33.5.12 PGA Control

Name:	PGACTRL
Offset:	0x0B
Reset:	0x04
Property:	-

Bit	7	6	5	4	3	2	1	0
		GAIN[2:0]		PGABIAS	SEL[1:0]			PGAEN
Access	R/W	R/W	R/W	R/W	R/W			R/W
Reset	0	0	0	0	0			0

Bits 7:5 - GAIN[2:0] GAIN

This bit field controls the PGA gain setting.

Value	Name	Description
0x0	1X	1x gain
0x1	2X	2x gain
0x2	4X	4x gain
0x3	8X	8x gain
0x4	16X	16x gain
Other	-	Reserved

Bits 4:3 – PGABIASSEL[1:0] PGA Bias Select

This bit field controls the bias current supplied to the PGA.

Value	Name	Description
0x0	100PCT	100% BIAS current. Usable for $f_{CLK_ADC} \le 6$ MHz.
0x1	75PCT	75% BIAS current. Usable for $f_{CLK_{ADC}} \le 4.5$ MHz.
0x2	50PCT	50% BIAS current. Usable for $f_{CLK_{ADC}} \le 3$ MHz.
0x3	25PCT	25% BIAS current. Usable for $f_{CLK_{ADC}} \le 1.5$ MHz.

Bit 0 – PGAEN PGA Enable

This bit controls whether the PGA is enabled or not when selected by the VIA bit field in the Input Multiplexer (ADCn.MUXPOS or ADCn.MUXNEG) registers.

Value	Description
0	The PGA is disabled
1	The PGA is enabled

Note: If both PGAEN and Low Latency (LOWLAT) bit in the Control A (ADCn.CTRLA) register are '1', the PGA will be continuously ON, even when not selected by the VIA bit field. This eliminates the initialization time if reconfiguring the ADC to use the PGA.

R/W

0

R/W

0

33.5.13 Positive Input Multiplexer

(Name: Offset: Reset: Property:	MUXPOS 0x0C 0x00 -						
Bit	7	6	5	4	3	2	1	0
Γ	VI	A[1:0]			MUXPO	DS[5:0]		

R/W

0

Bits 7:6 - VIA[1:0]

Access Reset R/W

0

This bit field controls how the analog input is connected to the ADC input.

R/W

0

Value	Name	Description
0x0	DIRECT	Input connected directly to the ADC
0x1	PGA	Input connected to the ADC via the PGA
Other	-	Reserved

R/W

0

R/W

0

Note: The VIA bits in MUXPOS and MUXNEG are shared, so a value written to the VIA bit field in one of the two registers is updated in both. It is, therefore, not possible to have one input using the PGA and the other not using the PGA.

Bits 5:0 - MUXPOS[5:0] Positive Input Multiplexer

R/W

0

This bit field controls which analog input is connected to the positive input of the ADC/PGA. Changing this setting may require some settling time. Refer to the *Electrical Characteristics* section for further details.

Value	Name	Description
0x00	AINO	Positive pin 0
0x01	AIN1	Positive pin 1
0x02	AIN2	Positive pin 2
0x03	AIN3	Positive pin 3
0x04	AIN4	Positive pin 4
0x05	AIN5	Positive pin 5
0x06	AIN6	Positive pin 6
0x07	AIN7	Positive pin 7
0x10	AIN16	Positive pin 16
0x11	AIN17	Positive pin 17
0x12	AIN18	Positive pin 18
0x13	AIN19	Positive pin 19
0x14	AIN20	Positive pin 20
0x15	AIN21	Positive pin 21
0x16	AIN22	Positive pin 22
0x17	AIN23	Positive pin 23
0x18	AIN24	Positive pin 24
0x19	AIN25	Positive pin 25
0x1A	AIN26	Positive pin 26
0x1B	AIN27	Positive pin 27
0x1C	AIN28	Positive pin 28
0x1D	AIN29	Positive pin 29
0x1E	AIN30	Positive pin 30
0x1F	AIN31	Positive pin 31
0x30	GND	Ground

conti	nued	
Value	Name	Description
0x31	VDDDIV10	VDD divided by 10
0x32	TEMPSENSE	Temperature sensor
Other	-	Reserved

R/W

0

R/W

0

33.5.14 Negative Input Multiplexer

	Name:MUXNEGOffset:0x0DReset:0x00Property:-							
Bit	7	6	5	4	3	2	1	0
	V	A[1:0]	MUXNEG[5:0]					

R/W

0

Bits 7:6 - VIA[1:0]

R/W

0

Access

Reset

This bit field controls how the analog input is connected to the ADC input.

R/W

0

Value	Name	Description
0x0	DIRECT	Input connected directly to the ADC
0x1	PGA	Input connected to the ADC via the PGA
Other	-	Reserved

R/W

0

R/W

0

Note: The VIA bits in MUXPOS and MUXNEG are shared, so a value written to the VIA bit field in one of the two registers is updated in both. It is, therefore, not possible to have one input using the PGA and the other not using the PGA.

Bits 5:0 - MUXNEG[5:0] Negative Input Multiplexer

R/W

0

This bit field controls which analog input is connected to the negative input of the ADC/PGA. Changing this setting may require some settling time. Refer to the *Electrical Characteristics* section for further details.

Value	Name	Description
0x00	AINO	Negative pin 0
0x01	AIN1	Negative pin 1
0x02	AIN2	Negative pin 2
0x03	AIN3	Negative pin 3
0 x 0 4	AIN4	Negative pin 4
0x05	AIN5	Negative pin 5
0x06	AIN6	Negative pin 6
0x07	AIN7	Negative pin 7
0x10	AIN16	Negative pin 16
0x11	AIN17	Negative pin 17
0x12	AIN18	Negative pin 18
0x13	AIN19	Negative pin 19
0x14	AIN20	Negative pin 20
0x15	AIN21	Negative pin 21
0x16	AIN22	Negative pin 22
0x17	AIN23	Negative pin 23
0x18	AIN24	Negative pin 24
0x19	AIN25	Negative pin 25
0x1A	AIN26	Negative pin 26
0x1B	AIN27	Negative pin 27
0x1C	AIN28	Negative pin 28
0x1D	AIN29	Negative pin 29
0x1E	AIN30	Negative pin 30
0x1F	AIN31	Negative pin 31
0x30	GND	Ground

continued					
Value	Name	Description			
0x39	DACREF0	AC0 DAC Voltage Reference			
0x3A	DACREF1	AC1 DAC Voltage Reference			
Other	-	Reserved			

33.5.15 Result

Name:	RESULT
Offset:	0x10
Reset:	0x00
Property:	-

The ADCn.RESULT0 to ADCn.RESULT3 registers represent the 32-bit value, ADCn.RESULT. The low byte [7:0] (suffix 0) is accessible at the original offset. The n higher bytes [31:8] can be accessed at offset + n.

Refer to the *Output Formats* section for details on the output from this register.

Bit	31	30	29	28	27	26	25	24		
	RESULT[31:24]									
Access	R	R	R	R	R	R	R	R		
Reset	0	0	0	0	0	0	0	0		
Bit	23	22	21	20	19	18	17	16		
				RESULT	[23:16]					
Access	R	R	R	R	R	R	R	R		
Reset	0	0	0	0	0	0	0	0		
Bit	15	14	13	12	11	10	9	8		
				RESUL	T[15:8]					
Access	R	R	R	R	R	R	R	R		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
	RESULT[7:0]									
Access	R	R	R	R	R	R	R	R		
Reset	0	0	0	0	0	0	0	0		

Bits 31:24 - RESULT[31:24] Result byte 3

This bit field constitutes the MSB of the ADCn.RESULT register.

Bits 23:16 - RESULT[23:16] Result byte 2

This bit field constitutes the third byte of the ADCn.RESULT register.

Bits 15:8 - RESULT[15:8] Result byte 1

This bit field constitutes the second byte of the ADCn.RESULT register.

Bits 7:0 - RESULT[7:0] Result byte 0

This bit field constitutes the LSB of the ADCn.RESULT register.

33.5.16 Sample

Name:	SAMPLE
Offset:	0x14
Reset:	0x00
Property:	-

The ADCn.SAMPLEL and ADCn.SAMPLEH register pair represents the 16-bit value, ADCn.SAMPLE. The low byte [7:0] (suffix L) is accessible at the original offset. The high byte [15:8] (suffix H) can be accessed at offset + 0×01 .

Refer to the Output Formats section for details on the output from this register.

Bit	15	14	13	12	11	10	9	8
				SAMPL	E[15:8]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				SAMPI	LE[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bits 15:8 - SAMPLE[15:8] Sample high byte

This bit field constitutes the MSB of the 16-bit register.

Bits 7:0 - SAMPLE[7:0] Sample low byte

This bit field constitutes the LSB of the 16-bit register.

33.5.17 Temporary n

```
        Name:
        TEMPn

        Offset:
        0x18 + n*0x01 [n=0..2]

        Reset:
        0x00

        Property:
        -
```

The Temporary registers are used by the CPU for single-cycle access to the 16- and 32-bit registers of this peripheral. The registers are common for all the 16- and 32-bit registers of this peripheral and can be read and written by software. For more details on reading and writing 16- and 32-bit registers, refer to *Accessing 16-Bit Registers* and *Accessing 24- and 32-Bit Registers* in the *Memories* section.

Bit	7	6	5	4	3	2	1	0	
	TEMP[7:0]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 7:0 – TEMP[7:0] Temporary

Temporary bit field for read/write operations in 16- and 32-bit registers.

33.5.18 Window Comparator Low Threshold

Name:	WINLT
Offset:	0x1C
Reset:	0x00
Property:	-

This register is the 16-bit Low Threshold for the digital comparator monitoring the ADC Result or Sample (ADCn.RESULT or ADCn.SAMPLE) registers. The data format must be according to Conversion mode and left adjustment setting.

The ADCn.WINLTH and ADCn.WINLTL register pair represents the 16-bit value, ADCn.WINLT. The low byte [7:0] (suffix L) is accessible at the original offset. The high byte [15:8] (suffix H) can be accessed at offset + 0×01 .

When monitoring the ADC Result register, in an accumulation mode, the window comparator thresholds are applied to the result after all accumulation and, optionally, scaling is done.

Bit	15	14	13	12	11	10	9	8	
				WINL	F[15:8]				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
	WINLT[7:0]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 15:8 – WINLT[15:8] Window Comparator Low Threshold high byte This bit field holds the MSB of the 16-bit register.

Bits 7:0 – WINLT[7:0] Window Comparator Low Threshold low byte This bit field holds the LSB of the 16-bit register.

33.5.19 Window Comparator High Threshold

Name:	WINHT
Offset:	0x1E
Reset:	0x00
Property:	-

This register is the 16-bit High Threshold for the digital comparator monitoring the ADC Result or Sample (ADCn.RESULT or ADCn.SAMPLE) registers. The data format must be according to Conversion mode and left adjustment setting.

The ADCn.WINHTH and ADCn.WINHTL register pair represents the 16-bit value, ADCn.WINHT. The low byte [7:0] (suffix L) is accessible at the original offset. The high byte [15:8] (suffix H) can be accessed at offset + 0×01 .

When monitoring the ADC Result register, in an accumulation mode, the window comparator thresholds are applied to the result after all accumulation and, optionally, scaling is done.

Bit	15	14	13	12	11	10	9	8
				WINH	T[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				WINH	T[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:8 – WINHT[15:8] Window Comparator High Threshold high byte This bit field holds the MSB of the 16-bit register.

Bits 7:0 – WINHT[7:0] Window Comparator High Threshold low byte This bit field holds the LSB of the 16-bit register.

34. UPDI - Unified Program and Debug Interface

34.1 Features

- UPDI One-Wire Interface for External Programming and On-Chip-Debugging (OCD)
 - Enable programming by high-voltage or fuse
 - Uses the RESET pin to enable the UPDI function, and one UPDI pin of the device for programming
 - Asynchronous half-duplex UART protocol towards the programmer
- Programming:
 - Built-in error detection and error signature generation
 - Override of response generation for faster programming
- Debugging:
 - Memory-mapped access to device address space (NVM, RAM, I/O)
 - No limitation on the device clock frequency
 - Unlimited number of user program breakpoints
 - Two hardware breakpoints
 - Support for advanced OCD features
 - Run-time readout of the CPU Program Counter (PC), Stack Pointer (SP) and Status Register (SREG) for code profiling
 - Detection and signalization of the Break/Stop condition in the CPU
 - Program flow control for Run, Stop and Reset debug instructions
 - Nonintrusive run-time chip monitoring without accessing the system registers
 - Interface for reading the result of the CRC check of the Flash on a locked device
- Programming and Debug Interface Disable (PDID) Security Functionality
 - UPDI access can be limited by PDICFG and LOCK fuses
 - Bootloader still negotiating firmware updates

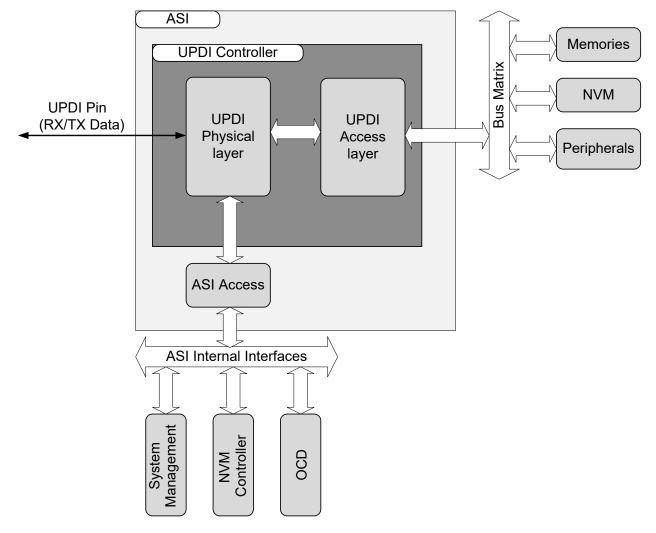
34.2 Overview

The Unified Program and Debug Interface (UPDI) is a proprietary interface for external programming and OCD of a device.

The UPDI supports the programming of Nonvolatile Memory (NVM) space, Flash, EEPROM, fuses, lock bits, and the user row. Some memory-mapped registers are accessible only with the correct access privilege enabled (key, lock bits) and only in the OCD Stopped mode or certain Programming modes. These modes are unlocked by sending the correct key to the UPDI. See the *NVMCTRL* - *Nonvolatile Memory Controller* section for programming via the NVM controller and executing NVM controller commands.

The UPDI is partitioned into three separate protocol layers: The UPDI Physical (PHY) layer, the UPDI Data Link (DL) layer, and the UPDI Access (ACC) layer. The default PHY layer handles bidirectional UART communication over the UPDI pin line towards a connected programmer/ debugger and provides data recovery and clock recovery on an incoming data frame in the One-Wire Communication mode. Received instructions and corresponding data are handled by the DL layer, which sets up the communication with the ACC layer based on the decoded instruction. Access to the system bus and memory-mapped registers is granted through the ACC layer.

Programming and debugging are done through the PHY layer, which is a one-wire UART based on a half-duplex interface using a dedicated UPDI pin for data reception and transmission. The clocking of the PHY layer is done by a dedicated internal oscillator.


The ACC layer is the interface between the UPDI and the connected bus matrix. This layer grants access via the UPDI interface to the bus matrix with memory-mapped access to system blocks such as memories, NVM, and peripherals.

The Asynchronous System Interface (ASI) provides direct interface access to select features in the OCD, NVM, and System Management systems, which gives the debugger direct access to system information without requesting bus access.

The UPDI access can be limited by PDICFG and LOCK fuses, while the bootloader can still negotiate firmware updates.

34.2.1 Block Diagram

Figure 34-1. UPDI Block Diagram

34.2.2 Addressing the Program Memory Space

In the CPU data space, the I/O memory, the fuses, EEPROM and SRAM are located at addresses from 0x0000 to 0x7FFF. In addition, a section of the Flash memory (up to 32 KB) can be mapped into the addresses from 0x8000 to 0xFFFF. These addresses (0x0000 - 0xFFFF) are also valid for access by the UPDI peripheral.

The CPU code space, i.e., the *entire* Flash memory, can be accessed by the CPU using the LPM/SPM instructions, starting at the relative address 0x0000. For access by UPDI, the CPU data space and the CPU code space are virtually one continuous address space, and the code space always starts at the offset address 0x80_0000.

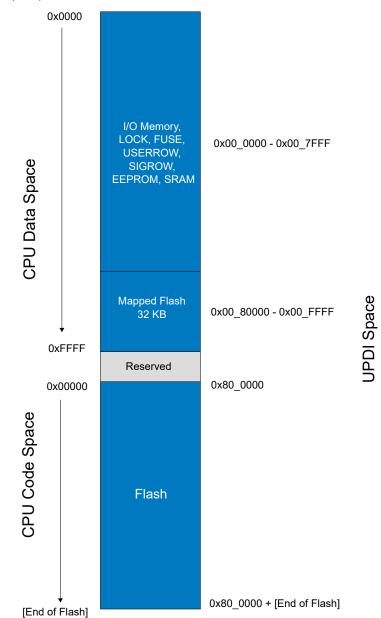
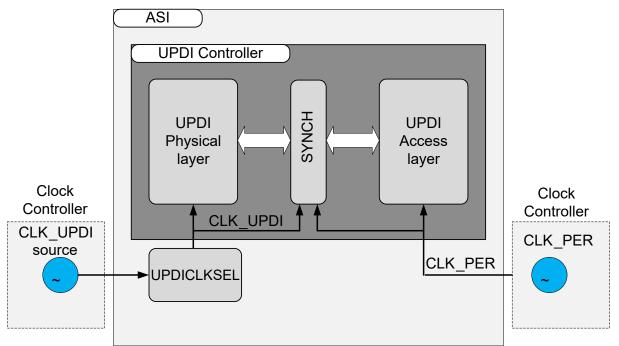


Figure 34-2. Memory Map, As Seen From The UPDI

See the *Memories* sections for more details and exact addresses of the memory areas in a given device.


34.2.3 Clocks

The PHY layer and the ACC layer can operate on different clock domains. The PHY layer clock is derived from the dedicated internal oscillator, and the ACC layer clock is the same as the peripheral clock. There is a synchronization boundary between the PHY and the ACC layer, which ensures correct operation between the clock domains. The UPDI clock output frequency is selected through the ASI, and the default UPDI clock start-up frequency is 4 MHz after enabling or resetting the UPDI.

The UPDI clock frequency can be changed by writing to the UPDI Clock Divider Select (UPDICLKSEL) bit field in the ASI Control A (UPDI.ASI_CTRLA) register.

34.2.4 Physical Layer

The PHY layer is the communication interface between a connected programmer/debugger and the device. The main features of the PHY layer can be summarized as follows:

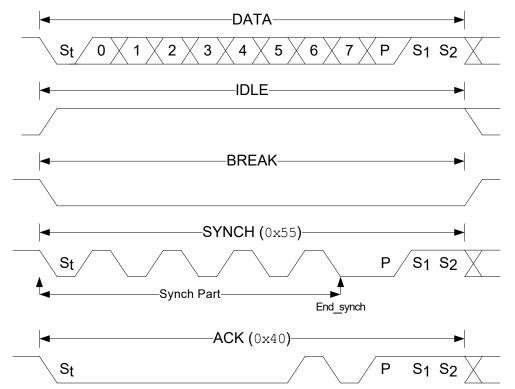
- Support for UPDI One-Wire Asynchronous mode, using half-duplex UART communication on the UPDI pin
- Internal baud detection, clock and data recovery on the UART frame
- Error detection (parity, clock recovery, frame, system errors)
- Transmission response generation (ACK)
- Generation of error signatures during operation
- Guard time control

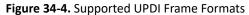
34.2.5 I/O Lines and Connections

The UPDI uses the UPDI pin for half-duplex UART communication.

The **RESET** pin can be used to invoke and maintain UPDI operation.

The RESET pin can be used as RESET or input, depending on the configuration of the RSTPINCFG bit in the System Configuration (SYSCFG0) fuse. The UPDI pin can be used as GPIO or for UPDI function, depending on the configuration of the UPDIPINCFG bit in the SYSCFG0 fuse. The high voltage applied to the RESET pin can be used to invoke and maintain UPDI operation, thus overriding both pins configuration in the SYSCFG0 fuse.


Refer to the 34.3.2.1. UPDI Enabling section for details about the required and optional pin configurations.



34.3 Functional Description

34.3.1 Principle of Operation

The communication through the UPDI is based on standard UART communication, using a fixed frame format and automatic baud rate detection for clock and data recovery. In addition to the data frame, several control frames are important to the communication: DATA, IDLE, BREAK, SYNCH, ACK.

Frame	Description
DATA	A DATA frame consists of one Start (St) bit, which is always low, eight Data bits, one Parity (P) bit for even parity, and two Stop (S1 and S2) bits, which are always high. If the Parity bit or Stop bits have an incorrect value, an error will be detected and signalized by the UPDI. The parity bit-check in the UPDI can be disabled by writing to the Parity Disable (PARD) bit in the Control A (UPDI.CTRLA) register, in which case the parity generation from the debugger is ignored.
IDLE	IDLE is a specific frame that consists of at least 12 high bits, which is the same as keeping the transmission line in an Idle state
BREAK	BREAK is a specific frame that consists of at least 12 low bits. It is used to reset the UPDI back to its default state and is typically used for error recovery.
SYNCH	The Baud Rate Generator uses the SYNCH frame to set the baud rate for the coming transmission. A SYNCH character is always expected by the UPDI in front of every new instruction and after a successful BREAK has been transmitted.
ACK	The ACK frame is transmitted from the UPDI whenever an ST or STS instruction has successfully crossed the synchronization boundary and gained bus access. When an ACK is received by the debugger, the next transmission can start.

