

DATA SHEET

LEAD FREE CHIP RESISTORS

RC_P series ±0.5%, ±1%, ±5%

Sizes 0075/0100/0201/0402/0603/0805/ 1206/1210/1218/2010/2512

YAGEO

11

SCOPE

This specification describes RC series chip resistors with made by thick film process.

<u>APPLICATIONS</u>

• All general purpose application

FEATURES

- Total lead free without RoHS exemption
- Halogen Free Epoxy
- Reducing environmentally hazardous wastes
- High component and equipment reliability
- Saving of PCB space
- MSL class: MSL I

ORDERING INFORMATION - GLOBAL PART NUMBER

Global part numbers are identified by the series, size, tolerance, packing type, temperature coefficient, taping reel and resistance value.

GLOBAL PART NUMBER

RC XXXX X X X XX XXXX P

(1) (2) (3) (4) (5)

6) (

(I) SIZE

0075/0100/0201/0402/0603/0805/1206/1210/1218/2010/2512

(2) TOLERANCE

 $D = \pm 0.5\%$

 $F = \pm 1.0\%$

 $J = \pm 5.0\%$ (for jumper ordering, use code of J)

(3) PACKAGING TYPE

R = Paper taping reel

K = Embossed taping reel

S = ESD safe reel (0100 only)

(4) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Based on spec.

(5) TAPING REEL

07= 7 inch dia. Reel

13=13 inch dia. Reel

7N = 7 inch dia. Reel, ESD safe reel (0100 only)

7W = 7 inch dia. Reel & 2 x standard power

(6) RESISTANCE VALUE

There are 2~4 digits indicated the resistance value.

Letter R/K/M is decimal point.

Example:

 $97R6 = 97.6\Omega$

 $9K76 = 9760\Omega$

 $IM = 1,000,000\Omega$

(7) DEFAULT CODE

Letter P is lead free (without RoHS exemption)

ORDERING EXAMPLE

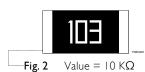
The ordering code for a RC0402 0.0625W chip resistor value $100 \text{K}\Omega$ with $\pm 5\%$ tolerance, supplied in 7-inch tape reel of 10,000 units per reel is: RC0402JR-07100KP.

Chip Resistor Surface Mount


RC_P

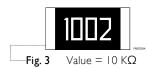
SERIES

0075 to 2512


<u>MARKING</u>

RC0075 / RC0100 / RC0201 / RC0402

No Marking


RC0603

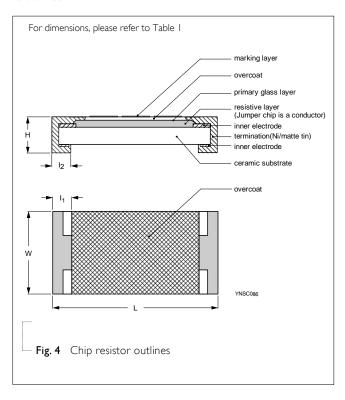
E24 series: 3 digits, 5%

First two digits for significant figure and 3rd digit for number of zeros

RC0805 / RC1206 / RC1210 / RC1218 / RC2010 / RC2512

E24/E96 series: 4 digits, 1%, 0.5%

First three digits for significant figure and 4th digit for number of zeros


Note

For further marking information, please see special data sheet "Chip resistors marking".

CONSTRUCTION

The resistor is constructed on top of a high-grade ceramic body. Internal metal electrodes are added on each end to make the contacts to the thick film resistive element. The composition of the resistive element is a noble metal imbedded into a glass and covered by a second glass to prevent environmental influences. The resistor is laser trimmed to the rated resistance value. The resistor is covered with a protective epoxy coat, finally the two external terminations (matte tin on Nibarrier) are added, as shown in Fig.4.

Outlines

<u>DIMENSION</u>

Table I					
TYPE	L (mm)	W (mm)	H (mm)	I _I (mm)	l ₂ (mm)
RC0075	0.30±0.01	0.15±0.01	0.13±0.01	0.08±0.03	0.08±0.03
RC0100	0.40±0.02	0.20±0.02	0.13±0.02	0.10±0.03	0.10±0.03
RC0201	0.60±0.03	0.30±0.03	0.23±0.03	0.10±0.05	0.15±0.05
RC0402	1.00±0.05	0.50±0.05	0.35±0.05	0.20±0.10	0.25±0.10
RC0603	1.60±0.10	0.80±0.10	0.45±0.10	0.25±0.15	0.25±0.15
RC0805	2.00±0.10	1.25±0.10	0.50±0.10	0.35±0.20	0.35±0.20
RC1206	3.10±0.10	1.60±0.10	0.55±0.10	0.45±0.20	0.45±0.20
RC1210	3.10±0.10	2.60±0.15	0.55±0.10	0.45±0.15	0.50±0.20
RC1218	3.10±0.10	4.60±0.10	0.55±0.10	0.45±0.20	0.40±0.20
RC2010	5.00±0.10	2.50±0.15	0.55±0.10	0.45±0.15	0.55±0.20
RC2512	6.35±0.10	3.10±0.15	0.55±0.10	0.60±0.20	0.60±0.20

ELECTRICAL CHARACTERISTICS

Table 2

Table	_							
					СНА	RACTERISTICS		
TYPE	POWER	Operating Temperature Range		Max. Overload Voltage	Dielectric Withstanding Voltage	RESISTANCE RANGE	Temperature Coefficient of Resistance	Jumper Criteria
RC0075	1/50W	-55°C to +125°C	10V	25V	25V	$E24 \pm 5\%$ $I0\Omega \le R \le IM\Omega$ $E24/E96 \pm 1\%$ $I0\Omega \le R \le IM\Omega$ $Jumper < 50m\Omega$	10Ω≤R<100Ω:-200~+600ppm°C 100Ω≤ R≤IMΩ: ±200ppm°C	Rated Current 0.5A Max. Current 1.0A
RC0100	1/32W	-55°C to +125°C	15V	30V	30V	$E24 \pm 5\%$ $I\Omega \le R \le 10M\Omega$ $E24/E96 \pm 1\%$ $I\Omega \le R \le 10M\Omega$ $Jumper < 50m\Omega$	IΩ≤R<10Ω:-200~+600ppm°C I0Ω≤ R<100Ω: ±300ppm°C I00Ω≤R≤10MΩ: ±200ppm°C	Rated Current 0.5A Max. Current 1.0A
RC0201	1/20W	-55°C to +125°C	25V	50V	50V	$E24 \pm 5\%$ $I\Omega \leq R \leq I0M\Omega$ $E24/E96 \pm 1\%$ $I\Omega \leq R \leq I0M\Omega$ $E24/E96 \pm 0.5\%$ $I0\Omega \leq R \leq IM\Omega$ $Jumper \leq 50m\Omega$	IΩ≤R≤I0Ω: -100~+350ppm°C I0Ω <r≤i0mω: th="" ±200ppm°c<=""><th>Rated Current 0.5A Max. Current 1.0A</th></r≤i0mω:>	Rated Current 0.5A Max. Current 1.0A