34.3.1.1 UPDI UART

The communication is initiated from the debugger/programmer side. Every transmission must start with a SYNCH character, which the UPDI can use to recover the transmission baud rate and store this setting for the incoming data. The baud rate set by the SYNCH character will be used for both

reception and transmission of the subsequent instruction and data bytes. See the *UPDI Instruction Set* section for details on when the next SYNCH character is expected in the instruction stream.

There is no writable Baud Rate register in the UPDI, so the baud rate sampled from the SYNCH character is used for data recovery when sampling the data byte.

The transmission baud rate of the PHY layer is related to the selected UPDI clock, which can be adjusted by writing to the UPDI Clock Divider Select (UPDICLKSEL) bit field in the ASI Control A (UPDI.ASI_CTRLA) register. The receive and transmit baud rates are always the same within the accuracy of the auto-baud. It is recommended that the clock frequency does not run faster than the required frequency for the desired baud rate. The default UPDICLKSEL setting after Reset and enable is 4 MHz. Any other clock output selection is only recommended when the BOD is at the highest level. For all other BOD settings, the default 4 MHz selection is recommended.

UPDICLKSEL[1:0]	Max. Recommended Baud Rate	Min. Recommended Baud Rate
0x0 (32 MHz)	1.8 Mbps	0.600 kbps
0x1 (16 MHz)	0.9 Mbps	0.300 kbps
0x2 (8 MHz)	450 kbps	0.150 kbps
0x3 (4 MHz) - Default	225 kbps	0.075 kbps

Table 34-1. Recommended UART Baud Rate Based on UPDICLKSEL Setting

The UPDI Baud Rate Generator utilizes fractional baud counting to minimize the transmission error. With the fixed frame format used by the UPDI, the maximum and recommended receiver transmission error limits can be seen in Table 34-2.

Table 34-2. Receiver Baud Rate Error

Data + Parity Bits	R _{slow}	R _{fast}	Max. Total Error [%]	Recommended Max. RX Error [%]
9	96.39	104.76	+4.76/-3.61	+1.5/-1.5

34.3.1.2 BREAK Character

The BREAK character is used to reset the internal state of the UPDI to the default setting. This is useful if the UPDI enters an Error state due to a communication error or when the synchronization between the debugger and the UPDI is lost.

To ensure that a BREAK is successfully received by the UPDI in all cases, the debugger must send two consecutive BREAK characters. The first BREAK will be detected if the UPDI is in an Idle state and will not be detected if it is sent while the UPDI is receiving or transmitting (at a very low baud rate). However, this will cause a frame error for the reception (RX) or a contention error for the transmission (TX) and abort the ongoing operation. The UPDI will then detect the next BREAK successfully.

Upon receiving a BREAK, the UPDI oscillator setting in the ASI Control A (UPDI.ASI_CTRLA) register is reset to the 4 MHz default UPDI clock selection, which changes the baud rate range of the UPDI, according to the *Recommended UART Baud Rate Based on UPDICLKSEL Setting* table above.

34.3.1.2.1 BREAK in One-Wire Mode

In One-Wire mode, the programmer/debugger and UPDI can be totally out of synch, requiring a worst-case length for the BREAK character to be sure that the UPDI can detect it. Assuming the slowest UPDI clock speed of 4 MHz (250 ns), the maximum length of the 8-bit SYNCH pattern value that can be contained in 16 bits is

 $65535 \times 250 \text{ ns} = 16.4 \text{ ms/byte} = 16.4 \text{ ms/8 bits} = 2.05 \text{ ms/bit}.$

This gives a worst-case BREAK frame duration of $2.05 \text{ ms} \times 12 \text{ bits} \approx 24.6 \text{ ms}$ for the slowest prescaler setting. When the prescaler setting is known, the time of the BREAK frame can be relaxed according to the values from Table 34-3.

Table 34-3. Recommended BREAK Character Duration

UPDICLKSEL[1:0]	Recommended BREAK Character Duration
0x1 (16 MHz)	6.15 ms
0x2 (8 MHz)	12.30 ms
0x3 (4 MHz)	24.60 ms

34.3.1.3 SYNCH Character

The SYNCH character has eight bits and follows the regular UPDI frame format. It has a fixed value of 0×55 . The SYNCH character has two main purposes:

- 1. It acts as the enabling character for the UPDI after a disable.
- 2. It is used by the Baud Rate Generator to set the baud rate for the subsequent transmission. If an invalid SYNCH character is sent, the next transmission will not be sampled correctly.

34.3.1.3.1 SYNCH in One-Wire Mode

The SYNCH character is used before each new instruction. When using the REPEAT instruction, the SYNCH character is expected only before the first instruction after REPEAT.

The SYNCH is a known character which, through its property of toggling for each bit, allows the UPDI to measure how many UPDI clock cycles are needed to sample the 8-bit SYNCH pattern. The information obtained through the sampling is used to provide Asynchronous Clock Recovery and Asynchronous Data Recovery on reception and to keep the baud rate of the connected programmer when doing transmit operations.

34.3.2 Operation

The UPDI must be enabled before the UART communication can start.

However, PDICFG and LOCK fuses can limit the UPDI access, while the bootloader can still negotiate firmware updates.

34.3.2.1 UPDI Enabling

Depending on how the application has configured the UPDI pin, one of the following two methods can be used to enable the UPDI:

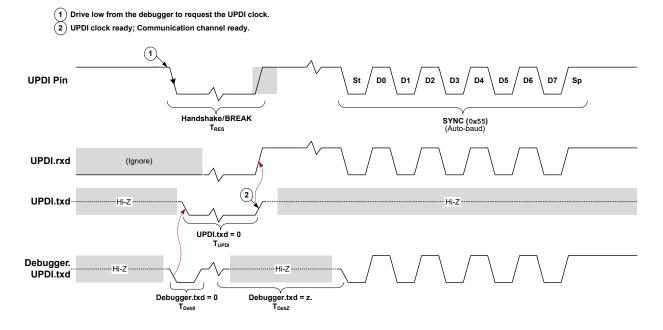
- **One-Wire Enable** This method requires the UPDI pin to be configured in UPDI function mode by setting the UPDIPINCFG bit in the SYSCFG0 register to '1'.
- **HV Override of UPDI Pin** This method is used if the UPDI pin is configured in GPIO mode (the UPDIPINCFG bit in SYSCFG0 is set to '0'). Applying an HV pulse on RESET will reconfigure the UPDI pin to UPDI function mode, thereby overriding the configuration in the SYSCFG0 fuse.

34.3.2.1.1 One-Wire Enable

The UPDI pin has a constant pull-up when enabled, and by driving the UPDI line low for more than 200 ns, a connected programmer/debugger will initiate the start-up sequence. As a prerequisite, the UPDI pin must be configured in UPDI function mode, either by setting the UPDIPINCFG bit in SYSCFG0 fuse to '1' or by applying an HV pulse on the RESET pin, thus overriding the configuration of UPDIPINCFG.

Follow this sequence to enable the UPDI:

- Drive the UPDI pin low for more than 200 ns, and release it. The UPDI pin has an internal pull-up resistor, and by driving the UPDI pin low for more than 200
 - ns, a connected programmer will initiate the start-up sequence:
 - An edge detector starts driving the UPDI pin low, so when the programmer releases the line, it will stay low
 - The UPDI clock is started. The UPDI will continue to drive the line low until the clock is stable and ready for the UPDI to use


The expected arrival time for the clock will depend on the oscillator implementation regarding the accuracy, overshoot, and readout of the oscillator calibration

- The data line will be released by the UPDI and pulled high when the oscillator is ready and stable
- Poll the UPDI pin to detect when the pin transitions to high again. This transition indicates that the edge detector has released the pin (pull-up), and the UPDI can receive a SYNCH character.
- 3. Send a SYNCH character 0x55. After a successful SYNCH character transmission, the first instruction frame can be transmitted.
- Send the NVMPROG key using the KEY instruction.
 Sending this key clears the lock bits, and the Programming Start (PROGSTART) bit in the ASI_SYS_STATUS is set. The device is now prepared for programming.
- After the programming is finished, reset the UPDI by writing the UPDI Disable (UPDIDIS) bit in the Control B (UPDI.CTRLB) register to '1' using the STCS instruction.
 Disabling the UPDI and hence, the accompanying clock request, will reduce power consumption.

The timing of the enable sequence is shown in Figure 34-5, where the active driving periods for the programmer and edge detector are included. The 'UPDI pin' waveform shows the pin value at any given time.

Figure 34-5. UPDI Enable Sequence

The delay given for the edge detector active drive period is a typical start-up time waiting for 256 cycles on a 32 MHz oscillator + the calibration readout. Refer to the *Electrical Characteristics* section for details on the expected start-up times.

Note: The first instruction issued after the initial enable SYNCH does not need an extra SYNCH to be sent because the enable sequence SYNCH sets up the Baud Rate Generator for the first instruction.

When the debugger detects that the line is high, the initial SYNCH character 0×55 must be transmitted to synchronize the UPDI communication data rate. If the Start bit of the SYNCH character is not sent within maximum T_{DebZ} , the UPDI will disable itself, and the UPDI enabling sequence must be reinitiated. If the timing is violated, the UPDI is disabled to avoid unintentional enabling of the UPDI. See 34.3.2.2.1. Disable During Start-Up for more details.

Note: The actual values for T_{RES} , T_{UPDI} , T_{Deb0} , and T_{DebZ} can be found in the *Electrical Characteristics* section.

34.3.2.1.2 UPDI Enable with High-Voltage Override of UPDI Pin

configuration specified by the fuses.

An application can configure the UPDI pin as an I/O pin. In this case, the regular one-wire enable sequence cannot be used.

An HV pulse applied to the RESET pin will switch the pin functionality of the UPDI pin to the UPDI function.

- Apply the HV signal, as described in Figure 34-6 and the *Electrical Characteristics* section. The HV must be applied after the POR has been released. This will override the pin configuration of the UPDI pin. The HV detection circuitry will trigger a device Reset. The CPU will remain halted until the reception of a valid UPDI key, or the expiration of T_{UPDI TIMEOUT}. If no such key is received, the device will be reset and the UPDI pin will have the
- 2. Follow the regular one-wire enable sequence as described in 34.3.2.1.1. One-Wire Enable. A valid UPDI key must be sent before T_{UPDI TIMEOUT}.
- 3. When the UPDI is enabled by an HV pulse, only a POR will disable the override of the UPDI pin and restore the settings as configured by the fuses.

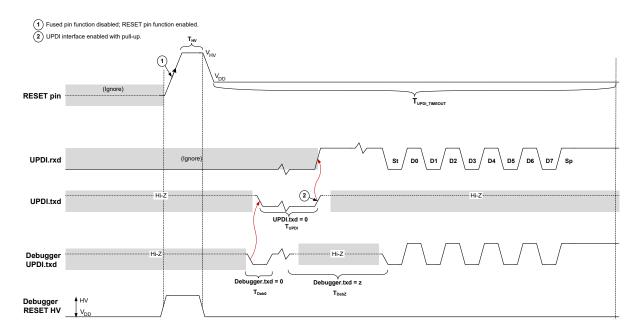


Figure 34-6. UPDI Enable Sequence by High-Voltage (HV) Programming

Notes:

- 1. If insufficient external protection is added to the UPDI pin, an ESD pulse can be interpreted by the device as a high-voltage override and enable the UPDI.
- 2. The actual threshold voltage for the UPDI HV activation depends on V_{DD}. See the *Electrical Characteristics* section for more details.
- 3. See the *Electrical Characteristics* section for the value of T_{UPDI_TIMEOUT}.

34.3.2.2 UPDI Disabling

34.3.2.2.1 Disable During Start-Up

During the enable sequence, the UPDI can disable itself in case of an invalid enable sequence. There are two mechanisms implemented to reset any requests the UPDI has given to the Power

Management and set the UPDI to the disabled state. A new enable sequence must then be initiated to enable the UPDI.

Time-Out Disable

When the start-up negative edge detector releases the pin after the UPDI has received its clock, or when the regulator is stable and the system has power in a multi-voltage system, the default pull-up drives the UPDI pin high. If the programmer does not detect that the pin is high and does not initiate a transmission of the SYNCH character within 16.4 ms at 4 MHz UPDI clock after the UPDI has released the pin, the UPDI will disable itself.

Note: Start-up oscillator frequency is device-dependent. The UPDI will count for 65536 cycles on the UPDI clock before issuing the time-out.

Incorrect SYNCH Pattern

An incorrect SYNCH pattern is detected if the length of the SYNCH character is longer than the number of samples that can be contained in the UPDI Baud Rate register (overflow) or shorter than the minimum fractional count that can be handled for the sampling length of each bit. If any of these errors are detected, the UPDI will disable itself.

34.3.2.2.2 UPDI Regular Disable

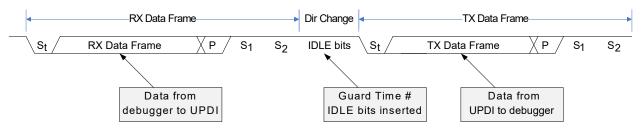
Any programming or debugging session that does not require any specific operation from the UPDI after disconnecting the programmer has to be terminated by writing the UPDI Disable (UPDIDIS) bit in the Control B (UPDI.CTRLB) register, upon which the UPDI will issue a System Reset and disable itself. The Reset will restore the CPU to the Run state, independent of the previous state. It will also lower the UPDI clock request to the system and reset any UPDI KEYs and settings.

If the disable operation is not performed, the UPDI and the oscillator's request will remain enabled, which causes increased power consumption for the application.

34.3.2.3 UPDI Communication Error Handling

The UPDI contains a comprehensive error detection system that provides information to the debugger when recovering from an error scenario. The error detection consists of detecting physical transmission errors like parity error, contention error, and frame error, to more high-level errors like access time-out error. See the UPDI Error Signature (PESIG) bit field in the Status B (UPDI.STATUSB) register for an overview of the available error signatures.

Whenever the UPDI detects an error, it will immediately enter an internal Error state to avoid unwanted system communication. In the Error state, the UPDI will ignore all incoming data requests, except when a BREAK character is received. The following procedure must always be applied when recovering from an Error condition.

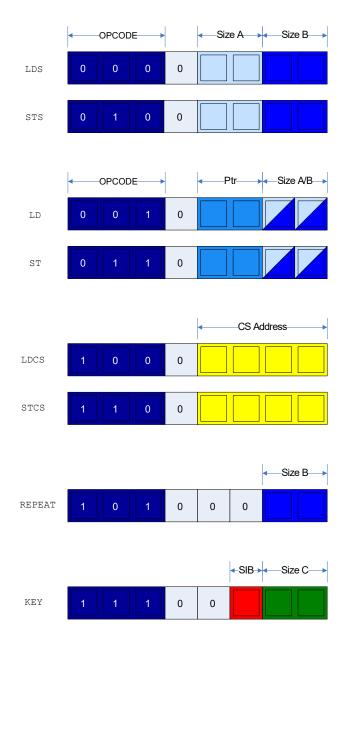

- 1. Send a BREAK character. See the *BREAK Character* section for recommended BREAK character handling.
- 2. Send a SYNCH character at the desired baud rate for the next data transfer.
- 3. Execute a Load Control Status (LDCS) instruction to read the UPDI Error Signature (PESIG) bit field in the Status B (UPDI.STATUSB) register and get the information about the occurred error.
- 4. The UPDI has now recovered from the Error state and is ready to receive the next SYNCH character and instruction.

34.3.2.4 Direction Change

To ensure correct timing for a half-duplex UART operation, the UPDI has a built-in guard time mechanism to relax the timing when changing direction from RX to TX mode. The guard time is represented by the Idle bits inserted before the next Start bit of the first response byte is transmitted. The number of Idle bits can be configured through the Guard Time Value (GTVAL) bit field in the Control A (UPDI.CTRLA) register. The duration of each Idle bit is given by the baud rate used by the current transmission.

Figure 34-7. UPDI Direction Change by Inserting Idle Bits

The UPDI guard time is the minimum Idle time that the connected debugger will experience when waiting for data from the UPDI. The maximum Idle time is the same as time-out. When the synchronization time plus the data bus accessing time is longer than the guard time, the Idle time before a transmission will be more than the expected guard time.


It is recommended to always use the insertion of a minimum of two Guard Time bits on the UPDI side and one guard time cycle insertion from the debugger side.

34.3.3 UPDI Instruction Set

The communication through the UPDI is based on a small instruction set. These instructions are part of the UPDI Data Link (DL) layer. The instructions are used to access the UPDI registers since they are mapped into an internal memory space called "ASI Control and Status (CS) space" as well as the memory-mapped system space. All instructions are byte instructions and must be preceded by a SYNCH character to determine the baud rate for the communication. See the *UPDI UART* section for information about setting the baud rate for the transmission. Figure 34-8 gives an overview of the UPDI instruction set.

Figure 34-8. UPDI Instruction Set Overview

OF	OPCODE				
0	0	0	LDS		
0	0	1	LD		
0	1	0	STS		
0	1	1	ST		
1	0	0	LDCS (LDS Control/Status)		
1	0	1	REPEAT		
1	1	0	STCS (STS Control/Status)		
1	1	1	KEY		

Siz	Size A - Address Size		
0	0	1 Byte - can address 0-255 B	
0	1	Word (2 Bytes) - for memories up to 64 KB in size	
1	0	3 Bytes - for memories above 64 KB in size	
1	1	Reserved	

Ptr - Pointer Access				
0	0	*(ptr)		
0	1	*(ptr++)		
	0	ptr		
1	1	*(ptr)		

Siz	Size B - Data Size			
0	0	1 Byte		
0	1	Word (2 Bytes)		
1	0	Reserved		
1	1	Reserved		

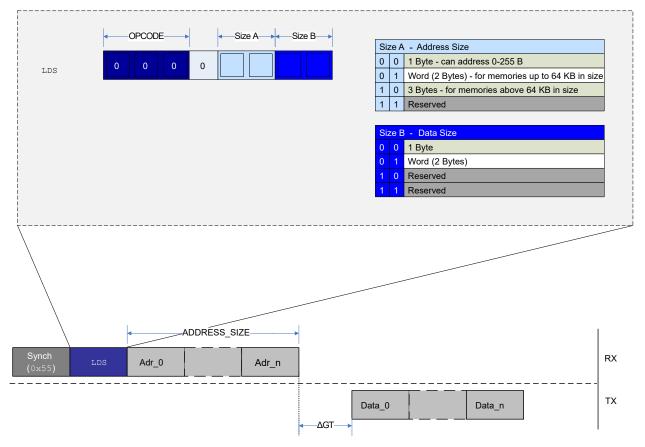
CS Address (CS - Control/Status reg.)

Siz	ze C	C - Key Size
0	0	64 bits (8 Bytes)
0	1	128 bits (16 Bytes)
1	0	Reserved
1	1	Reserved

 SIB
 - System Information Block Sel.

 0
 Receive KEY

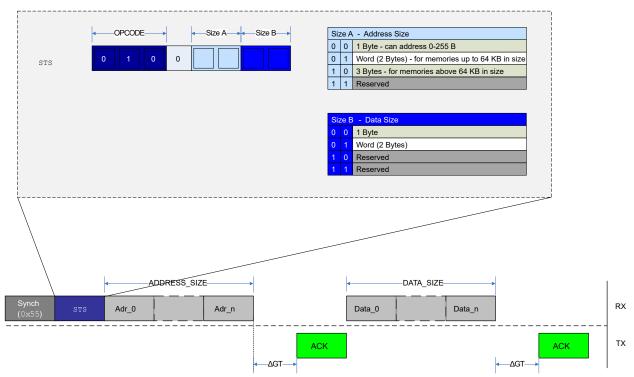
 1
 Send SIB


34.3.3.1 LDS - Load Data from Data Space Using Direct Addressing

The LDS instruction is used to load data from the system bus into the PHY layer shift register for serial readout. The LDS instruction is based on direct addressing, and the address must be given as an operand to the instruction for the data transfer to start. The maximum supported size for the

address and data is 32 bits. The LDS instruction supports repeated memory access when combined with the REPEAT instruction.

After issuing the LDS instruction, the number of desired address bytes, as indicated by the Size A field followed by the output data size selected by the Size B field, must be transmitted. The output data is issued after the specified Guard Time (GT). When combined with the REPEAT instruction, the address must be sent in for each iteration of the repeat, meaning after each time the output data sampling is done. There is no automatic address increment when using REPEAT with LDS, as it uses a direct addressing protocol.

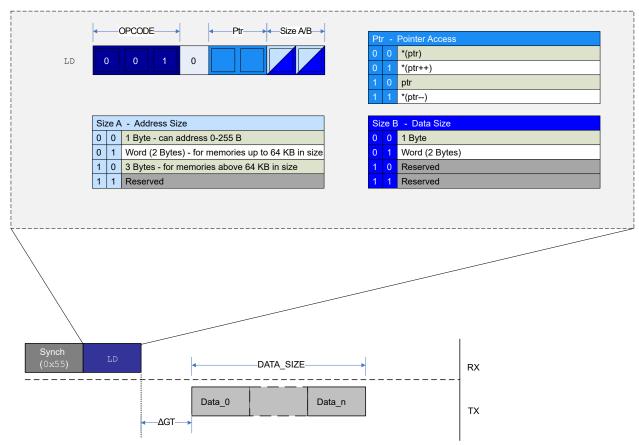

When the instruction is decoded and the address byte(s) are received as dictated by the decoded instruction, the DL layer will synchronize all required information to the ACC layer. This will handle the bus request and synchronize data buffered from the bus back to the DL layer, which will create a synchronization delay that must be taken into consideration upon receiving the data from the UPDI.

34.3.3.2 STS - Store Data to Data Space Using Direct Addressing

The STS instruction is used to store data that are shifted serially into the PHY layer shift register to the system bus address space. The STS instruction is based on direct addressing, and the address must be given as an operand to the instruction for the data transfer to start. The address is the first set of operands, and data are the second set. The size of the address and data operands is given by the size fields presented in Figure 34-10. The maximum size for both address and data is 32 bits.