TYPE	POWER	Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	RESISTANCE RANGE	Temperature Coefficient of Resistance	Jumper Criteria
RC0402	1/16W	-55°C to +155°C	50V	100V	100V	$\begin{aligned} & & \text{E24} \pm 5\% \\ & \text{I} \Omega \leq \text{R} \leq 22\text{M}\Omega \\ & & \text{E24/E96} \pm 1\% \\ & \text{I} \Omega \leq \text{R} \leq 10\text{M}\Omega \\ & & \text{E24/E96} \pm 0.5\% \\ & \text{I} 0\Omega \leq \text{R} \leq 1\text{M}\Omega \\ & \text{Jumper} < 50\text{m}\Omega \end{aligned}$	ΙΩ≤R≤Ι0Ω: ±200ppm°C Ι0Ω <r≤ι0μω: ±100ppm°c<br="">Ι0ΜΩ<r≤22μω: th="" ±200ppm°c<=""><th>Rated Current I.0A Max. Current 2.0A</th></r≤22μω:></r≤ι0μω:>	Rated Current I.0A Max. Current 2.0A
	1/8VV	-55°C to +155°C	50V	100V	100V	$E24 \pm 5\%$ $I\Omega \le R \le I0M\Omega$ $E24/E96 \pm I\%$ $I\Omega \le R \le I0M\Omega$	IΩ≤R≤I0Ω: ±200ppm°C I0Ω <r≤i0mω: td="" ±100ppm°c<=""><td>_</td></r≤i0mω:>	_
RC0603	1/10VV	-55°C to +155°C	75V	150V	150V	$\begin{aligned} & \text{E24} \pm 5\% \\ & \text{I} \Omega \leq \text{R} \leq 22\text{M}\Omega \\ & \text{E24/E96} \pm 1\% \\ & \text{I} \Omega \leq \text{R} \leq 10\text{M}\Omega \\ & \text{E24/E96} \pm 0.5\% \\ & \text{I} 0\Omega \leq \text{R} \leq 1\text{M}\Omega \\ & \text{Jumper} < 50\text{m}\Omega \end{aligned}$	ΙΩ≤R≤Ι0Ω: ±200ppm°C Ι0Ω <r≤ι0μω: ±100ppm°c<br="">Ι0ΜΩ<r≤22μω: th="" ±200ppm°c<=""><th>Rated Current I.0A Max. Current 2.0A</th></r≤22μω:></r≤ι0μω:>	Rated Current I.0A Max. Current 2.0A
	1/5W	-55°C to +155°C	75V	150V	150V	$E24 \pm 5\%$ $I\Omega \le R \le 10M\Omega$ $E24/E96 \pm 1\%$ $I\Omega \le R \le 10M\Omega$	IΩ≤R≤I0Ω: ±200ppm°C I0Ω <r≤i0mω: td="" ±i00ppm°c<=""><td></td></r≤i0mω:>	
RC0805	1/8\	-55°C to +155°C	150V	300V	300V	$\begin{aligned} & \text{E24} \pm 5\% \\ & \text{I}\Omega \leq \text{R} \leq 22\text{M}\Omega \\ & \text{E24/E96} \pm 1\% \\ & \text{I}\Omega \leq \text{R} \leq 10\text{M}\Omega \\ & \text{E24/E96} \pm 0.5\% \\ & \text{I}0\Omega \leq \text{R} \leq 1\text{M}\Omega \\ & \text{Jumper} < 50\text{m}\Omega \end{aligned}$	ΙΩ≤R≤Ι0Ω: ±200ppm°C Ι0Ω <r≤ι0μω: ±100ppm°c<br="">Ι0ΜΩ<r≤22μω: th="" ±200ppm°c<=""><th>Rated Current 2.0A Max. Current 5.0A</th></r≤22μω:></r≤ι0μω:>	Rated Current 2.0A Max. Current 5.0A
	1/4W	-55°C to +155°C	150V	300V	300V	$\begin{aligned} & \text{E24} \pm 5\% \\ & \text{I} \ \Omega \leq \text{R} \leq \text{IOM} \Omega \\ & \text{E24/E96} \pm \text{I}\% \\ & \text{I} \ \Omega \leq \text{R} \leq \text{IOM} \Omega \end{aligned}$	IΩ≤R≤I0Ω: ±200ppm°C I0Ω <r≤i0mω: td="" ±100ppm°c<=""><td>-</td></r≤i0mω:>	-
RC1206	I/4W	-55°C to +155°C	200V	400V	500V	$\begin{aligned} & \text{E24} \pm 5\% \\ & \text{I}\Omega \leq \text{R} \leq 22\text{M}\Omega \\ & \text{E24/E96} \pm 1\% \\ & \text{I}\Omega \leq \text{R} \leq 10\text{M}\Omega \\ & \text{E24/E96} \pm 0.5\% \\ & \text{I}0\Omega \leq \text{R} \leq 1\text{M}\Omega \\ & \text{Jumper} < 50\text{m}\Omega \end{aligned}$	ΙΩ≤R≤Ι0Ω: ±200ppm°C Ι0Ω <r≤ι0μω: ±100ppm°c<br="">Ι0ΜΩ<r≤22μω: th="" ±200ppm°c<=""><th>Rated Current 2.0A Max. Current 10.0A</th></r≤22μω:></r≤ι0μω:>	Rated Current 2.0A Max. Current 10.0A
	1/2W	-55°C to +155°C	200V	400V	500V	$\begin{aligned} & \text{E24} \pm 5\% \\ & \text{I}\Omega \leq \text{R} \leq \text{IOM}\Omega \\ & \text{E24/E96} \pm \text{I}\% \\ & \text{I}\Omega \leq \text{R} \leq \text{IOM}\Omega \end{aligned}$	IΩ≤R≤I0Ω: ±200ppm°C I0Ω <r≤i0mω: td="" ±i00ppm°c<=""><td></td></r≤i0mω:>	