The STS supports repeated memory access when combined with the REPEAT instruction.

Figure 34-10. STS Instruction Operation

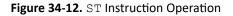

The transfer protocol for an STS instruction is depicted in Figure 34-10, following this sequence:

- 1. The address is sent.
- 2. An Acknowledge (ACK) is sent back from the UPDI if the transfer was successful.
- 3. The number of bytes, as specified in the STS instruction, is sent.
- 4. A new ACK is received after the data have been successfully transferred.

34.3.3.3 LD - Load Data from Data Space Using Indirect Addressing

The LD instruction is used to load data from the data space and into the PHY layer shift register for serial readout. The LD instruction is based on indirect addressing, which means that the Address Pointer in the UPDI needs to be written before the data space read access. Automatic pointer post-increment operation is supported and is useful when the LD instruction is utilized with the REPEAT instruction. It is also possible to do an LD from the UPDI Pointer register. The maximum supported size for address and data load is 32 bits.

Figure 34-11. LD Instruction Operation


Figure 34-11 shows an example of a typical LD sequence, where the data are received after the Guard Time (GT) period. Loading data from the UPDI Pointer register follows the same transmission protocol.

For the LD instruction from the data space, the pointer register must be set up by using an ST instruction to the UPDI Pointer register. After the ACK has been received on a successful Pointer register write, the LD instruction must be set up with the desired DATA SIZE operands. An LD to the UPDI Pointer register is done directly with the LD instruction.

34.3.3.4 ST - Store Data from UPDI to Data Space Using Indirect Addressing

The ST instruction is used to store data from the UPDI PHY shift register to the data space. The ST instruction is used to store data that are shifted serially into the PHY layer. The ST instruction is based on indirect addressing, which means that the Address Pointer in the UPDI needs to be written before the data space. The automatic pointer post-increment operation is supported and is useful when the ST instruction is utilized with the REPEAT instruction. The ST instruction is also used to store the UPDI Address Pointer into the Pointer register. The maximum supported size for storing address and data is 32 bits.

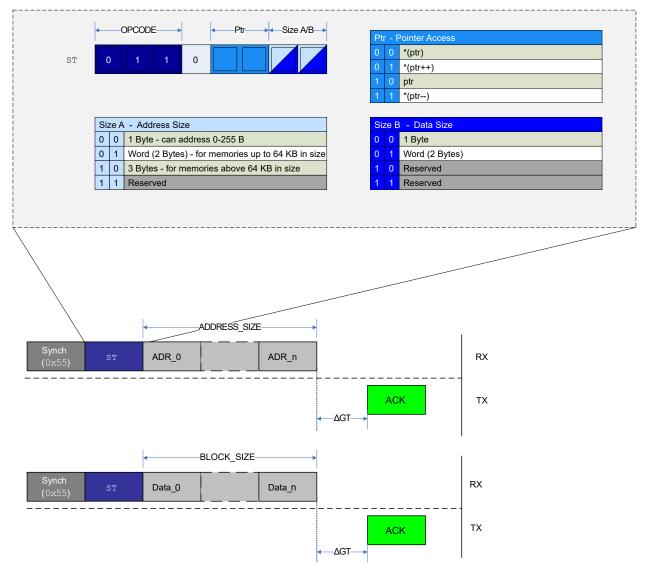


Figure 34-12 gives an example of an ST instruction to the UPDI Pointer register and the storage of regular data. A SYNCH character is sent before each instruction. In both cases, an Acknowledge (ACK) is sent back by the UPDI if the ST instruction was successful.

The next procedure has to be followed to write the UPDI Pointer register:

- 1. Set the PTR field in the ST instruction to signature 0x2.
- 2. Set the address size (Size A) field to the desired address size.
- 3. After issuing the ST instruction, send Size A bytes of address data.
- 4. Wait for the ACK character, which signifies a successful write to the Address register.

After the Address register is written, sending data is done in a similarly:

- 1. Set the PTR field in the ST instruction to signature 0x0 to write to the address specified by the UPDI Pointer register. If the PTR field is set to 0x1, the UPDI pointer is automatically updated to the next address according to the data size Size B field of the instruction after the write is executed.
- 2. Set the Size B field in the instruction to the desired data size.

- 3. After sending the ST instruction, send Size B bytes of data.
- 4. Wait for the ACK character, which signifies a successful write to the bus matrix.

When used with the REPEAT instruction, it is recommended to set up the Address register with the start address for the block to be written and use the Pointer Post Increment register to automatically increase the address for each repeat cycle. When using the REPEAT instruction, the data frame of Size B data bytes can be sent after each received ACK.

34.3.3.5 LDCS - Load Data from Control and Status Register Space

The LDCS instruction is used to load serial readout data from the UPDI Control and the Status register space located in the DL layer into the PHY layer shift register. The LDCS instruction is based on direct addressing, where the address is part of the instruction operands. The LDCS instruction can access only the UPDI CS register space. This instruction supports only byte access, and the data size is not configurable.

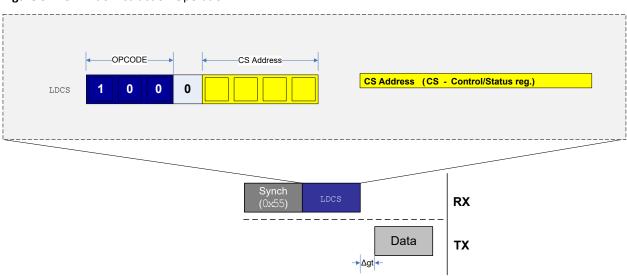


Figure 34-13. LDCS Instruction Operation

Figure 34-13 shows a typical example of LDCS data transmission. A data byte from the LDCS is transmitted from the UPDI after the guard time is completed.

34.3.3.6 STCS - Store Data to Control and Status Register Space

The STCS instruction is used to store data to the UPDI Control and Status register space. Data are shifted serially into the PHY layer shift register and written as a whole byte to a selected CS register. The STCS instruction is based on direct addressing, where the address is part of the instruction operand. The STCS instruction can access only the internal UPDI register space. This instruction supports only byte access, and the data size is not configurable.

Figure 34-14. STCS Instruction Operation

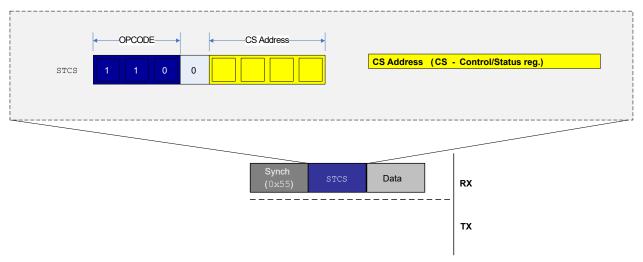


Figure 34-14 shows the data frame transmitted after the SYNCH character and the instruction frames. The STCS instruction byte can immediately be followed by the data byte. There is no response generated from the STCS instruction, as is the case for the ST and STS instructions.

34.3.3.7 REPEAT - Set Instruction Repeat Counter

The REPEAT instruction is used to store the repeat count value into the UPDI Repeat Counter register on the DL layer. When instructions are used with REPEAT, the protocol overhead for SYNCH and instruction frame can be omitted on all instructions except for the first instruction after the REPEAT is issued. REPEAT is most useful for memory instructions (LD, ST, LDS, STS), but all instructions can be repeated, except for the REPEAT instruction itself.

The DATA_SIZE operand field refers to the size of the repeat value. Only up to 255 repeats are supported. The instruction loaded directly after the REPEAT instruction will be issued for RPT_0 + 1 times. If the Repeat Counter register is '0', the instruction will run just once. An ongoing repeat can be aborted only by sending a BREAK character.

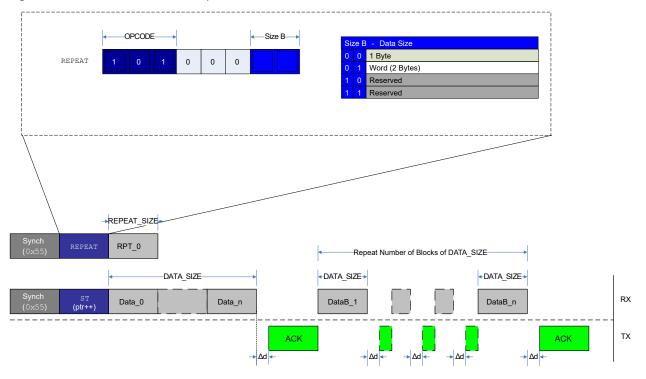
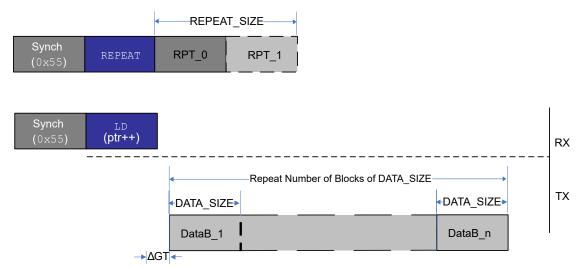



Figure 34-15. REPEAT Instruction Operation Used with ST Instruction

Figure 34-15 gives an example of a repeat operation with an ST instruction using pointer postincrement operation. After the REPEAT instruction is sent with RPT_0 = n, the first ST instruction is issued with SYNCH and instruction frame. The next n ST instructions are executed by only sending data bytes according to the ST operand DATA_SIZE and maintaining the Acknowledge (ACK) handshake protocol.

Figure 34-16. REPEAT Used with LD Instruction

For LD, data will come out continuously after the LD instruction. Note the guard time on the first data block.

If using indirect addressing instructions (LD/ST), it is recommended to always use the pointer postincrement option when combined with REPEAT. The ST/LD instruction is necessary only before the first data block (number of data bytes determined by DATA_SIZE). Otherwise, the same address

will be accessed in all repeated access operations. For direct addressing instructions (LDS/STS), the address must always be transmitted as specified in the instruction protocol before data can be received (LDS) or sent (STS).

34.3.3.8 KEY - Set Activation Key or Send System Information Block

The KEY instruction is used for communicating key bytes to the UPDI or for providing the programmer with a System Information Block (SIB), opening up for executing protected features on the device. See the *Key Activation Overview* table in the *Enabling of Key Protected Interfaces* section for an overview of functions that are activated by keys. For the KEY instruction, only a 64-bit key size is supported. The maximum supported size for SIB is 128 bits.

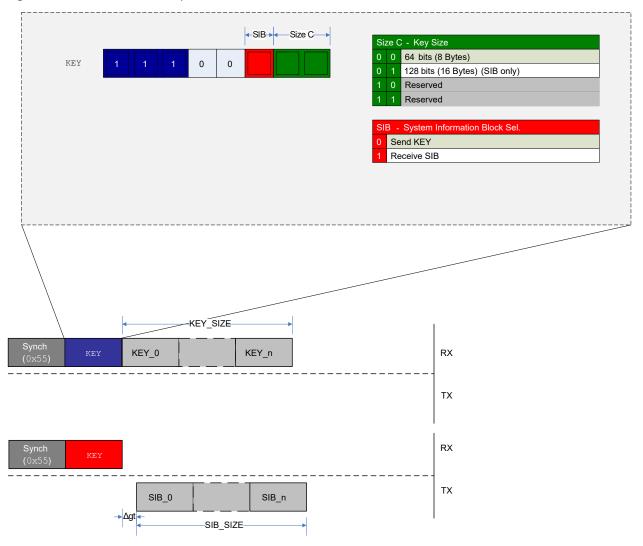
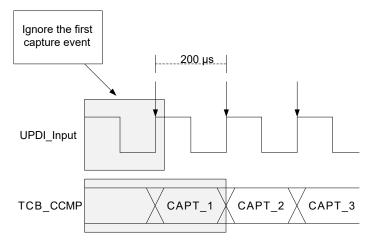


Figure 34-17. KEY Instruction Operation

Figure 34-17 shows the transmission of a key and the reception of a SIB. In both cases, the Size C (SIZE_C) field in the operand determines the number of frames being sent or received. There is no response after sending a KEY to the UPDI. When requesting the SIB, data will be transmitted from the UPDI according to the current guard time setting.

34.3.4 CRC Checking of Flash During Boot

Some devices support running a CRC check of the Flash contents as part of the boot process. This check can be performed even when the device is locked. The result of this CRC check can be read


from the ASI_CRC_STATUS register. Refer to the *CRCSCAN* - *Cyclic Redundancy Check Memory Scan* section in the device data sheet for more information on this feature.

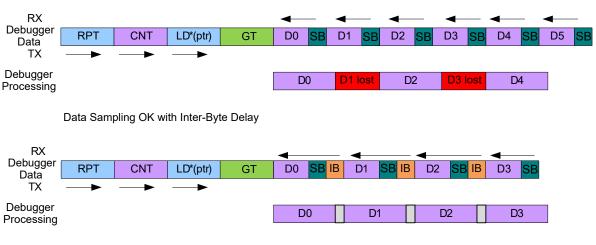
34.3.5 System Clock Measurement with UPDI

It is possible to use the UPDI to get an accurate measurement of the system clock frequency by utilizing the UPDI event connected to TCB with Input Capture capabilities. A recommended setup flow for this feature is given by the following steps:

- Set up TCBn.CTRLB with setting CNTMODE = 0x3, Input Capture Frequency Measurement mode
- Write CAPTEI = 1 in TCBn.EVCTRL to enable Event Interrupt. Keep EDGE = 0 in TCBn.EVCTRL
- Configure the Event System to route the UPDI SYNCH event (generator) to the TCB (user)
- For the SYNCH character used to generate the UPDI events, it is recommended to use a slow baud rate in the range of 10-50 kbps to get a more accurate measurement of the value captured by the timer between each UPDI event. One particular thing is that if the capture is set up to trigger an interrupt, the first captured value must be ignored. The second captured value based on the input event must be used for the measurement. See Figure 34-18 for an example using 10 kbps UPDI SYNCH character pulses, giving a capture window of 200 µs for the timer.
- It is possible to read out the captured value directly after the SYNCH character by reading the TCBn.CCMP register, or the value can be written to memory by the CPU once the capture is done. For more details, refer to the *TCB 16-bit Timer/Counter Type B* section.

Figure 34-18. UPDI System Clock Measurement Events

34.3.6 Inter-Byte Delay


When performing a multibyte transfer (LD combined with REPEAT) or reading out the System Information Block (SIB), the output data will come out in a continuous stream. Depending on the application, the data might come out too fast on the receiver side, and there might not be enough time for the data to be processed before the next Start bit arrives.

The inter-byte delay works by inserting a fixed number of Idle bits for multibyte transfers. The reason for adding an inter-byte delay is that there is no guard time inserted when all data is going in the same direction.

The inter-byte delay feature can be enabled by writing a '1' to the Inter-Byte Delay Enable (IBDLY) bit in the Control A (UPDI.CTRLA) register. As a result, two extra Idle bits will be inserted between each byte to relax the sampling time for the debugger.

Figure 34-19. Inter-Byte Delay Example with ${\tt LD}$ and ${\tt RPT}$

Too Fast Transmission, no Inter-Byte Delay

Notes:

- 1. GT denotes the guard time insertion.
- 2. SB is for Stop bit.
- 3. IB is the inserted inter-byte delay.
- 4. The rest of the frames are data and instructions.

34.3.7 System Information Block

The System Information Block (SIB) can be read out at any time by setting the SIB bit according to the KEY instruction from the *KEY* - *Set Activation Key or Send System Information Block* section. The SIB is always accessible to the debugger, regardless of lock bit settings, and provides a compact form of supplying information about the device and system parameters for the debugger. The information is vital in identifying and setting up the proper communication channel with the device. The output of the SIB is interpreted as ASCII symbols. The key size field must be set to 16 bytes when reading out the complete SIB, and an 8-byte size can be used to read out only the Family_ID. See Figure 34-20 for SIB format description and which data are available at different readout sizes.

Figure 34-20. System Information Block Format

16	8	[Byte][Bits]	Field Name
		[6:0] [55:0]	Family_ID
		[7][7:0]	Reserved
		[10:8][23:0]	NVM_VERSION
		[13:11][23:0]	OCD_VERSION
		[14][7:0]	RESERVED
		[15][7:0]	DBG_OSC_FREQ

34.3.8 Enabling of Key Protected Interfaces

The access to some internal interfaces and features is protected by the UPDI key mechanism. To activate a key, the correct key data must be transmitted by using the KEY instruction, as described in 34.3.3.8. KEY - Set Activation Key or Send System Information Block. Table 34-4 describes the available keys and the condition required for starting the operation after the key has been loaded.

Table 34-4. Key Activation Overview

Key Name	Description	Requirements for Operation	Conditions for Key Invalidation
Chip Erase	Start NVM chip erase. Clear lock bits.	_	UPDI Disable/UPDI Reset
NVMPROG	Activate NVM programming	Lock bits cleared. ASI_SYS_STATUS.PROGSTART set.	Programming done/UPDI Reset
USERROW-Write	Program the user row on the locked device	ASI_SYS_STATUS.UROWSTART set	Write to key Status bit/UPDI Reset

Table 34-5 gives an overview of the available key signatures that must be shifted in to activate the interfaces.

Table 34-5. Key Activation Signatures

Key Name	Key Signature (LSB Written First)	Size
Chip Erase	0x4E564D4572617365	64 bits
NVMPROG	0x4E564D50726F6720	64 bits
USERROW-Write	0x4E564D5573267465	64 bits

34.3.8.1 Chip Erase

The next steps must be followed to issue a chip erase:

- 1. Enter the Chip Erase key by using the KEY instruction. See the *Key Activation Signatures* table for the CHIPERASE signature.
- 2. Enter the NVM Programming key by using the KEY instruction. See the *Key Activation Signatures* table for the NVMPROG signature. This will prevent a freshly erased device from failing the CRC (if activated).
- 3. Read the ASI Key Status (UPDI.ASI_KEY_STATUS) register to verify that both the Chip Erase Key Status (CHER) and the NVM Programming Key Status (NVMPROG) bits are set.
- 4. Write the signature to the Reset Request (RSTREQ) bit in the ASI Reset Request (UPDI.ASI_RESET_REQ) register. This will issue a System Reset.
- 5. Write 0x00 to the ASI Reset Request (UPDI.ASI_RESET_REQ) register to clear the System Reset.
- 6. Read the NVM Lock Status (LOCKSTATUS) bit from the ASI System Status (UPDI.ASI_SYS_STATUS) register.
- The chip erase is done when the LOCKSTATUS bit is '0'. If the LOCKSTATUS bit is '1', return to step 5.
- 8. Check the Chip Erase Key Failed (ERASEFAIL) bit in the ASI System Status (UPDI.ASI_SYS_STATUS) register to verify if the chip erase was successful.
- 9. If the ERASEFAIL bit is '0', the chip erase was successful.

After a successful chip erase, the lock bits will be cleared, and the UPDI will have full access to the system. Until the lock bits are cleared, the UPDI cannot access the system bus, and only CS-space operations can be performed.

▲ CAUTION During chip erase, the BOD is forced in ON state by writing to the Active (ACTIVE) bit field from the Control A (BOD.CTRLA) register and uses the BOD Level (LVL) bit field from the BOD Configuration (FUSE.BODCFG) fuse and the BOD Level (LVL) bit field from the Control B (BOD.CTRLB) register. If the supply voltage V_{DD} is below that threshold level, the device is unavailable until V_{DD} is increased adequately. See the *BOD - Brown-out Detector* section for more details.

34.3.8.2 NVM Programming

If the device is unlocked, it is possible to write directly to the NVM Controller or the Flash memory using the UPDI. This will lead to unpredictable code execution if the CPU is active during the NVM programming. To avoid this, the following NVM programming sequence has to be executed:

- 1. Follow the chip erase procedure, as described in 34.3.8.1. Chip Erase. If the part is already unlocked, this point can be skipped.
- 2. Enter the NVMPROG key by using the KEY instruction. See Table 34-5 for the NVMPROG signature.
- 3. **Optional:** Read the NVM Programming Key Status (NVMPROG) bit from the ASI Key Status (UPDI.KEY_STATUS) register to see if the key has been activated.
- 4. Write the signature to the Reset Request (RSTREQ) bit in the ASI Reset Request (UPDI.ASI_RESET_REQ) register. This will issue a System Reset.
- 5. Write 0x00 to the ASI Reset Request (UPDI.ASI_RESET_REQ) register to clear the System Reset.
- 6. Read the Start NVM Programming (PROGSTART) bit from the ASI System Status (UPDI.ASI_SYS_STATUS) register.
- 7. NVM programming can start when the PROGSTART bit is '1'. If the PROGSTART bit is '0', return to step 6.
- 8. Write data to NVM through the UPDI.
- 9. Write the signature to the Reset Request (RSTREQ) bit in the ASI Reset Request (UPDI.ASI_RESET_REQ) register. This will issue a System Reset.
- 10. Write 0x00 to the ASI Reset Request (UPDI.ASI_RESET_REQ) register to clear the System Reset.
- 11. Programming is complete.