		CHARACTERISTICS						
TYPE	POWER	Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	RESISTANCE RANGE	Temperature Coefficient of Resistance	Jumper Criteria
RC1210	1/2W	-55°C to +155°C	200V	500V	500V	$E24 \pm 5\%$ $I\Omega \leq R \leq 22M\Omega$ $E24/E96 \pm 1\%$ $I\Omega \leq R \leq I0M\Omega$ $E24/E96 \pm 0.5\%$ $I0\Omega \leq R \leq IM\Omega$ $Jumper \leq 50m\Omega$	IΩ≤R≤I0Ω: ±200ppm°C I0Ω <r≤i0mω: ±100ppm°c<br="">I0MΩ<r≤22mω: th="" ±200ppm°c<=""><th>Rated Current 2.0A Max. Current 10.0A</th></r≤22mω:></r≤i0mω:>	Rated Current 2.0A Max. Current 10.0A
RC1218	IW	-55°C to +155°C	200V	500∨	500V	$E24 \pm 5\%$ $I\Omega \le R \le IM\Omega$ $E24/E96 \pm 1\%$ $I\Omega \le R \le IM\Omega$ $E24/E96 \pm 0.5\%$ $I0\Omega \le R \le IM\Omega$ $Jumper < 50m\Omega$	ΙΩ≤R≤ΙΟΩ: ±200ppm°C ΙΟΩ <r≤ιμω: th="" ±ι00ppm°c<=""><th>Rated Current 6.0A Max. Current 10.0A</th></r≤ιμω:>	Rated Current 6.0A Max. Current 10.0A
RC2010	3/4W	-55°C to +155°C	200V	500V	500V	$\begin{aligned} & \text{F24} \pm 5\% \\ & \text{I}\Omega \leq \text{R} \leq 22\text{M}\Omega \\ & \text{E24/E96} \pm \text{I}\% \\ & \text{I}\Omega \leq \text{R} \leq \text{I}\text{OM}\Omega \\ & \text{E24/E96} \pm 0.5\% \\ & \text{I}0\Omega \leq \text{R} \leq \text{I}\text{M}\Omega \\ & \text{Jumper} < 50\text{m}\Omega \end{aligned}$	ΙΩ≤R≤Ι0Ω: ±200ppm°C Ι0Ω <r≤ι0μω: ±100ppm°c<br="">Ι0ΜΩ<r≤22μω: th="" ±200ppm°c<=""><th>Rated Current 2.0A Max. Current 10.0A</th></r≤22μω:></r≤ι0μω:>	Rated Current 2.0A Max. Current 10.0A
RC2512	IW	-55°C to +155°C	200V	500V	500V	$E24 \pm 5\%$ $I\Omega \le R \le 22M\Omega$ $E24/E96 \pm 1\%$ $I\Omega \le R \le I0M\Omega$ $E24/E96 \pm 0.5\%$ $I0\Omega \le R \le IM\Omega$ $Jumper < 50m\Omega$	ΙΩ≤R≤Ι0Ω: ±200ppm°C Ι0Ω <r≤ι0μω: ±100ppm°c<br="">Ι0ΜΩ<r≤22μω: th="" ±200ppm°c<=""><th>Rated Current 2.0A Max. Current 10.0A</th></r≤22μω:></r≤ι0μω:>	Rated Current 2.0A Max. Current 10.0A

FOOTPRINT AND SOLDERING PROFILES

For recommended footprint and soldering profiles, please refer to data sheet "Chip resistors mounting"

PACKING STYLE AND PACKAGING QUANTITY

Table 3 Packing style and packaging quantity

PACKING STYLE	REEL DIMENSION	RC0075	RC0100	RC0201	RC0402	RC0603	RC0805	RC1206	RC1210	RC1218	RC2010	RC2512
Paper taping reel (R)	7" (178 mm)		20,000	10,000	10,000	5,000	5,000	5,000	5,000			
	13" (330 mm)		80,000	50000	50000	20000	20000	20000	20000			
ESD safe reel (S)	7" (178 mm)	20,000	40,000									
Embossed taping ree	el 7" (178 mm)									4,000	4,000	4,000

NOTE

YAGEO

For tape and reel specification/dimensions, please refer to data sheet "Chip resistors packing".