34.3.8.3 User Row Programming

The user row programming feature allows programming new values to the user row (USERROW) on a locked device. To program with this functionality enabled, the next sequence must be followed:

- 1. Enter the USERROW-Write key located in Table 34-5 by using the KEY instruction. See Table 34-5 for the USERROW-Write signature.
- 2. **Optional:** Read the User Row Write Key Status (UROWWR) bit from the ASI Key Status (UPDI.ASI_KEY_STATUS) register to see if the key has been activated.
- 3. Write the signature to the Reset Request (RSTREQ) bit in the ASI Reset Request (UPDI.ASI_RESET_REQ) register. This will issue a System Reset.
- 4. Write 0x00 to the ASI Reset Request (UPDI.ASI_RESET_REQ) register to clear the System Reset.
- 5. Read the Start User Row Programming (UROWSTART) bit from the ASI System Status (UPDI.ASI_SYS_STATUS) register.
- 6. The user row programming can start when the UROWSTART bit is '1'. If UROWSTART is '0', return to step 5.
- 7. The data to be written to the User Row must first be written to a buffer in the RAM. The writable area in the RAM has a size of 64 bytes, and it is only possible to write user row data to the first 64 byte addresses of the RAM. Addressing outside this memory range will result in a nonexecuted write. The data will map 1:1 with the user row space when the data is copied into the user row upon completion of the programming sequence.
- 8. When all the user row data has been written to the RAM, write the User Row Programming Done (UROWDONE) bit in the ASI System Control A (UPDI.ASI_SYS_CTRLA) register.
- 9. Read the Start User Row Programming (UROWSTART) bit from the ASI System Status (UPDI.ASI_SYS_STATUS) register.

- 10. The user row programming is completed when the UROWSTART bit is '0'. If the UROWSTART bit is '1', return to step 9.
- 11. Write to the User Row Write Key Status (UROWWR) bit in the ASI Key Status (UPDI.ASI_KEY_STATUS) register.
- 12. Write the signature to the Reset Request (RSTREQ) bit in the ASI Reset Request (UPDI.ASI_RESET_REQ) register. This will issue a System Reset.
- 13. Write 0x00 to the ASI Reset Request (UPDI.ASI_RESET_REQ) register to clear the System Reset.
- 14. The user row programming is complete.

It is not possible to read back data from the RAM in this mode. Only writes to the first 64 bytes of the RAM are allowed.

34.3.9 Events

The UPDI can generate the following events:

Table	34-6.	Event	Generators	in UPDI
	• • • •	E. Circ	Generators	

Generator Name		Description	Event Tune	Generating	Length of Event	
Module	Event	Description	Event Type	Clock Domain	Length of Event	
UPDI	SYNCH	SYNCH character	Level	CLK_UPDI	SYNCH char on UPDI pin synchronized to CLK_UPDI	

This event is set on the UPDI clock for each detected positive edge in the SYNCH character, and it is not possible to disable this event from the UPDI.

The UPDI has no event users.

Refer to the *EVSYS - Event System* section for more details regarding event types and Event System configuration.

34.3.10 Sleep Mode Operation

The UPDI PHY layer runs independently of all sleep modes, and the UPDI is always accessible for a connected debugger independent of the device's sleep state. If the system enters a sleep mode that turns the system clock off, the UPDI cannot access the system bus and read memories and peripherals. When enabled, the UPDI will request the system clock so that the UPDI always has contact with the rest of the device. Thus, the UPDI PHY layer clock is unaffected by the sleep mode's settings. By reading the System Domain in Sleep (INSLEEP) bit in the ASI System Status (UPDI.ASI_SYS_STATUS) register, it is possible to monitor if the system domain is in a sleep mode.

It is possible to prevent the system clock from stopping when going into a sleep mode by writing to the Request System Clock (CLKREQ) bit in the ASI System Control A (UPDI.ASI_SYS_CTRLA) register. If this bit is set, the system's sleep mode state is emulated, and the UPDI can access the system bus and read the peripheral registers even in the deepest sleep modes.

The CLKREQ bit is by default '1' when the UPDI is enabled, which means that the default operation is keeping the system clock in ON state during the sleep modes.

34.4 Register Summary

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00	STATUSA	7:0		UPDIR	EV[3:0]					
0x01	STATUSB	7:0							PESIG[2:0]	
0x02	CTRLA	7:0	IBDLY		PARD	DTD	RSD		GTVAL[2:0]	
0x03	CTRLB	7:0				NACKDIS	CCDETDIS	UPDIDIS		
0x04										
	Reserved									
0x06										
0x07	ASI_KEY_STATUS	7:0			UROWWR	NVMPROG	CHER			
0x08	ASI_RESET_REQ	7:0				RSTRE	Q[7:0]			
0x09	ASI_CTRLA	7:0							UPDICL	(SEL[1:0]
0x0A	ASI_SYS_CTRLA	7:0							UROWDONE	CLKREQ
0x0B	ASI_SYS_STATUS	7:0	BDEF	ERASEFAIL	SYSRST	INSLEEP	PROGSTART	UROWSTART	BOOTDONE	LOCKSTATUS
0x0C	ASI_CRC_STATUS	7:0						C	RC_STATUS[2:0	0]

34.5 Register Description

These registers are readable only through the UPDI with special instructions and are not readable through the CPU.

34.5.1 Status A

	Name: Offset: Reset: Property:	STATUSA 0x00 0x10 -						
Bit	7	6	5	4	3	2	1	0
	UPDIREV[3:0]							
Access	R	R	R	R	•	•	<u> </u>	
Reset	0	0	1	1				

Bits 7:4 - UPDIREV[3:0] UPDI Revision

This bit field contains the revision of the current UPDI implementation.

34.5.2 Status B

	Name: Offset: Reset: Property:	STATUSB 0x01 0x00 -						
Bit	7	6	5	4	3	2	1	0
							PESIG[2:0]	
Access			•		•	R	R	R
Reset						0	0	0

Bits 2:0 – PESIG[2:0] UPDI Error Signature

This bit field describes the UPDI error signature and is set when an internal UPDI Error condition occurs. The PESIG bit field is cleared on a read from the debugger.

PESIG[2:0]	Error Type	Error Description
0x0	No error	No error detected (default)
0x1	Parity error	Wrong sampling of the Parity bit
0x2	Frame error	Wrong sampling of the Stop bits
0x3	Access Layer Time-Out Error	UPDI can get no data or response from the Access layer
0x4	Clock Recovery error	Wrong sampling of the Start bit
0x5	-	Reserved
0x6	Bus error	Address error or access privilege error
0x7	Contention error	Signalize Driving Contention on the UPDI pin

Table 34-7. Valid Error Signatures

34.5.3 Control A

Name:	CTRLA
Offset:	0x02
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
	IBDLY		PARD	DTD	RSD		GTVAL[2:0]	
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0

Bit 7 – IBDLY Inter-Byte Delay Enable

Writing a '1' to this bit enables a fixed-length inter-byte delay between each data byte transmitted from the UPDI when doing multibyte LD(S). The fixed length is two IDLE bits.

Bit 5 – PARD Parity Disable

Writing a '1' to this bit will disable the parity detection in the UPDI by ignoring the Parity bit. This feature is recommended to be used only during testing.

Bit 4 – DTD Disable Time-Out Detection

Writing a '1' to this bit will disable the time-out detection on the PHY layer, which requests a response from the ACC layer within a specified time (65536 UPDI clock cycles).

Bit 3 – RSD Response Signature Disable

Writing a '1' to this bit will disable any response signatures generated by the UPDI and reduces the protocol overhead to a minimum when writing large blocks of data to the NVM space. When accessing the system bus, the UPDI may experience delays. If the delay is predictable, the response signature may be disabled. Otherwise, a loss of data may occur.

Bits 2:0 - GTVAL[2:0] Guard Time Value

This bit field selects the guard time value used by the UPDI when the transmission direction switches from RX to TX.

Value	Description
0x0	UPDI guard time: 128 cycles (default)
0x1	UPDI guard time: 64 cycles
0x2	UPDI guard time: 32 cycles
0x3	UPDI guard time: 16 cycles
0x4	UPDI guard time: 8 cycles
0x5	UPDI guard time: 4 cycles
0x6	UPDI guard time: 2 cycles
0x7	Reserved

34.5.4 Control B

Name:	CTRLB
Offset:	0x03
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
				NACKDIS	CCDETDIS	UPDIDIS		
Access				R/W	R/W	R/W		
Reset				0	0	0		

Bit 4 – NACKDIS Disable NACK Response

Writing a '1' to this bit disables the NACK signature sent by the UPDI when a System Reset is issued during ongoing LD(S) and ST(S) operations.

Bit 3 – CCDETDIS Collision and Contention Detection Disable

Writing a '1' to this bit disables contention detection. Writing a '0' to this bit enables contention detection.

Bit 2 - UPDIDIS UPDI Disable

Writing a '1' to this bit disables the UPDI PHY interface. The clock request from the UPDI is lowered, and the UPDI is reset. All the UPDI PHY configurations and keys will be reset when the UPDI is disabled.

34.5.5 ASI Key Status

Access

Reset

	Name: Offset: Reset: Property:	ASI_KEY_STAT 0x07 0x00 -	TUS						
Bit	7	6	5	4	3	2	1	0	
			UROWWR	NVMPROG	CHER				

R

0

Bit 5 – UROWWR User Row Write Key Status

R/W

0

This bit is set to '1' if the UROWWRITE key is successfully decoded. This bit must be written as the final part of the user row write procedure to correctly reset the programming session.

R

0

Bit 4 – NVMPROG NVM Programming Key Status

This bit is set to '1' if the NVMPROG key is successfully decoded. The bit is cleared when the NVM programming sequence is initiated, and the PROGSTART bit in ASI_SYS_STATUS is set.

Bit 3 - CHER Chip Erase Key Status

This bit is set to '1' if the Chip Erase key is successfully decoded. The bit is cleared by the Reset Request issued as part of the chip erase sequence described in the 34.3.8.1. Chip Erase section.

34.5.6 ASI Reset Request

Name:	ASI_RESET_REQ
Offset:	0x08
Reset:	0x00
Property:	-

A Reset is signalized to the System when writing the Reset signature to this register.

Bit	7	6	5	4	3	2	1	0	
	RSTREQ[7:0]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 7:0 - RSTREQ[7:0] Reset Request

The UPDI will not be reset when issuing a System Reset from this register.

Value	Name	Description
0x00	RUN	Clear Reset condition
0x59	RESET	Normal Reset
Other	-	Reserved

34.5.7 ASI Control A

	Name: Offset: Reset: Property:	ASI_CTRLA 0x09 0x03 -						
Bit	7	6	5	4	3	2	1	0
							UPDICLK	(SEL[1:0]
Access		·	•		•		R/W	R/W
Reset							1	1

Bits 1:0 - UPDICLKSEL[1:0] UPDI Clock Divider Select

Writing these bits selects the UPDI clock output frequency. The default setting after Reset and enable is 4 MHz. See the *Electrical Characteristics* section for more information on possible UPDI oscillator frequencies.

Value	Description
0x0	32 MHz UPDI clock
0x1	16 MHz UPDI clock
0x2	8 MHz UPDI clock
0x3	4 MHz UPDI clock (default setting)

34.5.8 ASI System Control A

	Name: Offset: Property:	ASI_SYS_CTRI 0x0A -	LA					
Bit	7	6	5	4	3	2	1	0
							UROWDONE	CLKREQ
Access	-	-	-	-	-	-	R/W	R/W
Reset							0	0

Bit 1 - UROWDONE User Row Programming Done

Write this bit when the user row data is written to the RAM. Writing a '1' to this bit will start the process of programming the user row data to the Flash.

If this bit is written before the user row data is written to the RAM by the UPDI, the CPU will proceed without the written data.

This bit is writable only if the USERROW-Write key is successfully decoded.

Bit 0 – CLKREQ Request System Clock

If this bit is written to '1', the ASI is requesting the system clock, independent of the system's sleep modes. This makes it possible for the UPDI to access the ACC layer even if the system is in a sleep mode.

Writing a '0' to this bit will lower the clock request.

This bit is set by default when the UPDI is enabled in any mode (Fuse, HV).

34.5.9 ASI System Status

Name:	ASI_SYS_STATUS
Offset:	0x0B
Reset:	0x01
Property:	-

Bit	7	6	5	4	3	2	1	0
	BDEF	ERASEFAIL	SYSRST	INSLEEP	PROGSTART	UROWSTART	BOOTDONE	LOCKSTATUS
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	1

Bit 7 - BDEF Boot Sequence Done or Chip Erase Failed

This bit is set to '1' if the chip erase has failed (ERASEFAIL bit is '1') or the boot sequence is complete (BOOTDONE bit is '1').

Bit 6 - ERASEFAIL Chip Erase Key Failed

This bit is set to '1' if the chip erase has failed. This bit is set to '0' on Reset. A Reset held from the ASI Reset Request (ASI_RESET_REQ) register will also affect this bit.

Bit 5 – SYSRST System Reset Active

When this bit is set to '1', there is an active Reset on the system domain. When this bit is set to '0', the system is not in the Reset state. This bit is set to '0' on read. A Reset held from the ASI_RESET_REQ register will also affect this bit.

Bit 4 – INSLEEP System Domain in Sleep

When this bit is set to '1', the system domain is in Idle or deeper sleep mode. When this bit is set to '0', the system is not in any sleep mode.

Bit 3 – PROGSTART Start NVM Programming

When this bit is set to '1', NVM programming can start from the UPDI. When the UPDI is done, the system must be reset through the ASI Reset Request (ASI_RESET_REQ) register.

Bit 2 – UROWSTART Start User Row Programming

When this bit is set to '1', user row programming can start from the UPDI. When the User Row data have been written to the RAM, the UROWDONE bit in the ASI_SYS_CTRLA register must be written.

Bit 1 - BOOTDONE Boot Sequence Done

This bit is set to '1' when the CPU is done with the boot sequence. The UPDI will not have access to the ACC layer until this bit is set to '1'. Check also that SYSRST is '0' before proceeding.

Bit 0 – LOCKSTATUS NVM Lock Status

When this bit is set to '1', the device is locked. If a chip erase is done, and the lock bits are set to '0', this bit will be read as '0'.

34.5.10 ASI CRC Status

	Name: Offset: Reset: Property:	ASI_CRC_STA 0x0C 0x00 -	TUS					
Bit	7	6	5	4	3	2	1	0
						C	RC_STATUS[2:0	0]
Access						R	R	R
Reset						0	0	0

Bits 2:0 – CRC_STATUS[2:0] CRC Execution Status

This bit field signalizes the status of the CRC conversion. This bit field is one-hot encoded.

Value	Description
0x0	Not enabled
0x1	CRC enabled, busy
0x2	CRC enabled, done with OK signature
0x4	CRC enabled, done with FAILED signature
Other	Reserved

35. Instruction Set Summary

The instruction set summary is part of the *AVR Instruction Set Manual*, located at www.microchip.com/DS40002198. Refer to the CPU version called AVRxt for details regarding the devices documented in this data sheet.

36. Electrical Characteristics

36.1 Disclaimer

Unless otherwise specified, all typical values are measured at T = 25° C and V_{DD} = 3.0V. All minimum and maximum values are valid across operating temperature and voltage unless otherwise specified.

The given typical values need to be considered for design guidance only, and part variation around the values is expected.

36.2 Absolute Maximum Ratings

Stresses beyond those listed in this section can cause permanent damage to the device and is a stress rating only. The device's functional operation at these, or other conditions beyond those indicated in the operational sections of this specification, is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameter	Condition	Rating	Units
Ambient temperature under bias		-40 to +125	°C
Maximum junction temperature		+140	°C
Storage temperature		-65 to +150	°C
Voltage on Pins with Respect to	GND		
• On the V _{DD} pins		-0.3 to +6.0	V
• On the RESET pin		-0.3 to +9.0	V
• On all other pins		-0.3 to (V _{DD} + 0.3)	V
Maximum Current			
• On the GND pins ⁽¹⁾	$-40^{\circ}C \le T_A \le +85^{\circ}C$	200	mA
on the GND pins a	+85°C < T _A ≤ +125°C	100	mA
• On the V _{DD} pins ⁽¹⁾	$-40^{\circ}C \le T_A \le +85^{\circ}C$	200	mA
	+85°C < T _A ≤ +125°C	100	mA
• On any standard I/O pin		±40	mA
Clamp current, I _K (V _{PIN} < 0 or V _{PIN} :	±20	mA	
Total power dissipation ⁽²⁾		mW	

- 1. The maximum current rating requires even load distribution across I/O pins. The maximum current rating may be limited by the device package power dissipation characterizations. See the *Thermal Characteristics* section to calculate device specifications.
- 2. Calculate power dissipation as follows: $P_{DIS} = V_{DD} \times \{I_{DD} \Sigma I_{OH}\} + \Sigma \{(V_{DD} V_{OH}) \times I_{OH}\} + \Sigma (V_{OI} \times I_{OL})$

36.3 Standard Operating Conditions

For all other device characteristics to be valid, the device must operate within the ratings listed in this section.

Table 36-2. General Operating Conditions

Operating Voltage	$V_{DDMIN} \le V_{DD} \le V_{DDMAX}$
Operating Temperature	$T_{A_MIN} \le T_A \le T_{A_MAX}$

The standard operating conditions for any device are defined as follows:

Table 36-3. Standard Operating Conditions

Parameter		Ratings	Units
V _{DD} — Operating Supply Voltage ⁽¹⁾			
Industrial and Extended temperature	V _{DDMIN}	+1.8	V
ndustrial and Extended temperature	V _{DDMAX}	+5.5	V
Γ _A — Operating Ambient Temperature Range			
ndustrial temperature	T _{A_MIN}	-40	°C
ndustrial temperature	T _{A_MAX}	+85	°C
	T _{A_MIN}	-40	°C
Extended temperature	T _{A_MAX}	+125	°C
Note:			
1 Pefer to the Supply Voltage parameter in Supply Vo	ltago		

1. Refer to the Supply Voltage parameter in Supply Voltage.

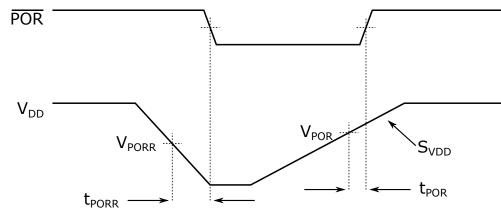
36.4 Supply Voltage

Table 36-4. Supply Voltage

Symbol	Min.	Typ. †	Max.	Unit	Conditions
Supply Voltage ⁽¹⁾					
V _{DD}	1.8 ⁽²⁾	_	5.5	V	
RAM Data Retention ⁽³⁾					
V _{DR}	1.7	_	_	V	Device in Power-Down mode
Power-on Reset Release Voltage ⁽⁵⁾					
V _{POR}	_	1.6	_	V	BOD disabled ⁽⁴⁾
t _{POR}	_	_	_	μs	BOD disabled ⁽⁴⁾
Power-on Reset Re-Arm Voltage ⁽⁵⁾					
V _{PORR}	_	1.1	_	V	BOD disabled ⁽⁴⁾
t _{PORR}	_	_	_	μs	BOD disabled ⁽⁴⁾
V _{DD} Slope ⁽⁶⁾					
S _{VDD}	_	_	0.2	V/µs	BOD disabled ⁽⁴⁾
		·			

† Unless otherwise specified, data in the "Typ." column is at $T_A = 25^{\circ}C$ and $V_{DD} = 3.0V$. These parameters are not tested and are for design guidance only.

Notes:


- 1. The Brown-out Detector (BOD) configured with BODLEVEL0 is forced ON during Chip Erase. The erase attempt will fail if the supply voltage V_{DD} is below V_{BOD} for BODLEVEL0.
- 2. Operation is ensured down to 1.8V or BOD triggering level V_{BOD} when BOD is active.
- 3. This is the limit to which V_{DD} can be lowered in sleep mode without losing RAM data.
- 4. Refer to 36.11. RSTCTRL and BOD for BOD trip point information.

5. Refer to Figure 36-1.

6. For design guidance only and not tested in production.

Note: When POR is low, the device is held in Reset.

36.5 Power Consumption

Table 36-5. Power Consumption in Active and Idle Mode

V _{DD} = 3. T _A = 25° System		ripherals	disabled	and I/O p	ports drive	n low wi	th inputs disabled
Symbol	Description	Min.	Тур. †	Max. 85°C	Max. 125°C	Unit	Conditions
		_	10	_	_	mA	OSCHF = 20 MHz, V _{DD} = 5V
		_	3.2	_	_	mA	OSCHF = 10 MHz (OSCHF/2)
I _{DD}	Active power consumption	_	1.9	—	_	mA	OSCHF = 5 MHz (OSCHF/4)
		—	26	—	—	μΑ	OSC32K = 32.768 kHz
		_	10	_	_	μΑ	XOSC32K = 32.768 kHz
		_	4	_	_	mA	$OSCHF = 20 MHz, V_{DD} = 5V$
		—	1.4	—	—	mA	OSCHF = 10 MHz (OSCHF/2)
DD_IDLE	Idle power consumption	_	1.0	_	_	mA	OSCHF = 5 MHz (OSCHF/4)
		_	3.7	_	_	μΑ	OSC32K = 32.768 kHz
		_	3.3	_	_	μΑ	XOSC32K = 32.768 kHz
DD_BASE	Minimum power consumption in different sleep modes	_	0.08			μA	Power-Down or Standby mode, all peripherals disabled

† Unless otherwise specified, data in the "Typ." column is at $T_A = 25^{\circ}C$ and $V_{DD} = 3.0V$. These parameters are not tested and are for design guidance only.

36.6 Peripherals Power Consumption

Use the table below to calculate the additional current consumption for the different I/O peripherals in the various operating modes. Some peripherals will request the clock to be enabled when operating in STANDBY. Refer to the peripheral section for further information.