FUNCTIONAL DESCRIPTION

OPERATING TEMPERATURE RANGE

RC0402 to RC2512 Range: -55°C to +155°C (Fig. 5-1) RC0075 to RC0201 Range: -55°C to +125°C (Fig. 5-2)

POWER RATING

Each type rated power at 70 °C:

RC0075=1/50W

RC0100=1/32W

RC0201=1/20 W

RC0402=1/16 W, 1/8W

RC0603=1/10W, 1/5W

1/4W RC0805=1/8W,

RC1206=1/4W, 1/2W

RC1210=1/2W

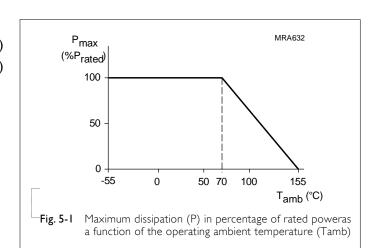
RC1218=1W

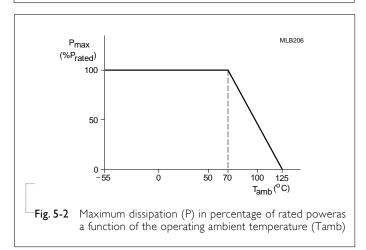
RC2010=3/4W

RC2512=1W

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:

$$V = \sqrt{(PxR)}$$


or max. working voltage whichever is less


Where

V = Continuous rated DC or AC (rms) working voltage (V)

P = Rated power (W)

 $R = Resistance value (\Omega)$

RC_P

SERIES

0075 to 2512

TESTS AND REQUIREMENTS

Table 4 Test condition, procedure and requirements

TEST	TEST METHOD PROCEDURE		REQUIREMENTS		
Temperature Coefficient of Resistance (T.C.R.)	IEC 60115-1 4.8	At +25/–55 °C and +25/+125 °C Formula: T.C.R= $\frac{R_2 - R_1}{R_1(t_2 - t_1)} \times 10^6 \text{ (ppm/°C)}$ Where t_1 =+25 °C or specified room temperature t_2 =-55 °C or +125 °C test temperature R ₁ =resistance at reference temperature in ohms R ₂ =resistance at test temperature in ohms	Refer to table 2		
Life/ Endurance	MIL-STD-202G Method 108 IEC 60115-1 7.1	At 70±5°C for 1,000 hours; RCWV applied for 1.5 hours on and 0.5 hour off, still air required	0075: \pm (5%+100m Ω) <100m Ω for jumper 0100: \pm (3%+0.05 Ω) Others: \pm (1%+0.05 Ω) for D/F tol \pm (3%+0.05 Ω) for J tol <100mR for jumper		
High Temperature Exposure	MIL-STD-202G Method 108	I,000 hours at maximum operating temperature depending on specification, unpowered.	0075 : $\pm (5\% + 100 \text{m}\Omega)$ $< 100 \text{m}\Omega$ for jumper 0100 : $\pm (1\% + 0.05\Omega)$ Others: $\pm (1\% + 0.05\Omega)$ for D/F tol $\pm (2\% + 0.05\Omega)$ for J tol < 50 mR for jumper		
Moisture Resistance	MIL-STD-202 Method 106	Each temperature / humidity cycle is defined at 8 hours, 3 cycles / 24 hours for 10d with 25 °C / 65 °C 95% R.H, without steps 7a & 7b, unpowered Parts mounted on test-boards, without condensation on parts	0075 : $\pm (2\% + 100 \text{m}\Omega)$ < $100 \text{m}\Omega$ for jumper 0100 : $\pm (2\% + 0.05\Omega)$ Others: $\pm (0.5\% + 0.05\Omega)$ for D/F tol $\pm (2\% + 0.05\Omega)$ for J tol < 100mR for jumper		
Humidity	IEC 60115-1 10.4	Steady state for 1000 hours at 40 °C / 95% R.H. RCWV applied for 1.5 hours on and 0.5 hour off	0075: \pm (5%+100m Ω) no visible damage 0100: \pm (3%+0.05 Ω) Others: \pm (1%+0.05 Ω) for D/F tol \pm (2%+0.05 Ω) for J tol <100mR for jumper		
Thermal Shock	MIL-STD-202G Method 107	-55/+125°C Note Number of cycles required is 300 Devices mounted Maximum transfer time is 20 seconds Dwell time is 15 minutes. Air - Air	$0075/01005$: $\pm(1\% + 50 \text{m}\Omega)$ < $50 \text{m}\Omega$ for jumper Others: $\pm(0.5\% + 0.05\Omega)$ for D/F tol $\pm(1\% + 0.05\Omega)$ for J tol < 50mR for jumper		