Table 36-6. Peripherals Power Consumption⁽¹⁾

Operating conditions:

V_{DD} = 3.0V

T_A = 25°C

OSCHF at 20 MHz with a prescaler division factor of six used as clock source

Device in Standby sleep mode

Symbol	Description	Min.	Тур. †	Max. 85°C	Max. 125°C	Unit	Conditions
I _{DD_WDT}	Watchdog Timer (WDT)	_	680	_		nA	32.768 kHz internal oscillator
I _{BG}	Bandgap	_	18.5	_	—	μA	
I _{DD_VREF}	Voltage Reference (V _{REF})	-	55	_		μA	ACREF enabled, V _{REF} = 2.048V Excluding bandgap
		_	14	_	_	μA	Brown-out Detect (BOD) continuous Excluding bandgap
I _{DD_BOD}	Brown-out Detector (BOD)	_	0.6	_		μA	Brown-out Detect (BOD) sampling @128 Hz, including I _{DD_OSC32K} Excluding bandgap
		_	0.42	_		μA	Brown-out Detect (BOD) sampling @32 Hz, including I _{DD_OSC32K} Excluding bandgap
I _{DD_TCB}	16-bit Timer/Counter Type B (TCB)	_	23	—	—	μA	
I _{DD_RTC}	Real-Time Counter (RTC)	-	0.6	_	_	μA	32.768 kHz internal oscillator (OSC32K)
I _{DD_OSC32K}	32.768 kHz Internal Oscillator (OSC32K)	-	330	_	_	nA	
	32.768 kHz Crystal Oscillator (XOSC32K)	-	1.3	—	-	μΑ	LPMODE = Enabled ESR=50 kOhm, C _L = 12.5 pF
I _{DD_XOSC32K}		_	5.7	_	_	μA	LPMODE = Disabled ESR=50 kOhm, C _L = 12.5 pF
I _{DD_OSCHF}	Internal High Frequency Oscillator (OSCHF)	-	90	_	_	μA	
		_	330	_	_	μA	PLL_MULFAC = 8x device in Idle sleep mode
I _{DD_PLL}	Phase-Locked Loop (PLL)	-	670	_	—	μA	PLL_MULFAC = 16x device in Idle sleep mode
. (2)		_	280	_	_	μA	ADC.REFSEL = VDD
I _{DD_ADC} ⁽²⁾	Analog-to-Digital Converter (ADC)	_	400	_	_	μA	ADC.REFSEL = Internal 2.048V
		_	147	_	_	μA	CTRLA.POWER = 0x0 device in Idle sleep mode
I _{DD_AC}	Analog Comparator (AC)	-	105	_	—	μA	CTRLA.POWER = 0x1 device in Idle sleep mode
I _{DD_USART}	Universal Synchronous and Asynchronous Receiver and Transmitter (USART)	-	_		_	μA	USART Enabled @9600 Baud
I _{DD_SPI}	Serial Peripheral Interface (SPI)	_	7.0	_	_	μA	SPI Host @100 kHz, device in Idle sleep mode
		_	27	_	_	μA	TWI Host @100 kHz, device in Idle sleep mode
I _{DD_TWI}	Two-Wire Interface (TWI)	_	21			μA	TWI Client @100 kHz, device in Idle sleep mode
	Flash Programming Erase		7			mA	
IDD_NVM_ERASE	Flash Programming Write		10		_	mA	

.....continued **Operating conditions:** $V_{DD} = 3.0V$ T_A = 25°C OSCHF at 20 MHz with a prescaler division factor of six used as clock source Device in Standby sleep mode Max. Max. Symbol Description Min. Тур. † Unit Conditions 85°C 125°C + Unless otherwise specified, data in the "Typ." column is at T_A = 25°C and V_{DD} = 3.0V. These parameters are not tested and are for design guidance only. Notes: The module's current consumption only. To calculate the total internal power consumption of the microcontroller, add the power 1. consumption values of all the peripherals and the clock sources used to the base power consumption given in Power Consumption. 2. Average power consumption with the following conditions: - Single-ended 12-bit ADC

- ADC active in Free Running Mode
- CLK ADC = 1 MHz
- Device in Idle sleep mode

36.7 I/O Pins

Table 36-7. I/O Pin Specifications

Symb	ol Description	Min.	Typ. †	Max.	Unit	Conditions
Input	Low Voltage					
	I/O PORT:					
	• With Schmitt Trigger buffer	—	—	$0.2 \times V_{DD}$	V	INLVL = 0
V _{IL}	With TTL levels	—	—	0.8	V	V _{DD} > 2.7V INLVL = 1
	RESET Pin	_	_	0.2 × V _{DD}	V	
Input	High Voltage					
	I/O PORT:					
	• With Schmitt Trigger buffer	0.8 × V _{DD}	_	_	V	PINnCTRL.INLVL = 0x00
V _{IH}	TTL level	_	> 2.0	_	V	$PINnCTRL.INLVL = 0 \times 01 V_{DD} > 2.7$
	RESET pin	0.8 × V _{DD}	_	_	V	
Input	Leakage Current ⁽²⁾					
	I/O PORTS ⁽²⁾		< 50		nA	GND ≤ V_{PIN} ≤ V_{DD} , pin at high-impedance, T_A = 85°C
I _{IL}	RESET pin ⁽²⁾	_	< 50		nA	GND ≤ V_{PIN} ≤ V_{DD} , pin at high-impedance, T_A = 85°C
Pull-u	ıp Resistance					
R _P			32		kΩ	
Outpu	ut Low Voltage			1		
V _{OL}	Standard I/O ports		_	2.6	V	I _{OL} = 6 mA, V _{DD} = 3.0V
Outpu	ut High Voltage					
V _{он}		0.4	_	_	V	I _{OH} = -6 mA, V _{DD} = 3.0V

Symbo	ol Description	Min.	Typ. †	Max.	Unit	Conditions		
I/O Slew Rate								
	Rising slew rate		45		ns	PORTCTRL.SRL = 0x01		
			22	_	ns	PORTCTRL.SRL = 0x00		
	Falling slew rate	_	30	_	ns	PORTCTRL.SRL = 0x01		
			16	_	ns	PORTCTRL.SRL = 0x00		
Pin Capacitance								
2 ₁₀	All I/O pins		5		pF			

† Unless otherwise specified, data in the "Typ." column is at $T_A = 25$ °C and $V_{DD} = 3.0V$. These parameters are not tested and are for design guidance only.

Notes:

- 1. The negative current is defined as the current sourced by the pin.
- The leakage current on the RESET pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. A higher leakage current may occur at different input voltages.

36.8 Memory Programming Specifications

Table 36-8. Memory Programming Specifications

Symbol	Description	Min.	Тур. †	Max.	Unit	Conditions
Data EEF	ROM Memory Specifications					
E _D *	Data EEPROM byte endurance	100k	_	_	Erase/Write cycles	
t _{D_RET}	Characteristic retention	_	40	_	Year	T _A = 55°C
t _{D_CE}	Full EEPROM Erase time	—	4	—	ms	
t _{D_BPW}	Byte/Page Write time	—	2	—	ms	
t _{D_BPE}	Byte/Page Erase time	—	2	—	ms	
t _{D_BPWE}	Atomic Byte/Page Write/Erase time		4	—	ms	
Program	Flash Memory Specifications					
E _P *	Flash memory cell endurance	10k	—	_	Erase/Write cycles	
t _{P_RET}	Characteristic retention	_	40	_	Year	T _A = 55°C
$V_{P_{REW}}$	V_{DD} for Erase/Write operation	V _{DDMIN} ⁽¹⁾	—	V _{DDMAX}	V	
t _{P_CE}	Chip Erase time	—	10	—	ms	
t _{P_PE}	Page/Multipage Erase time	—	6	—	ms	
t _{P_PW}	Page Write time	—	4	_	ms	
t _{P_BPWE}	Atomic Byte/Page Write/Erase time	_	10	_	ms	
t _{P_CE}	Chip Erase from UPDI on locked device	_	80	_	ms	

† Unless otherwise specified, data in the "Typ." column is at $T_A = 25^{\circ}C$ and $V_{DD} = 3.0V$. These parameters are not tested and are for design guidance only.

* These parameters are characterized but not tested in production.

Note:

1. The Brown-out Detector (BOD) configured with BODLEVEL0 is forced ON during Chip Erase. The erase attempt will fail if the supply voltage V_{DD} is below V_{BOD} for BODLEVEL0.

36.9 Thermal Specifications

Table 36-9. Thermal Specifications

Symbol	Description	Тур.	Unit	Conditions
		73.7	°C/W	14-pin TSSOP package (SS)
		62.1	°C/W	14-pin SOIC package (SO)
		61.4	°C/W	20-pin SSOP package (SS)
		68	°C/W	20-pin VQFN package (REB)
θ_{JA}	Thermal Resistance Junction to Ambient	48.5	°C/W	28-pin PDIP package (SP)
		44	°C/W	28-pin SOIC package (SO)
		53.3	°C/W	28-pin SSOP package (SS)
		33.5	°C/W	32-pin VQFN package (RXB)
		53	°C/W	32-pin TQFP package (PT)

Notes:

1. Calculate power dissipation as follows:

 $\mathsf{P}_{\mathsf{DIS}} = \mathsf{V}_{\mathsf{DD}} \times \{\mathsf{I}_{\mathsf{DD}} - \Sigma \: \mathsf{I}_{\mathsf{OH}}\} + \Sigma \left\{(\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}\} + \Sigma \left(\mathsf{V}_{\mathsf{OI}} \times \mathsf{I}_{\mathsf{OL}}\right)$

2. Calculate Internal Power Dissipation as $P_{INTERNAL} = I_{DD} \times V_{DD}$, where I_{DD} is the current running the chip alone without driving any load on the output pins.

3. Calculate Derated Power as follows: $P_{DER} = PD_{MAX} (T_J - T_A)/\theta_{JA}$, where $T_A = Ambient$ Temperature, $T_J = Junction$ Temperature.

36.10 CLKCTRL

36.10.1 Internal Oscillators

Table 36-10. Internal Oscillators Specifications⁽¹⁾

Symbol	Description	Min.	Тур. †	Max.	Unit	Conditions
£	Precision calibrated OSCHF	_	16	_	MHz	OSCHFFRQ = 0x01
f _{oschf}	frequency	_	20	_	MHz	OSCHFFRQ = 0x00
ſ		_	+/-6		%	OSCHFFRQ = 0x01
f _{CAL}	Frequency tune range	_	+/-6	_	%	OSCHFFRQ = 0x00
% _{CAL}	OSCHF tune step size	_	0.2		%	
E _{OSCHF_TOTAL}	Total error with 16 MHz and 20		<1		%	T _A = 25°C,
	MHz frequency selection	_	~1		90	V _{DD} = 3.0V
		_	<3	_	%	Full operation range
D _{OSCHF}	Duty cycle	—	50	—	%	
t _{oschf_st(3)}	OSCHF start-up time	—	10	—	μs	Within 2% accuracy
f _{OSC32K}	Internal OSC32K frequency	—	32.768		kHz	
E _{OSC32K_TOTAL}			<2		%	T _A = 25°C,
	frequency	_	~2		90	V _{DD} = 3.0V
		_	<10	_	%	Full operation range
D _{OSC32K}	Duty cycle	_	50		%	
t _{osc32K_st} (3)	OSC32K start-up time		220		μs	

.....continued

Symbol Description	Min.	Тур. †	Max.	Unit	Conditions
--------------------	------	--------	------	------	------------

† Unless otherwise specified, data in the "Typ." column is at $T_A = 25$ °C and $V_{DD} = 3.0$ V. These parameters are not tested and are for design guidance only.

Notes:

- 1. To ensure these oscillator frequency tolerances, V_{DD} and GND must be capacitively decoupled as close to the device as possible. 100 nF and 0.1 μ F values in parallel are recommended.
- 2. These values are based on characterization and are not covered by production test limits.
- 3. Wake-up times are measured from the wake-up event to code execution.

36.10.2 PLL

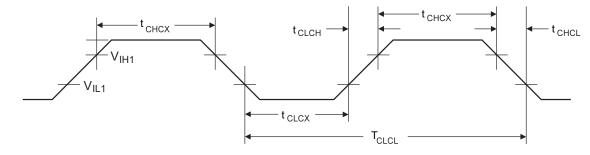
Table 36-11. PLL Specifications

Symbol	Description	Min.	Typ. †	Max.	Unit	Conditions
f _{PLLIN}	PLL input frequency range	2.5	—	5.5	MHz	
f _{PLLOUT}	PLLOUT PLL output frequency range	20	_	40	MHz	MULFAC = 8x
		40	_	80		MULFAC = 16x
t _{PLLST}	PLL lock time	_	20	_	μs	
	horwigo coogified data in the "Two" column is at T	2506	-1.1 2.01	/ T I		ro not tostad and

† Unless otherwise specified, data in the "Typ." column is at $T_A = 25$ °C and $V_{DD} = 3.0V$. These parameters are not tested and are for design guidance only.

36.10.3 XOSC32K

Table 36-12.	32 768 kHz C	rystal Oscillator	(XOSC32K)	Specifications
10010 30 12.	52.700 KHZ C	ystar Ostinator		Specifications


Symbol	Description	Min.	Тур. †	Max.	Unit	Conditions
f _{XOSC32}	Frequency	—	32.768	—	kHz	
C _{XTAL32K1/XTAL32K2}	Parastatic pin capacitance	—	5	—	рF	
C	Crystal load capacitance	—	18	_	рF	XOSC32KCTRLA.LPMODE = 0
C _L Crys		_	8	_	pF	XOSC32KCTRLA.LPMODE = 1
FCD	Fourier Coving Desistance	_	100	_	kΩ	XOSC32KCTRLA.LPMODE = 0
ESR	Equivalent Series Resistance	_	50	_	kΩ	XOSC32KCTRLA.LPMODE = 1
t _{xosc32_st} *	XOSC32 start-up time	_	<200	_	ms	XOSC32KCTRLA.LPMODE = 0
		—	<1000	—	ms	XOSC32KCTRLA.LPMODE = 1

† Unless otherwise specified, data in the "Typ." column is at $T_A = 25$ °C and $V_{DD} = 3.0V$. These parameters are not tested and are for design guidance only.

* Depends on Crystal type and external components.

36.10.4 External Clock

Figure 36-2. External Clock Waveform

Table 36-13. External Clock Specifications

Symbol	Description	Min.	Typ. †	Max.	Unit	Conditions
f _{CLCL} *	Clock frequency	_	-	20	MHz	
T _{CLCL}	Clock period	50	—	—	ns	
t _{CHCX}	High time	_	40	—	%	
t _{CLCX}	Low time	—	40	_	%	
ΔT_{CLCL}	Change in period from cycle to cycle time	—	20	_	%	

† Unless otherwise specified, data in the "Typ." column is at $T_A = 25^{\circ}C$ and $V_{DD} = 3.0V$. These parameters are not tested and are for design guidance only.

*Maximum external Clock frequency requires fCLK_MAIN to meet the specification for Clock frequency vs. VDD.

36.10.5 System Clock

 Table 36-14.
 System Clock Timing Characteristics

Symbol	Description	Min.	Typ. †	Max.	Unit	Conditions
		0	_	5	MHz	$-40^{\circ}C \le T_A \le +85^{\circ}C$ $V_{DD} \ge 1.8V$
	Main clock frequency, industrial temperature range ⁽¹⁾	0	_	10	MHz	$-40^{\circ}C \le T_A \le +85^{\circ}C$ $V_{DD} \ge 2.7V$
f _{CLK_MAIN}		0	_	20	MHz	$-40^{\circ}C \le T_A \le +85^{\circ}C$ $V_{DD} \ge 4.5V$
	Main clock frequency, extended temperature range ⁽¹⁾	0	_	8	MHz	$-40^{\circ}C \le T_A \le +125^{\circ}C$ $V_{DD} \ge 2.7V$
		0	_	16	MHz	$-40^{\circ}C \le T_A \le +125^{\circ}C$ $V_{DD} \ge 4.5V$
	TCF clock frequency, industrial temperature range		-	20	MHz	$-40^{\circ}C \le T_A \le +85^{\circ}C$ $V_{DD} \ge 1.8V$
c.			-	40	MHz	$-40^{\circ}C \le T_A \le +85^{\circ}C$ $V_{DD} \ge 2.7V$
f _{TCF}			_	80	MHz	$-40^{\circ}C \le T_A \le +85^{\circ}C$ $V_{DD} \ge 4.5V$
	TCF clock frequency, extended temperature range	_	_	64	MHz	$-40^{\circ}C \le T_A \le +125^{\circ}C$ $V_{DD} \ge 4.5V$
f _{CY}	Instruction clock frequency	_	f _{CLK_MAIN}	_	MHz	
T _{CY}	Instruction period ⁽²⁾	50	1/f _{CY}	_	ns	

† Unless otherwise specified, data in the "Typ." column is at $T_A = 25^{\circ}C$ and $V_{DD} = 3.0V$. These parameters are not tested and are for design guidance only.

Notes:

- 1. The main clock frequency (CLK_MAIN) is configured by the Clock Select (CLKSEL) bit field, as described in the CLKCTRL Clock Controller section.
- 2. Instruction Cycle Period (T_{CY}) is equivalent to the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in incorrect code execution and/or higher-than-expected current consumption. All devices are tested to operate at 'min' values with an external clock applied to the EXTCLK pin. When using an external clock input, the 'max' cycle time limit is 'DC' (no clock) for all devices.

36.11 RSTCTRL and BOD

Symbol	Description	Min.	Тур. †	Max.	Unit	Conditions
t _{RST} *	RESET pin pulse-width low to ensure a Reset	2.5	—	—	μs	
R _{RST_UP} *	RESET pin pull-up resistor	_	35		kΩ	
T _{OST} ⁽¹⁾	Oscillator start-up timer period		1024		cycles	
			1.75		V	BODLEVEL0
(2)			1.90	2.10	V	BODLEVEL1
V _{BOD+} ⁽²⁾ B	Brown-out Detect Voltage, rising slope	-	2.60	2.80	V	BODLEVEL2
			4.30	4.60	V	BODLEVEL3
		1.62	1.75		V	BODLEVEL0
(2)		1.80	1.90		V	BODLEVEL1
V _{BOD-} (2)	Brown-out Detect Voltage, falling slope	2.43	2.60		V	BODLEVEL2
		4.05	4.30		V	BODLEVEL3
V _{BOD_HYS}	Brown-out Detect hysteresis		25		mV	
t _{BOD_ST}	Brown-out Detect start-up time from sleep	_	30	_	μs	
t _{BOD}	BOD sampling time when used in Sampling mode	_	1/f _{BOD}		ms	
t _{BOD_RST}	Brown-out Reset response time	_	4		μs	$V_{DD} = V_{BOD} - 0.1 V$

Table 36-15. Reset, WDT, Oscillator Start-up Timer, Power-up Timer, Brown-out Detector Specifications

† Unless otherwise specified, data in the "Typ." column is at $T_A = 25$ °C and $V_{DD} = 3.0V$. These parameters are not tested and are for design guidance only.

* These parameters are characterized but not tested in production.

Notes:

- 1. By design, the Oscillator Start-up Timer (T_{OST}) counts the first 1024 cycles, independent of frequency.
- 2. V_{DD} and GND must be capacitively decoupled as close to the device as possible to ensure these voltage tolerances. Recommended values are 0.1 μ F and 0.01 μ F in parallel.

Table 36-16. Voltage Level Monitor Threshold Specifications

Description	Min.	Typ. 🕇	Max.	Unit	Conditions
	_	5	—		VLMLVL = 0x01
Voltage detection threshold	—	15	—	% above BOD threshold	VLMLVL = 0x02
	—	25	_		VLMLVL = 0x03
			-5Voltage detection threshold-15	-5Voltage detection threshold-15-	Image: Notage detection thresholdImage: Solution of the sholdImage: Solution of the sholdVoltage detection thresholdImage: Solution of the shold% above BOD threshold

† Unless otherwise specified, data in the "Typ." column is at $T_A = 25^{\circ}C$ and $V_{DD} = 3.0V$. These parameters are not tested and are for design guidance only.

* These parameters are characterized but not tested in production.

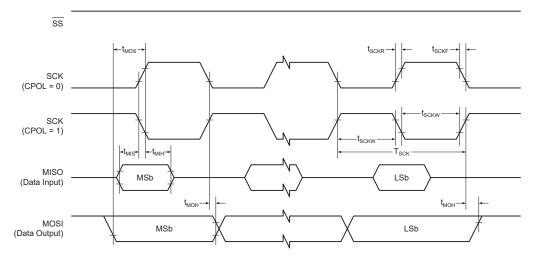
36.12 VREF

Table 36-17. V_{REF} Specifications

Symbol	Description	Min.	Тур. †	Max.	Unit	Conditions
V _{VREF_2V048} ⁽¹⁾	Internal voltage reference 2.048V	-2	_	2	%	$-40^{\circ}C \le T_A \le +85^{\circ}C$ 2.55V $\le V_{DD} \le 5.5V$

conti	nued					
Symbol	Description	Min.	Typ. †	Max.	Unit	Conditions
V _{VREF_1V024} ⁽¹⁾	Internal voltage reference 1.024V		_			$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +85^{\circ}\text{C}$ $1.8\text{V} \le \text{V}_{\text{DD}} \le 5.5\text{V}$
V _{VREF_2V500} ⁽¹⁾	Internal voltage reference 2.5V	-3		3	%	$-40^{\circ}C \le T_A \le +85^{\circ}C$ $3.0V \le V_{DD} \le 5.5V$
V _{VREF_4V096} ⁽¹⁾	Internal voltage reference 4.096V					$-40^{\circ}C \le T_A \le +85^{\circ}C$ $4.6V \le V_{DD} \le 5.5V$
V _{VREF_1V024} ⁽¹⁾	Internal voltage reference 1.024V			5		$-40^{\circ}C \le T_A \le +125^{\circ}C$ $1.8V \le V_{DD} \le 5.5V$
V _{VREF_2V048} ⁽¹⁾	Internal voltage reference 2.048V	-5			04	$\begin{array}{l} -40^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +125^{\circ}\text{C} \\ 2.55\text{V} \leq \text{V}_{\text{DD}} \leq 5.5\text{V} \end{array}$
V _{VREF_2V500} ⁽¹⁾	Internal voltage reference 2.5V	-5	_	5	%	$-40^{\circ}C \le T_A \le +125^{\circ}C$ $3.0V \le V_{DD} \le 5.5V$
V _{VREF_4V096} ⁽¹⁾	Internal voltage reference 4.096V					$-40^{\circ}C \le T_A \le +125^{\circ}C$ $4.6V \le V_{DD} \le 5.5V$
V _{VREF}	Internal voltage reference	_	_	V _{DD} - 0.4	V	
t _{INTREF} *	Delay for changing internal voltage reference	-	_	_	μs	
t _{VREF_ST} *	Internal VREF Start-up Time	_	130	180	μs	
V _{VREFA}	VREFA external reference input pin voltage	1.024	_	V_{DD}	V	

† Unless otherwise specified, data in the "Typ." column is at $T_A = 25^{\circ}C$ and $V_{DD} = 3.0V$. These parameters are not tested and are for design guidance only.


* These parameters are characterized but not tested in production.

Note:

1. The V_{VREF_xVxxx} symbol refers to the respective values of the REFSEL bit fields in the VREF.ADCOREF and VREF.ACREF registers.

36.13 USART

Figure 36-3. USART in SPI Mode - Timing Requirements in Host Mode

Table 36-18. USART in SPI Host Mode - Timing Specifications

Symbol	Description	Min.	Тур. †	Max.	Unit	Condition
f _{SCK} *	SCK clock frequency	—	—	f _{CLK_PER} / 2	MHz	
T _{SCK} *	SCK period	2 × T _{CLK_PER}		_	ns	
t _{sckw}	SCK high/low width		0.5 × T _{SCK}		ns	
t _{SCKR}	SCK rise time		2.7		ns	
t _{SCKF}	SCK fall time		2.7		ns	
t _{MIS}	MISO setup to SCK		10		ns	
t _{MIH}	MISO hold after SCK	_	10	_	ns	
t _{MOS}	MOSI setup to SCK	_	0.5 × T _{SCK}	_	ns	
^т мон	MOSI valid after SCK		1	_	ns	

† Unless otherwise specified, data in the "Typ." column is at $T_A = 25$ °C and $V_{DD} = 3.0V$. These parameters are not tested and are for design guidance only.

* These parameters are characterized but not tested in production.

36.14 SPI

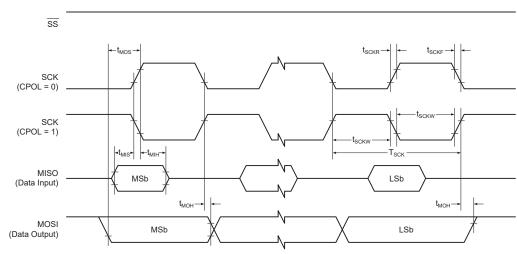


Figure 36-4. SPI - Timing Requirements in Host Mode

Table 36-19. SPI - Timing Specifications in Host Mode

Symbol	Description	Min.	Тур. †	Max.	Unit	Condition
f _{SCK} *	SCK clock frequency	—	—	f _{CLK_PER} / 2	MHz	
T _{SCK} *	SCK period	2 × T _{CLK_PER}			ns	
t _{SCKW}	SCK high/low width		0.5 × T _{SCK}		ns	
t _{SCKR}	SCK rise time		2.7		ns	
t _{SCKF}	SCK fall time		2.7		ns	
t _{MIS}	MISO setup to SCK		10		ns	
t _{MIH}	MISO hold after SCK	_	10	_	ns	
t _{MOS}	MOSI setup to SCK	_	$0.5 \times T_{SCK}$	_	ns	
t _{MOH}	MOSI valid after SCK	_	1		ns	

† Unless otherwise specified, data in the "Typ." column is at $T_A = 25$ °C and $V_{DD} = 3.0V$. These parameters are not tested and are for design guidance only.

* These parameters are characterized but not tested in production.

Figure 36-5. SPI - Timing Requirements in Client Mode

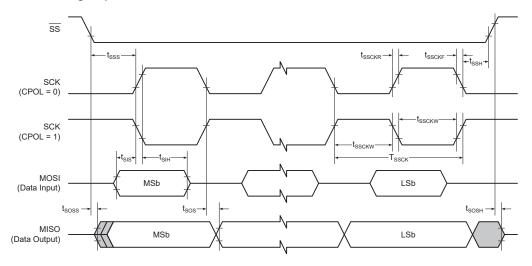
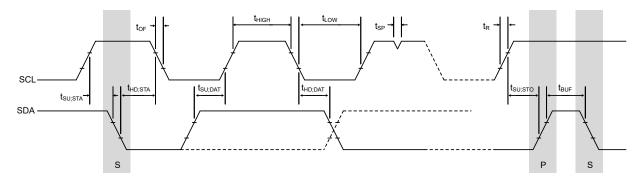


Table 36-20. SPI - Timing Specifications in Client Mode


Symbol	Description	Min.	Тур. †	Max.	Unit	Condition
f _{SSCK} *	Client SCK clock frequency	—	—	f _{CLK_PER} / 6	MHz	
T _{SSCK} *	Client SCK period	6 × T _{CLK_PER}		_	ns	
t _{ssckw} *	SCK high/low width	2 × T _{CLK_PER}		_	ns	
t _{sis} *	MOSI setup to SCK	_	0	_	ns	
t _{SIH} *	MOSI hold after SCK	3 × T _{CLK_PER}		_	ns	
t _{sss} *	SS low before SCK	21		_	ns	
t _{ssH} *	SS high after SCK	20		_	ns	
t _{sos}	MISO valid after SCK	_	8	_	ns	
t _{soss}	MISO valid after SS low	_	11	_	ns	
t _{sosh}	MISO disable time after SS high		8	—	ns	

† Unless otherwise specified, data in the "Typ." column is at $T_A = 25^{\circ}C$ and $V_{DD} = 3.0V$. These parameters are not tested and are for design guidance only.

* These parameters are characterized but not tested in production.

36.15 TWI

Figure 36-6. TWI - Timing Requirements

Table 36-21. TWI - Timing Specifications

Symbol	Description	Min.	Тур. †	Max.	Unit	Condition
f _{SCL}	SCL clock frequency	_	_	1000	kHz	Max. frequency requires system clock over 12 MHz
V _{HYS}	Hysteresis of Schmitt Trigger inputs	$0.05 \times V_{DD}$	_	$0.4 \times V_{DD}$	V	
M	Output law value as	_	_	0.4V	V	I_{load} = 3 mA, V_{DD} > 2V
V _{OL}	Output low voltage	_	_	$0.2 \times V_{DD}$	V	$I_{load} = 2 \text{ mA}, V_{DD} \le 2V$
I	Low lovel output current	3	—	—	m۸	V _{OL} = 0.4V, V _{DD} > 2
I _{OL}	Low-level output current	2	_	_	mA	$0.2 \times V_{DD}, V_{DD} \le 2V$
t _{SP} *	Spikes suppressed by the input filter	0	—	50	ns	
		4.0	_			f _{SCL} ≤ 100 kHz
t _{HD_STA} *	Hold time (repeated) Start condition	0.6	_	_	μs	f _{SCL} ≤ 400 kHz
	Condition	0.26				f _{SCL} ≤ 1 MHz
		4.7	_			f _{SCL} ≤ 100 kHz
T _{LOW} *	Low period of SCL Clock	0.6	_	_	μs	f _{SCL} ≤ 400 kHz
		0.35	_			f _{SCL} ≤ 1 MHz
		4.0	_			f _{SCL} ≤ 100 kHz
T _{HIGH} *	High period of SCL Clock	0.6			μs	f _{SCL} ≤ 400 kHz
		0.26				f _{SCL} ≤ 1 MHz
		4.7		_		f _{SCL} ≤ 100 kHz
t _{su_sta} *	Setup time for a repeated Start condition	0.6	_	—	μs	f _{SCL} ≤ 400 kHz
		0.26		_		f _{SCL} ≤ 1 MHz
4 4	Data hald time	_	0	_		SDAHOLD[1:0] = 0×0
t _{HD_DAT} *	Data hold time	300		900	ns	SDAHOLD[1:0] = 0x3
		250		_		f _{SCL} ≤ 100 kHz
t _{SU_DAT} *	Data setup time	100	_	_	ns	f _{SCL} ≤ 400 kHz
		50	_			f _{SCL} ≤ 1 MHz
		4	_	_		f _{SCL} ≤ 100 kHz
t _{SU_STO} *	Setup time for Stop condition	0.6	_	—	μs	f _{SCL} ≤ 400 kHz
		0.26	_	—		f _{SCL} ≤ 1 MHz
+ *	Bus free time between a Stop and	4.7		_		f _{SCL} ≤ 100 kHz
t _{BUF} *	Start condition	1.3	_	—	μs	f _{SCL} ≤ 400 kHz
t _{CS}	Client Clock Stretching delay	_		250	ns	

† Unless otherwise specified, data in the "Typ." column is at $T_A = 25$ °C and $V_{DD} = 3.0$ V. These parameters are not tested and are for design guidance only.

* These parameters are not tested and are for design guidance only.

36.16 ADC

Table 36-22. Power Supply, Reference and Input Range

Operating conditions:

V_{DD} = 3.0V

T_A = 25°C

Applies for all allowed combinations of VREF selections and sample rates unless otherwise specified

Characteristics are identical with and without PGA enabled unless otherwise specified

Symbol	Description	Min.	Тур. †	Max.	Unit	Conditions
V _{DD}	Supply voltage	1.8	—	5.5	V	
V _{REF}	Reference voltage	1.024	_	V _{DD}	V	
C	Input conscitance		2.5	_	р Г	PGA disabled
C _{IN}	Input capacitance		7	<u> </u>	pF	PGA enabled
D	Input register co		3		kΩ	PGA disabled
R _{IN}	Input resistance		2.5	_	kΩ	PGA enabled
M		0	_	V _{REF}	V	Single-Ended mode
V _{IN}	Input voltage range	-0.1	_	V _{DD} + 0.1	V	Differential mode

† Unless otherwise specified, data in the "Typ." column is at $T_A = 25$ °C and $V_{DD} = 3.0$ V. These parameters are not tested and are for design guidance only.

Table 36-23. Clock and Timing Characteristics

Operating conditions:		
V _{DD} = 3.0V		
T _A = 25°C		
	 .	

Applies for all allowed combinations of VREF selections and sample rates unless otherwise specified Characteristics are identical with and without PGA enabled unless otherwise specified

Symbol	Description	Min.	Тур. †	Max.	Unit	Conditions
		300	—	2000		REFSEL = Internal Reference
CLK_ADC	ADC clock frequency	300	_	6000	kHz	REFSEL = External Reference REFSEL = V _{DD}

† Unless otherwise specified, data in the "Typ." column is at $T_A = 25^{\circ}C$ and $V_{DD} = 3.0V$. These parameters are not tested and are for design guidance only.

Table 36-24. Accuracy Characteristics

Res	Resolution	_	_	12	bit				
Symbol	Description	Min.	Typ. †	Max.	Unit	Conditions			
CPU in Ic	lle sleep mode								
Different	tial mode								
f _{CLK_ADC} =	f _{CLK_ADC} = 2.5 MHz								
T _A = 25°C	T _A = 25°C								
$V_{REF} = Ex$	V _{REF} = External 2.048V								
V _{DD} = 3.0)V								
Operating co	onditions:								

.....continued

Operating conditions:

V_{DD} = 3.0V V_{REF} = External 2.048V

 $T_A = 25^{\circ}C$

T_A = 25 C

f_{CLK_ADC} = 2.5 MHz Differential mode

CPU in Idle sleep mode

Symbol	Description	Min.	Тур. †	Max.	Unit	Conditions
E _{INL}	Integral nonlinearity ⁽¹⁾	-2.3	0.8	+2.3	-	
E _{DNL}	Differential nonlinearity ⁽¹⁾	-0.9	0.8	+1.6		
E _{OFF}	Offset error	-15	1.5	+15	LSb	PGA disabled
E _{GAIN}	Gain error	—	0.6	—		PGA disabled
E _T	Total unadjusted error	_	5	_		PGA disabled

† Unless otherwise specified, data in the "Typ." column is at $T_A = 25^{\circ}C$ and $V_{DD} = 3.0V$. These parameters are not tested and are for design guidance only.

Note:

1. Unless indicated otherwise, the linearity characteristics stay identical regardless of whether the PGA is activated.

Table 36-25. PGA Characteristics

Operating constraints $V_{DD} = 3.0$ -40°C ≤ T						
Symbol	Description	Min.	Typ. †	Max.	Unit	Conditions
N _{RMS} Input noi:		—	32	_		PGA Gain = 1V/V
		_	63		μV _{RMS}	PGA Gain = 2V/V
	Input noise	_	125	_		PGA Gain = 4V/V
		_	250	_		PGA Gain = 8V/V
		—	500	_		PGA Gain = 16V/V
		_	-0.2	_		PGA Gain = 1V/V
		_	-0.2	_		PGA Gain = 2V/V
E _{GAIN}	Gain error		-0.3	_	%	PGA Gain = 4V/V
			-0.6	_		PGA Gain = 8V/V
			-0.8	_		PGA Gain = 16V/V

† Data in the "Typ." column is at $T_A = 25^{\circ}C$ and $V_{DD} = 3.0V$ unless otherwise specified. These parameters are not tested and are for design guidance only.

36.17 AC

Table 36-26. Analog Comparator Specifications

Operating conditions:						
V _{DD} = 3.0V						
$T_A = 2$	25°C					
Symbol	Description	Min.	Typ. †	Max.	Unit	Conditions
V _{IN} *	Input voltage range	-0.2	—	V _{DD}	V	
11.5						

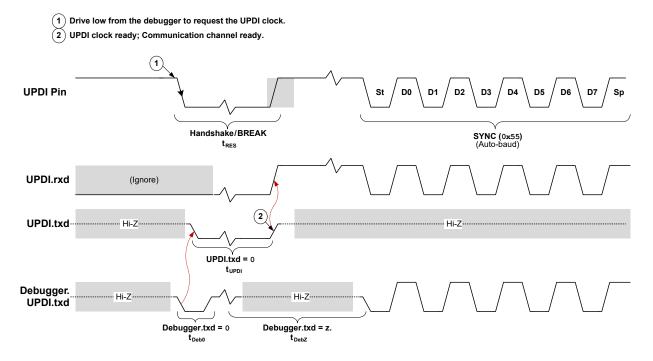
.....continued

	-		itions:
inera	τιησ	cond	itions.

V_{DD} = 3.0V

T _A = 25	T _A = 25°C					
Symbol	Description	Min.	Тур. †	Max.	Unit	Conditions
V _{OFF} ⁽¹⁾	Input offset voltage	—	±10	—	mV	0.1V < V _{IN} < (V _{DD} - 0.1V)
	Hysteresis		10	—	mV	CTRLA.HYSMODE = 0x1
V _{HYST} (2)			20	—		CTRLA.HYSMODE = 0x2
			30	—		CTRLA.HYSMODE = 0x3
t _{RESP} *	Response time, rising edge		90	—	ns	CTRLA.POWER = 0x0 V _{CM} =
LRESP "	Response time, falling edge		90		ns	V _{DD} /2

⁺ Unless otherwise specified, data in the "Typ." column is at T_A = 25°C and V_{DD} = 3.0V. These parameters are not tested and are for design guidance only.

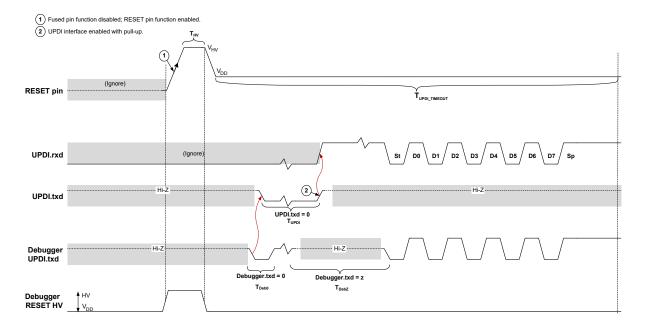

* These parameters are characterized but not tested in production.

Notes:

- 1. Defining the offset finds its basis in the falling edge.
- Hysteresis is implemented in relation to the rising edge. 2.

36.18 UPDI

Table 36-27. UPDI Timing Specifications


Symbol	Description	Min.	Max.	Unit	Conditions
t _{RES} *	Duration of Handshake/Break on RESET	10	200	μs	
t _{UPDI} *	Duration of UPDI.txd = 0	10	200	μs	
t _{Deb0} *	Duration of Debugger.txd = 0	0.2	1	μs	
t _{DebZ} *	Duration of Debugger.txd = z	200	14000	μs	

Symbol	Description	Min.	Max.	Unit	Conditions
f _{UPDI} *	UPDI clock frequency	-	4	MHz	$1.8V \le V_{DD} \le 5.5V$ T _A < 0°C or T _A > +50°C
		_	8		$1.8V \le V_{DD} \le 5.5V$ $0^{\circ}C \le T_{A} \le +50^{\circ}C$
		_	8		$2.7V \le V_{DD} \le 5.5V$ T _A < 0°C or T _A > +50°C
		_	16		$2.7V \le V_{DD} \le 5.5V$ $0^{\circ}C \le T_A \le +50^{\circ}C$
		_	16		$4.5V \le V_{DD} \le 5.5V$ T _A < 0°C or T _A > +50°C
		_	32		$4.5V \le V_{DD} \le 5.5V$ $0^{\circ}C \le T_{A} \le +50^{\circ}C$

* These parameters are characterized but not tested in production.

Table 36-28. UPDI HV Pulse Specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Conditions		
V _{HV} *	Debugger RESET HV signal level	V _{DD} +2	7.5	8.5	v	Never exceed the abs. max. ratings of the RESET pin		
T _{HV} **	Debugger RESET HV signal duration	10			μs			
T _{UPDI_TIMEOUT} *	Time to receive valid key after HV pulse		65		ms			
* These parameters are characterized but not tested in production.								
** These parameters are for design guidance only and are not tested.								

37. Characteristics Graphs

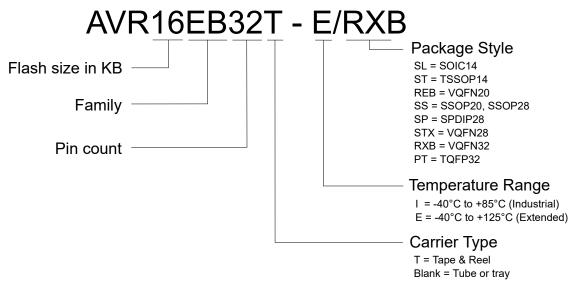
Characteristics Graphs are not available at this time.

38. Ordering Information

- Available ordering options can be found by:
 - Clicking on one of the following product page links:
 - AVR16EB32 Product Page
 - AVR16EB28 Product Page
 - AVR16EB20 Product Page
 - AVR16EB14 Product Page
 - Searching by product name at microchipdirect.com
 - Contacting the local sales representative

Note: Automotive-grade ordering codes (VAO suffix) are set up on request and not listed in Table 38-1. Contact your local Microchip sales representative to request VAO ordering codes not present on the respective product page.

Table 38-1. Available Product Numbers


			Dackago Typo		
Ordering Code	Flash/SRAM	Pin Count	Package Type		Carrier Type
AVR16EB32T-E/PT	16 KB/2 KB	32	TQFP	-40°C to +125°C	Tape & Reel
AVR16EB32T-E/RXB	16 KB/2 KB	32	VQFN	-40°C to +125°C	Tape & Reel
AVR16EB28T-E/STX	16 KB/2 KB	28	VQFN	-40°C to +125°C	Tape & Reel
AVR16EB28T-E/SS	16 KB/2 KB	28	SSOP	-40°C to +125°C	Tape & Reel
AVR16EB28T-E/SP	16 KB/2 KB	28	SPDIP	-40°C to +125°C	Tape & Reel
AVR16EB20T-E/SS	16 KB/2 KB	20	SSOP	-40°C to +125°C	Tape & Reel
AVR16EB20T-E/REB	16 KB/2 KB	20	VQFN	-40°C to +125°C	Tape & Reel
AVR16EB14T-E/ST	16 KB/2 KB	14	TSSOP	-40°C to +125°C	Tape & Reel
AVR16EB14T-E/SL	16 KB/2 KB	14	SOIC	-40°C to +125°C	Tape & Reel
AVR16EB32T-I/PT	16 KB/2 KB	32	TQFP	-40°C to +85°C	Tape & Reel
AVR16EB32T-I/RXB	16 KB/2 KB	32	VQFN	-40°C to +85°C	Tape & Reel
AVR16EB28T-I/STX	16 KB/2 KB	28	VQFN	-40°C to +85°C	Tape & Reel
AVR16EB28T-I/SS	16 KB/2 KB	28	SSOP	-40°C to +85°C	Tape & Reel
AVR16EB28T-I/SP	16 KB/2 KB	28	SPDIP	-40°C to +85°C	Tape & Reel
AVR16EB20T-I/SS	16 KB/2 KB	20	SSOP	-40°C to +85°C	Tape & Reel
AVR16EB20T-I/REB	16 KB/2 KB	20	VQFN	-40°C to +85°C	Tape & Reel
AVR16EB14T-I/ST	16 KB/2 KB	14	TSSOP	-40°C to +85°C	Tape & Reel
AVR16EB14T-I/SL	16 KB/2 KB	14	SOIC	-40°C to +85°C	Tape & Reel
AVR16EB32-E/PT	16 KB/2 KB	32	TQFP	-40°C to +125°C	Tray
AVR16EB32-E/RXB	16 KB/2 KB	32	VQFN	-40°C to +125°C	Tray
AVR16EB28-E/STX	16 KB/2 KB	28	VQFN	-40°C to +125°C	Tray
AVR16EB28-E/SS	16 KB/2 KB	28	SSOP	-40°C to +125°C	Tube
AVR16EB28-E/SP	16 KB/2 KB	28	SPDIP	-40°C to +125°C	Tube
AVR16EB20-E/SS	16 KB/2 KB	20	SSOP	-40°C to +125°C	Tube
AVR16EB20-E/REB	16 KB/2 KB	20	VQFN	-40°C to +125°C	Tray
AVR16EB14-E/ST	16 KB/2 KB	14	TSSOP	-40°C to +125°C	Tube
AVR16EB14-E/SL	16 KB/2 KB	14	SOIC	-40°C to +125°C	Tube
AVR16EB32-I/PT	16 KB/2 KB	32	TQFP	-40°C to +85°C	Tray
AVR16EB32-I/RXB	16 KB/2 KB	32	VQFN	-40°C to +85°C	Tray
AVR16EB28-I/STX	16 KB/2 KB	28	VQFN	-40°C to +85°C	Tray

continued					
Ordering Code	Flash/SRAM	Pin Count	Package Type	Temperature Range	Carrier Type
AVR16EB28-I/SS	16 KB/2 KB	28	SSOP	-40°C to +85°C	Tube
AVR16EB28-I/SP	16 KB/2 KB	28	SPDIP	-40°C to +85°C	Tube
AVR16EB20-I/SS	16 KB/2 KB	20	SSOP	-40°C to +85°C	Tube
AVR16EB20-I/REB	16 KB/2 KB	20	VQFN	-40°C to +85°C	Tray
AVR16EB14-I/ST	16 KB/2 KB	14	TSSOP	-40°C to +85°C	Tube
AVR16EB14-I/SL	16 KB/2 KB	14	SOIC	-40°C to +85°C	Tube

Figure 38-1. Product Identification System

To order or obtain information, for example on pricing or delivery, refer to the factory or the listed sales office.