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Short Time Overload	IEC 60115-1 8.1	2.5 times RCWV or maximum overload voltage which is less for 5 seconds at room temperature	0075/01005: $\pm (2\% + 50 \text{m}\Omega)$ $< 50 \text{m}\Omega$ for jumper Others: $\pm (1\% + 0.05\Omega)$ for D/F tol $\pm (2\% + 0.05\Omega)$ for J tol < 50 mR for jumper
Board Flex/ Bending	IEC 60115-1 9.8	Device mounted or as described only I board bending required bending time: 60±5 seconds 0100/0201/0402:5mm; 0603/0805:3mm; 1206 and above:2mm	0075/01005: \pm (1% +50m Ω) < 50m Ω for jumper No visible damage
Solderability - Wetting	J-STD-002 test BI	Electrical Test not required Magnification 50X SMD conditions: Ist step: aging 4 hours at 155°C dry heat 2nd step: method BI, leadfree solder bath at 245±3°C Dipping time: 3± 0.5 seconds	Well tinned (>95% covered) No visible damage
-Leaching	IPC/JEDECJ-STD-002B test D IEC 60068-2-58	Leadfree solder ,260°C, 30 seconds immersion time	No visible damage
-Resistance to Soldering Heat	MIL-STD-202F Method 210 IEC 60068-2-58	Condition B, no pre-heat of samples Leadfree solder, 260 °C \pm 5°C, 10 \pm 1 seconds immersion time Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	0075 : $\pm(3\%+50\text{m}\Omega)$ $<50\text{m}\Omega$ for jumper 0100 : $\pm(1\%+0.05\Omega)$ Others: $\pm(0.5\%+0.05\Omega)$ for D/F tol $\pm(1\%+0.05\Omega)$ for J tol <50mR for jumper No visible damage

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 5	Sep. 21, 2022	=	- Add size 0075
Version 4	May. 10, 2022	-	- Extend the range of size 01005 to 10Mohm
Version 3	Oct. 12, 2021	-	- Upgrade Temperature Coefficient of Resistance
Version 2	Mar. 25, 2021	-	- Add size 01005 and Double Power for size 0402~1206
Version I	Sep. 05, 2018	-	- Remove size 01005 of this specification
Version 0	Aug. 22, 2014	-	- First issue of this specification

RC_P

SERIES

0075 to 2512

LEGAL DISCLAIMER

YAGEO, its distributors and agents (collectively, "YAGEO"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. YAGEO may make changes, modifications and/or improvements to product related information at any time and without notice.

YAGEO makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, YAGEO disclaims (i) any and all liability arising out of the application or use of any YAGEO product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non -infringement and merchantability.

YAGEO products are designed for general purpose applications under normal operation and usage conditions. Please contact YAGEO for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property: Aerospace equipment (artificial satellite, rocket, etc.), Atomic energy-related equipment, Aviation equipment, Disaster prevention equipment, crime prevention equipment, Electric heating apparatus, burning equipment, Highly public information network equipment, data-processing equipment, Medical devices, Military equipment, Power generation control equipment, Safety equipment, Traffic signal equipment, Transportation equipment and Undersea equipment, or for any other application or use in which the failure of YAGEO products could result in personal injury or death, or serious property damage. Particularly YAGEO Corporation and its affiliates do not recommend the use of commercial or automotive grade products for high reliability applications or manned space flight.

Information provided here is intended to indicate product specifications only. YAGEO reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.