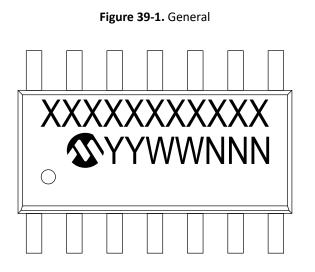
Note: The Tape & Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with the Microchip Sales Office for package availability with the Tape & Reel option.

39. Packaging Information

39.1 Online Package Drawings

For the most recent package drawings:

- 1. Go to www.microchip.com/packaging.
- 2. Go to the package type-specific page (e.g., VQFN).
- 3. Search for Drawing Number and Style to find the most recent package drawing.


Table 39-1. Drawing Numbers

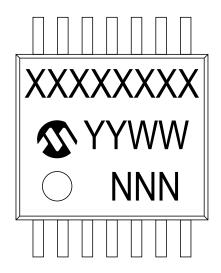
Pin Count	Package Type	Drawing Number	Style
14	SOIC	C04-00065	SL
14	TSSOP	C04-00087	ST
20	SSOP	C04-00072	SS
20	VQFN	C04-21380	REB
20	VQFN wf	C04-00476	2LX
28	SPDIP	C04-00070	SP
28	SSOP	C04-00073	SS
28	VQFN	C04-00456	STX
32	VQFN	C04-21395	RXB
32	WQFN wf	C04-21511	QZB
32	TQFP	C04-00074	PT

39.2 Package Marking Information

Legend	: XXX Y YY WW NNN @3	Customer-specific information or Microchip part number Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn)
	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

39.2.2 14-Pin TSSOP

Figure 39-3. General



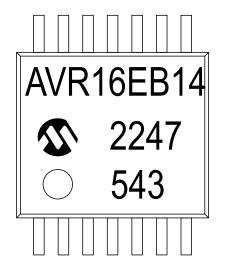
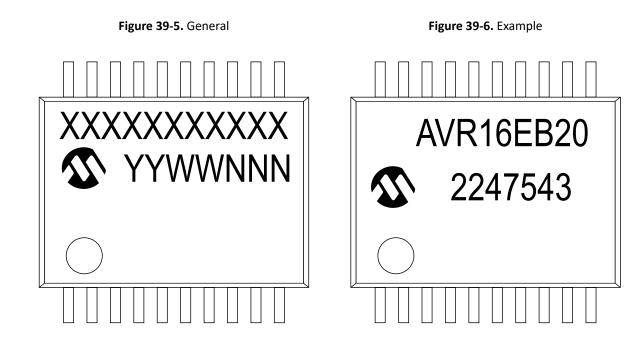
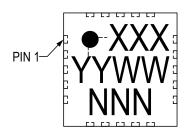

Figure 39-4. Example

Figure 39-2. Example


AVR16EB14

2247543

 \bigcirc



39.2.4 20-Pin VQFN

Figure 39-7. General

39.2.5 20-Pin VQFN Wettable Flanks

Figure 39-9. General

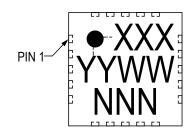


Figure 39-8. Example

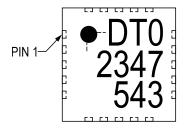


Figure 39-10. Example

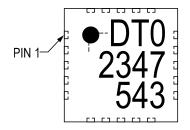


Figure 39-11. General

39.2.7 28-Pin SSOP

 Figure 39-13. General
 Figure 39-14. Example

 XXXXXXXXXXX
 AVR16EB28 @3

 XYYWWNNN
 X2347543

39.2.8 28-Pin VQFN

Figure 39-15. General

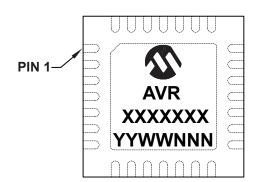
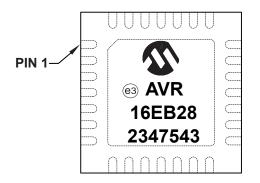
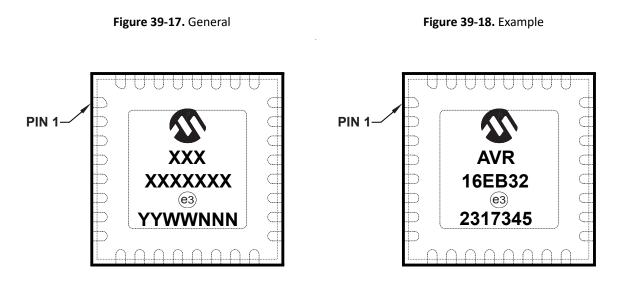


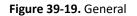
Figure 39-16. Example

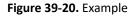

Figure 39-12. Example

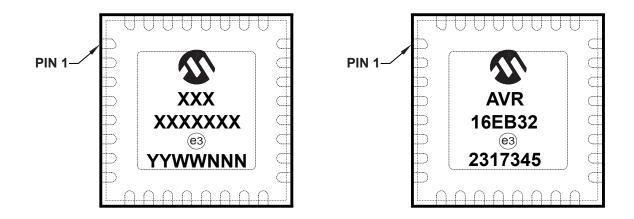
2347543


AVR16EB28

<u>____</u>


(e3)





39.2.10 32-Pin VQFN Wettable Flanks

Figure 39-21. General

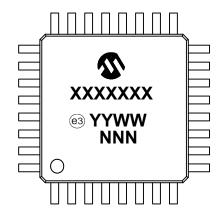
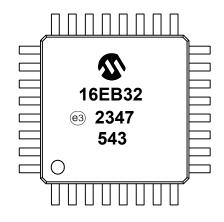
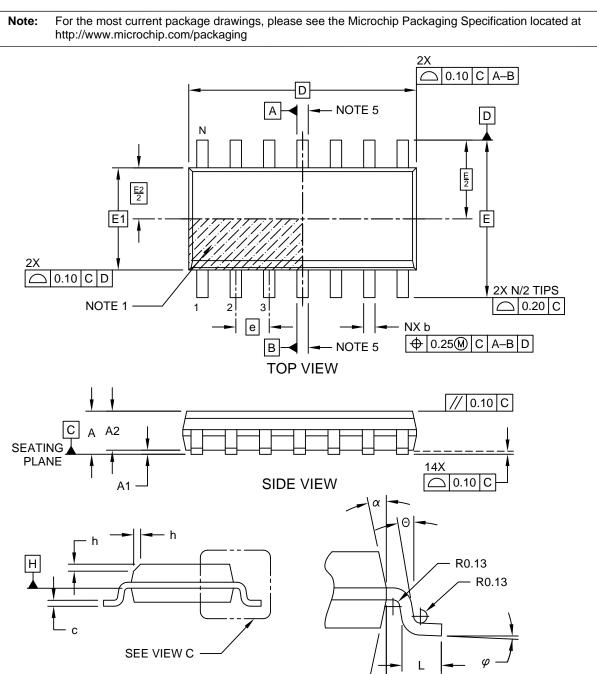



Figure 39-22. Example



39.3 Package Drawings

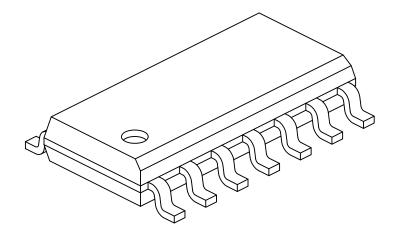
39.3.1 14-Pin SOIC

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

VIEW A–A

Microchip Technology Drawing No. C04-065-SL Rev D Sheet 1 of 2

(L1)


VIEW C

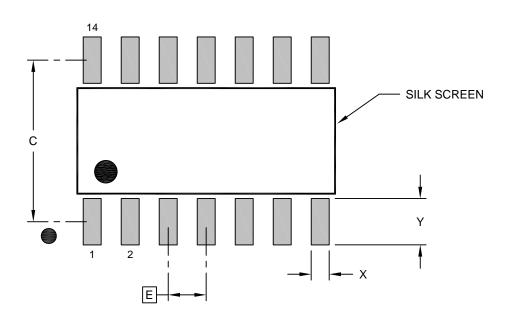
β

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Number of Pins	Ν		14	
Pitch	е		1.27 BSC	
Overall Height	А	-	-	1.75
Molded Package Thickness	A2	1.25	-	-
Standoff §	A1	0.10	-	0.25
Overall Width	Е		6.00 BSC	
Molded Package Width	E1	3.90 BSC		
Overall Length	D	8.65 BSC		
Chamfer (Optional)	h	0.25	-	0.50
Foot Length	L	0.40	-	1.27
Footprint	L1		1.04 REF	
Lead Angle	Θ	0°	-	-
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.10	-	0.25
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°

Notes:


- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-065-SL Rev D Sheet 2 of 2

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

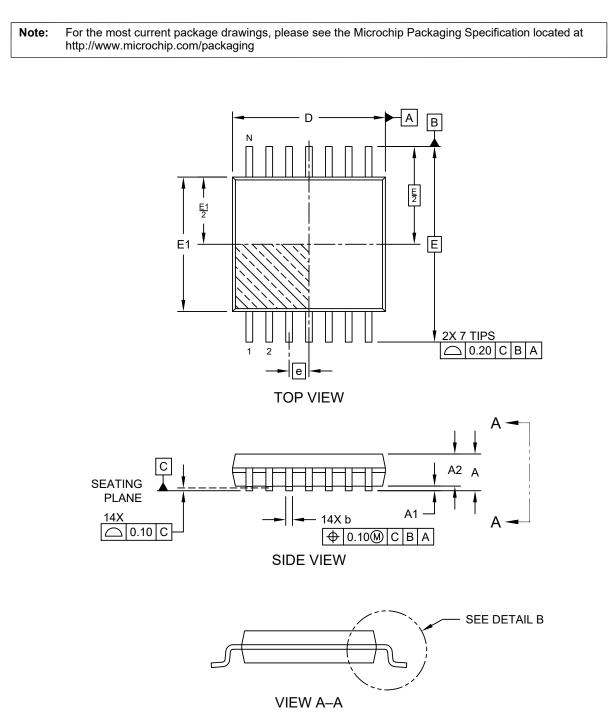
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

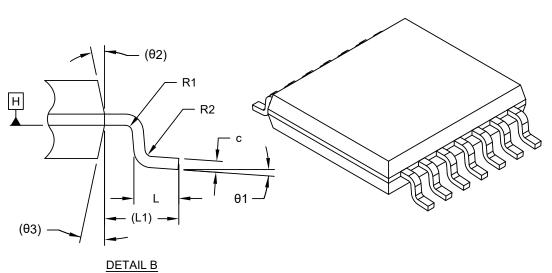
	I	MILLIMETER	S	
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		1.27 BSC	
Contact Pad Spacing	С		5.40	
Contact Pad Width (X14)	Х			0.60
Contact Pad Length (X14)	Y			1.55

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2065-SL Rev D


39.3.2 14-Pin TSSOP

14-Lead Plastic Thin Shrink Small Outline Package [ST] - 4.4 mm Body [TSSOP]

Microchip Technology Drawing C04-087-ST Rev F Sheet 1 of 2

14-Lead Plastic Thin Shrink Small Outline Package [ST] - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

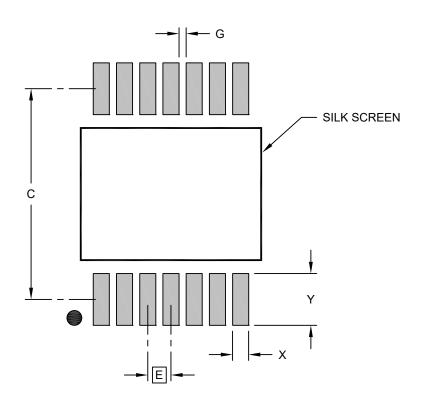
)	E.	TΑ	١I	L	В	

	Units			MILLIMETERS		
	Dimension	Limits	MIN	NOM	MAX	
Number of Terminals		Ν		14		
Pitch		е		0.65 BSC		
Overall Height		А	_	_	1.20	
Standoff		A1	0.05	-	0.15	
Molded Package Thickness		A2	0.80	1.00	1.05	
Overall Length		D	4.90	5.00	5.10	
Overall Width		Е	6.40 BSC			
Molded Package Width		E1	4.30	4.40	4.50	
Terminal Width		b	0.19	-	0.30	
Terminal Thickness		С	0.09	-	0.20	
Terminal Length		L	0.45	0.60	0.75	
Footprint		L1		1.00 REF		
Lead Bend Radius		R1	0.09	-	_	
Lead Bend Radius		R2	0.09	_	_	
Foot Angle		θ1	0°	_	8°	
Mold Draft Angle		θ2	_	12° REF	_	
Mold Draft Angle		θ3	_	12° REF	_	

Notes:

Pin 1 visual index feature may vary, but must be located within the hatched area.
 Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-087-ST Rev F Sheet 2 of 2

14-Lead Plastic Thin Shrink Small Outline Package [ST] – 4.4 mm Body [TSSOP]

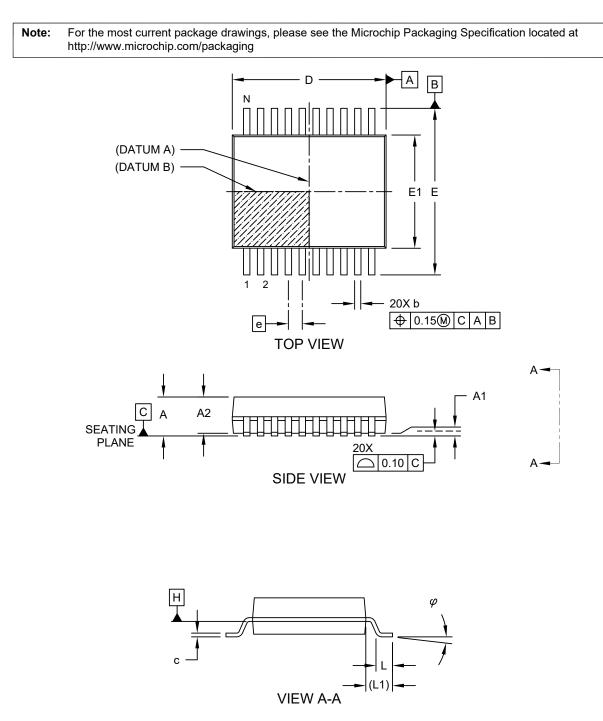
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Ν	IILLIMETER	S	
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.65 BSC	
Contact Pad Spacing	С		5.90	
Contact Pad Width (X14)	Х			0.45
Contact Pad Length (X14)	Y			1.45
Contact Pad to Contact Pad (X12)	G	0.20		

Notes:

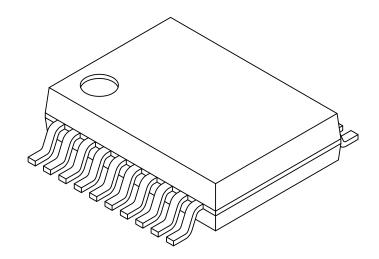
1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2087-ST Rev F

39.3.3 20-Pin SSOP

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]



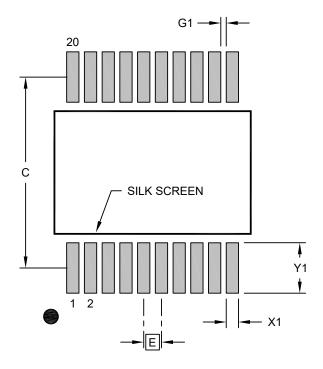
Microchip Technology Drawing C04-072 Rev C Sheet 1 of 2

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Ν	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Number of Pins	Ν		20		
Pitch	е		0.65 BSC		
Overall Height	Α	-	-	2.00	
Molded Package Thickness	A2	1.65	1.75	1.85	
Standoff	A1	0.05	-	-	
Overall Width	E	7.40	7.80	8.20	
Molded Package Width	E1	5.00	5.30	5.60	
Overall Length	D	6.90	7.20	7.50	
Foot Length	L	0.55	0.75	0.95	
Footprint	L1	1.25 REF			
Lead Thickness	С	0.09	-	0.25	
Foot Angle	φ	0°	4°	8°	
Lead Width	b	0.22	-	0.38	

Notes:


- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

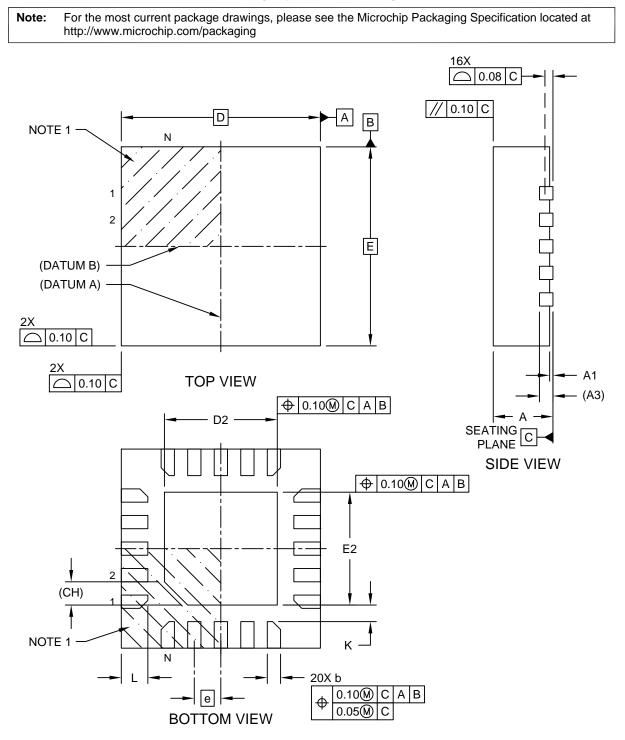
Microchip Technology Drawing C04-072 Rev C Sheet 2 of 2

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Ν	IILLIMETER	S	
Dimension	Dimension Limits		NOM	MAX
Contact Pitch	Е		0.65 BSC	
Contact Pad Spacing	С		7.00	
Contact Pad Width (X20)	X1			0.45
Contact Pad Length (X20)	Y1			1.85
Contact Pad to Center Pad (X18)	G1	0.20		

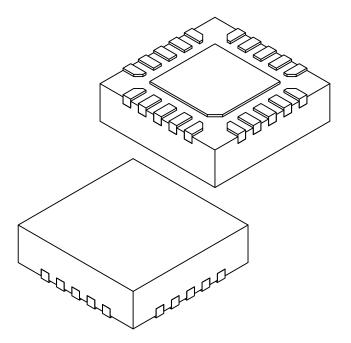
Notes:


- 1. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2072 Rev C

39.3.4 20-Pin VQFN

20-Lead Very Thin Plastic Quad Flat, No Lead Package (REB) - 3x3 mm Body [VQFN] With 1.7 mm Exposed Pad; Atmel Legacy Global Package Code ZCL



Microchip Technology Drawing C04-21380 Rev A Sheet 1 of 2

20-Lead Very Thin Plastic Quad Flat, No Lead Package (REB) - 3x3 mm Body [VQFN] With 1.7 mm Exposed Pad; Atmel Legacy Global Package Code ZCL

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

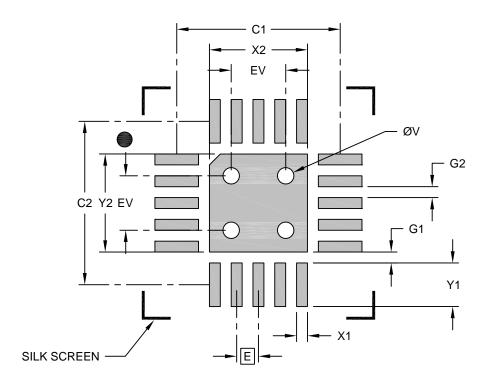
	Units			S
Dimension Limits		MIN	NOM	MAX
Number of Terminals	N		20	
Pitch	е		0.40 BSC	
Overall Height	Α	0.80	0.85	0.90
Standoff	A1	0.00	0.035	0.05
Terminal Thickness	A3	0.203 REF		
Overall Length	D		3.00 BSC	
Exposed Pad Length	D2	1.60	1.70	1.80
Overall Width	E		3.00 BSC	
Exposed Pad Width	E2	1.60	1.70	1.80
Terminal Width	b	0.15	0.20	0.25
Terminal Length	L	0.35	0.40	0.45
Terminal-to-Exposed-Pad	К	0.20	-	-
Pin 1 Index Chamfer	СН		0.35 REF	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-21380 Rev A Sheet 2 of 2

20-Lead Very Thin Plastic Quad Flat, No Lead Package (REB) - 3x3 mm Body [VQFN] With 1.7 mm Exposed Pad; Atmel Legacy Global Package Code ZCL

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

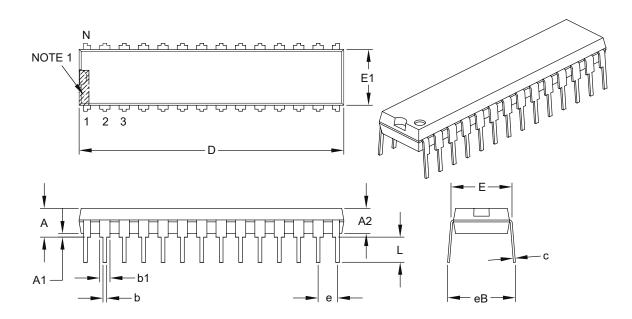
	Units		IILLIMETER	S
Dimension	Dimension Limits		NOM	MAX
Contact Pitch	E		0.40 BSC	
Optional Center Pad Width	X2			1.80
Optional Center Pad Length	Y2			1.80
Contact Pad Spacing	C1		3.00	
Contact Pad Spacing	C2		3.00	
Contact Pad Width (X20)	X1			0.20
Contact Pad Length (X20)	Y1			0.80
Contact Pad to Center Pad (X20)	G1	0.20		
Contact Pad to Contact Pad (X16)	G2	0.20		
Thermal Via Diameter	V		0.30	
Thermal Via Pitch	EV		1.00	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process


Microchip Technology Drawing C04-23380 Rev A

39.3.5 28-Pin SPDIP

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
Dimen	sion Limits	MIN	NOM	MAX
Number of Pins	Ν		28	
Pitch	е		.100 BSC	
Top to Seating Plane	А	-	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	-	-	.430

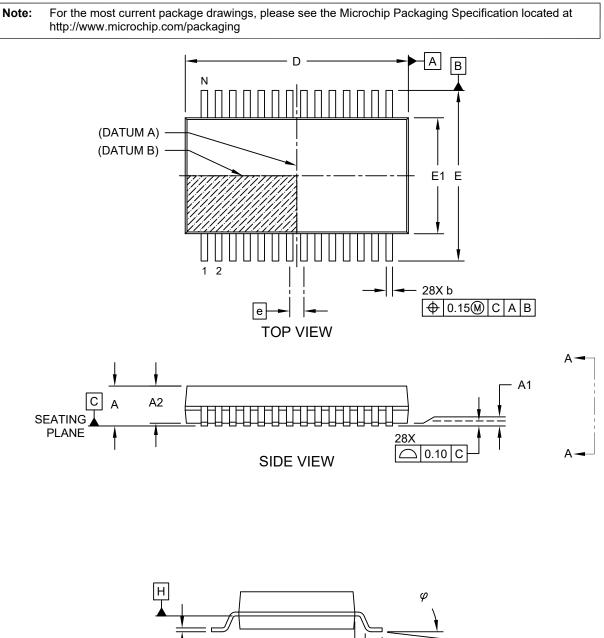
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

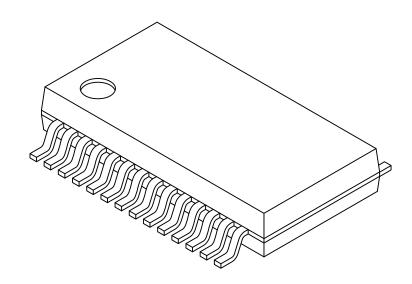
4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

39.3.6 28-Pin SSOP

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]


с

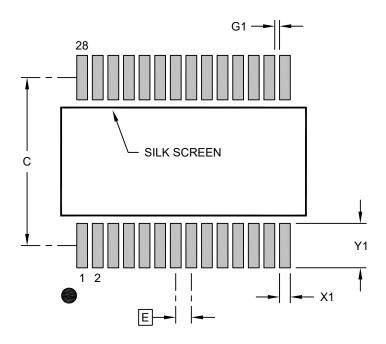
Microchip Technology Drawing C04-073 Rev C Sheet 1 of 2

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		28	
Pitch	е		0.65 BSC	
Overall Height	Α	-	-	2.00
Molded Package Thickness	A2	1.65	1.75	1.85
Standoff	A1	0.05	-	-
Overall Width	E	7.40	7.80	8.20
Molded Package Width	E1	5.00	5.30	5.60
Overall Length	D	9.90	10.20	10.50
Foot Length	L	0.55	0.75	0.95
Footprint	L1	1.25 REF		
Lead Thickness	С	0.09	-	0.25
Foot Angle	φ	0°	4°	8°
Lead Width	b	0.22	-	0.38

Notes:


- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073 Rev C Sheet 2 of 2

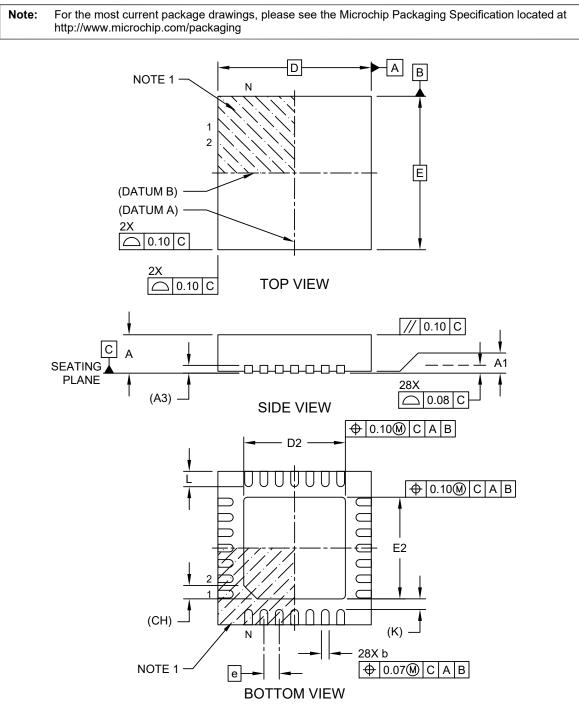
28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units		MILLIMETERS		
Dimension	Dimension Limits		NOM	MAX	
Contact Pitch	E		0.65 BSC		
Contact Pad Spacing	С		7.00		
Contact Pad Width (X28)	X1			0.45	
Contact Pad Length (X28)	Y1			1.85	
Contact Pad to Center Pad (X26)	G1	0.20			

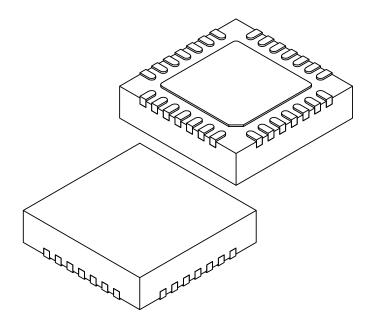
Notes:


- 1. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2073 Rev B

39.3.7 28-Pin VQFN

28-Lead Very Thin Plastic Quad Flat, No Lead (STX) - 4x4x1.0 mm Body [VQFN] With 2.65x2.65 mm Exposed Pad



Microchip Technology Drawing C04-456 Rev C Sheet 1 of 2

28-Lead Very Thin Plastic Quad Flat, No Lead (STX) - 4x4x1.0 mm Body [VQFN] With 2.65x2.65 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	Ν	IILLIMETER	S
Dimension	Limits	MIN	NOM	MAX
Number of Terminals	N		28	
Pitch	е		0.40 BSC	
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3	0.203 REF		
Overall Length	D	4.00 BSC		
Exposed Pad Length	D2	2.55	2.65	2.75
Overall Width	Е		4.00 BSC	
Exposed Pad Width	E2	2.55	2.65	2.75
Exposed Pad Corner Chamfer	СН	0.35 REF		
Terminal Width	b	0.15	0.20	0.25
Terminal Length	L	0.30	0.40	0.50
Terminal-to-Exposed-Pad	К		0.275 REF	

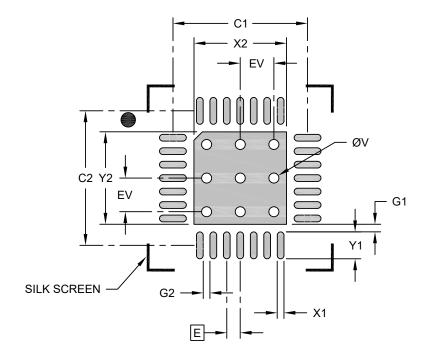
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

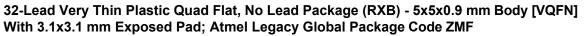
Microchip Technology Drawing C04-456 Rev C Sheet 2 of 2

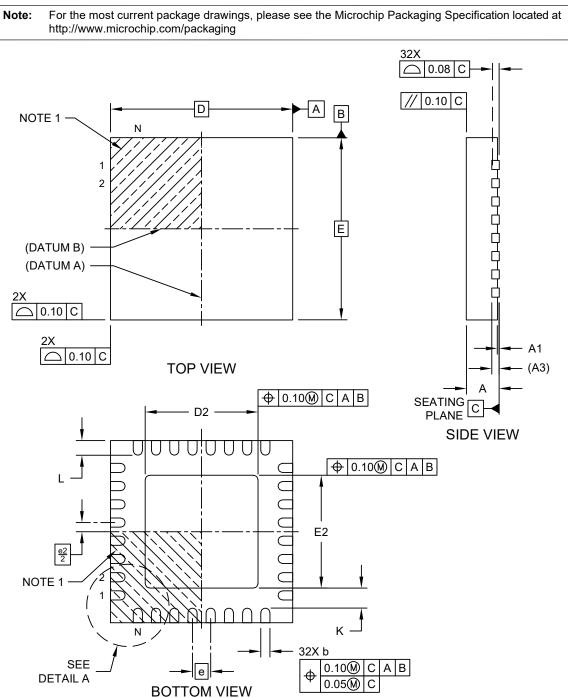
28-Lead Very Thin Plastic Quad Flat, No Lead (STX) - 4x4x1.0 mm Body [VQFN] With 2.65x2.65 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

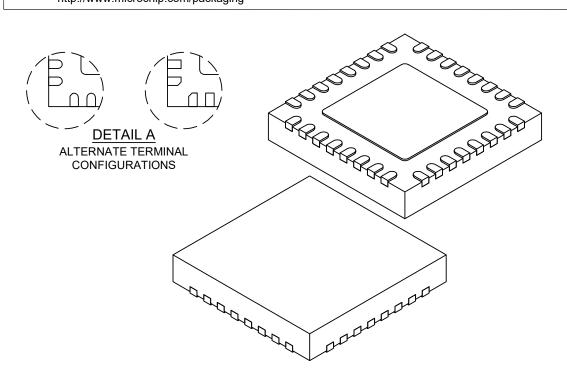
	Units		MILLIMETERS		
Dimension	Dimension Limits		NOM	MAX	
Contact Pitch	Е		0.40 BSC		
Optional Center Pad Width	X2			2.75	
Optional Center Pad Length	Y2			2.75	
Contact Pad Spacing	C1		4.00		
Contact Pad Spacing	C2		4.00		
Contact Pad Width (X28)	X1			0.20	
Contact Pad Length (X28)	Y1			0.80	
Contact Pad to Center Pad (X28)	G1	0.23			
Contact Pad to Contact Pad (X24)	G2	0.20			
Thermal Via Diameter	V		0.30		
Thermal Via Pitch	EV		1.00		


Notes:


- 1. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2456 Rev C

39.3.8 32-Pin VQFN



Microchip Technology Drawing C04-21395-RXB Rev C Sheet 1 of 2

32-Lead Very Thin Plastic Quad Flat, No Lead Package (RXB) - 5x5x0.9 mm Body [VQFN] With 3.1x3.1 mm Exposed Pad; Atmel Legacy Global Package Code ZMF

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimension	I Limits	MIN	NOM	MAX
Number of Terminals	N		32	
Pitch	е		0.50 BSC	
Overall Height	Α	0.80	0.85	0.90
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3	0.203 REF		
Overall Length	D	5.00 BSC		
Exposed Pad Length	D2	3.00	3.10	3.20
Overall Width	E		5.00 BSC	
Exposed Pad Width	E2	3.00	3.10	3.20
Terminal Width	b	0.18	0.25	0.30
Terminal Length	L	0.30	0.40	0.50
Terminal-to-Exposed-Pad	K	0.20	-	-

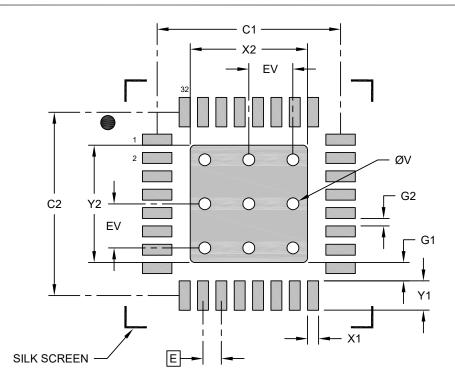
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-21395-RXB Rev C Sheet 2 of 2

32-Lead Very Thin Plastic Quad Flat, No Lead Package (RXB) - 5x5x0.9 mm Body [VQFN] With 3.1x3.1 mm Exposed Pad; Atmel Legacy Global Package Code ZMF

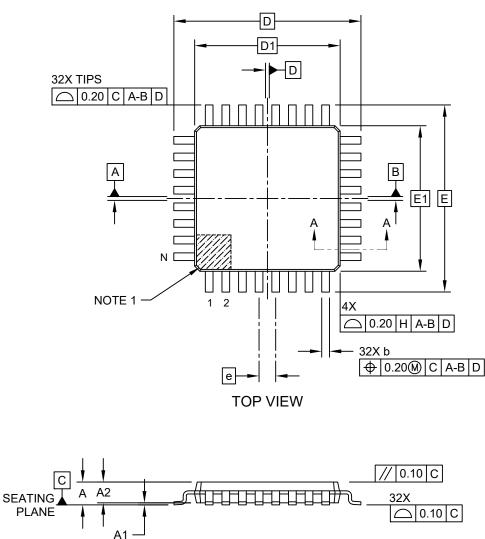
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	Ν	IILLIMETER	S
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Center Pad Width	X2			3.20
Center Pad Length	Y2			3.20
Contact Pad Spacing	C1		5.00	
Contact Pad Spacing	C2		5.00	
Contact Pad Width (X32)	X1			0.30
Contact Pad Length (X32)	Y1			0.80
Contact Pad to Center Pad (X32)	G1	0.20		
Contact Pad to Contact Pad (X28)	G2	0.20		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

Notes:

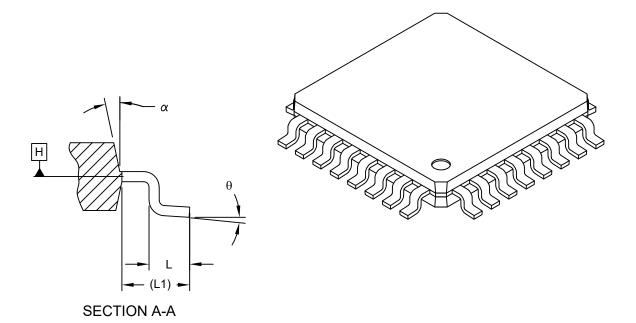
- 1. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process


Microchip Technology Drawing C04-23395-RXB Rev C

39.3.9 32-Pin TQFP

32-Lead Plastic Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP] 2.00 mm Footprint; Also Atmel Legacy Global Package Code AUT

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


SIDE VIEW

Microchip Technology Drawing C04-074-PT Rev D Sheet 1 of 2

32-Lead Plastic Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP] 2.00 mm Footprint; Also Atmel Legacy Global Package Code AUT

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

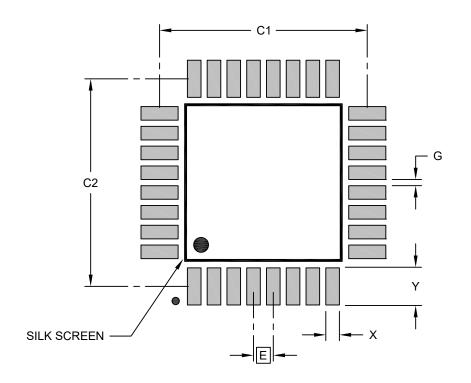
	Units	MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Number of Leads	Ν		32	
Lead Pitch	е		0.80 BSC	
Overall Height	Α	-	-	1.20
Standoff	A1	0.05	-	0.15
Molded Package Thickness	A2	0.95	1.00	1.05
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	θ	0°	-	7°
Overall Width	E		9.00 BSC	
Overall Length	D		9.00 BSC	
Molded Package Width	E1	7.00 BSC		
Molded Package Length	D1	7.00 BSC		
Lead Width	b	0.30	0.37	0.45
Mold Draft Angle Top	α	11°	-	13°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-074-PT Rev D Sheet 2 of 2

32-Lead Plastic Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP] 2.00 mm Footprint; Also Atmel Legacy Global Package Code AUT

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units		MILLIMETERS		
Dimension	Dimension Limits		NOM	MAX	
Contact Pitch	E		0.80 BSC		
Contact Pad Spacing	C1		8.40		
Contact Pad Spacing	C2		8.40		
Contact Pad Width (X32)	X			0.55	
Contact Pad Length (X32)	Y			1.55	
Contact Pad to Contact Pad (X28)	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2074-PT Rev D

40. Data Sheet Revision History

Note: The data sheet revision is independent of the die revision and the device variant (last letter of the ordering number).

40.1 Revision History

Doc. Rev.	Date	Comments
A	10/2023	Initial document release

Microchip Information

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- **General Technical Support** Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

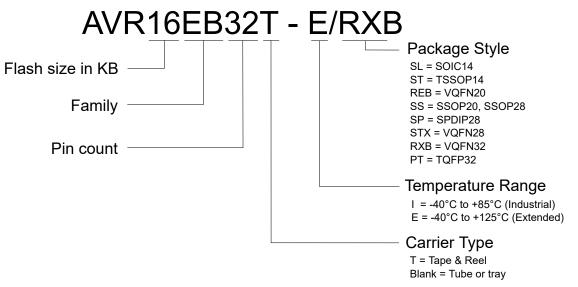
Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Embedded Solutions Engineer (ESE)
- Technical Support


Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Product Identification System

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Note: The Tape & Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with the Microchip Sales Office for package availability with the Tape & Reel option.

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable". Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.

Legal Notice

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/ client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, TimeCesium, TimeHub, TimePictra, TimeProvider, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, EyeOpen, GridTime, IdealBridge, IGaT, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, MarginLink, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mSiC, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, Power MOS IV, Power MOS 7, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, Turing, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

[©] 2023, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.

ISBN: 978-1-6683-3187-3

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

MERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
orporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
andler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-393
l: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
ax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4485-5910
chnical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
ww.microchip.com/support	China - Chongqing	Japan - Osaka	Finland - Espoo
eb Address:	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
ww.microchip.com	China - Dongguan	Japan - Tokyo	France - Paris
lanta	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
uluth, GA	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
l: 678-957-9614	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
nx: 678-957-1455	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
ustin, TX	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
l: 512-257-3370	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
oston	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
estborough, MA	China - Nanjing	Malaysia - Penang	Tel: 49-7131-72400
el: 774-760-0087	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
ax: 774-760-0088	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
hicago	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
asca, IL	China - Shanghai	Singapore	Tel: 49-89-627-144-0
l: 630-285-0071	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 49-89-627-144-44
ax: 630-285-0075	China - Shenyang	Taiwan - Hsin Chu	Germany - Rosenheim
allas	Tel: 86-24-2334-2829	Tel: 886-3-577-8366	Tel: 49-8031-354-560
ddison, TX	China - Shenzhen	Taiwan - Kaohsiung	Israel - Ra'anana
el: 972-818-7423	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 972-9-744-7705
ax: 972-818-2924	China - Suzhou	Taiwan - Taipei	Italy - Milan
etroit	Tel: 86-186-6233-1526	Tel: 886-2-2508-8600	Tel: 39-0331-742611
ovi, MI	China - Wuhan	Thailand - Bangkok	Fax: 39-0331-466781
l: 248-848-4000	Tel: 86-27-5980-5300	Tel: 66-2-694-1351	Italy - Padova
ouston, TX	China - Xian	Vietnam - Ho Chi Minh	Tel: 39-049-7625286
l: 281-894-5983	Tel: 86-29-8833-7252	Tel: 84-28-5448-2100	Netherlands - Drunen
dianapolis	China - Xiamen		Tel: 31-416-690399
oblesville, IN	Tel: 86-592-2388138		Fax: 31-416-690340
l: 317-773-8323	China - Zhuhai		Norway - Trondheim
ax: 317-773-5453	Tel: 86-756-3210040		Tel: 47-72884388
l: 317-536-2380			Poland - Warsaw
os Angeles			Tel: 48-22-3325737
ssion Viejo, CA			Romania - Bucharest
: 949-462-9523			Tel: 40-21-407-87-50
ix: 949-462-9608			Spain - Madrid
l: 951-273-7800			Tel: 34-91-708-08-90
aleigh, NC			Fax: 34-91-708-08-91
l: 919-844-7510			Sweden - Gothenberg
ew York, NY			Tel: 46-31-704-60-40
l: 631-435-6000			Sweden - Stockholm
an Jose, CA			Tel: 46-8-5090-4654
el: 408-735-9110			UK - Wokingham
el: 408-436-4270			Tel: 44-118-921-5800
anada - Toronto			Fax: 44-118-921-5820
l: 905-695-1980			