

**ADL8102** 

# GaAs, pHEMT, MMIC, Low Noise Amplifier, 1 GHz to 22 GHz

#### **FEATURES**

- Single positive supply (self biased)
- ▶ Gain: 27 dB typical at 9 GHz to 19 GHz
- ▶ OP1dB: 13.5 dB typical at 1 GHz to 9 GHz
- ▶ OIP3: 25 dBm typical at 1 GHz to 9 GHz
- ▶ Noise figure: 2.5 dB typical at 9 GHz to 19 GHz
- ▶ RoHS-compliant, 3 mm × 3 mm, 16-lead LFCSP

#### **APPLICATIONS**

- Telecommunications
- Satellite communications
- Military radar
- Weather radar
- ► Civil radar
- Electronic warfare

#### **GENERAL DESCRIPTION**

The ADL8102 is a gallium arsenide (GaAs), monolithic microwave integrated circuit (MMIC), pseudomorphic high electron mobility transistor (pHEMT), low noise wideband amplifier that operates from 1 GHz to 22 GHz.

The ADL8102 provides a typical gain of 27 dB at 9 GHz to 19 GHz, a 2.5 dB typical noise figure from 9 GHz to 19 GHz, a typical output third-order intercept (OIP3) of 25 dBm at 1 GHz to 9 GHz, and a saturated output power ( $P_{SAT}$ ) of up to 15.5 dBm, which requires

### FUNCTIONAL BLOCK DIAGRAM



Figure 1. Functional Block Diagram

only 110 mA from a 5 V supply voltage. The ADL8102 also features inputs and outputs that are internally matched to 50  $\Omega$ . The RFIN and RFOUT pins are internally AC-coupled, and the bias inductor is also integrated, which makes it ideal for surface-mounted technology (SMT)-based, high capacity microwave radio applications.

The ADL8102 is housed in an RoHS-compliant, 3 mm × 3 mm, 16-lead LFCSP package.

Rev. 0

DOCUMENT FEEDBACK

Information furnished by Analog Devices is believed to be accurate and reliable "as is". However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

# TABLE OF CONTENTS

| Features                              | 1   |
|---------------------------------------|-----|
| Applications                          | . 1 |
| Functional Block Diagram              | .1  |
| General Description                   | .1  |
| Specifications                        | 3   |
| 1 GHz to 9 GHz                        | . 3 |
| 9 GHz to 19 GHz                       | . 3 |
| 19 GHz to 22 GHz                      | .4  |
| DC Specifications                     | .4  |
| Absolute Maximum Ratings              | .5  |
| Thermal Resistance                    | 5   |
| Electrostatic Discharge (ESD) Ratings | .5  |

#### **REVISION HISTORY**

7/2023—Revision 0: Initial Version

| ESD Caution                                  | 5  |
|----------------------------------------------|----|
| Pin Configuration and Function Descriptions. | 6  |
| Interface Schematics                         | 6  |
| Typical Performance Characteristics          | 7  |
| Theory of Operation                          | 19 |
| Applications Information                     | 20 |
| Recommended Power Management Circuit         | 21 |
| Using the RBIAS Pin to Enable and Disable    |    |
| the ADL8102                                  | 22 |
| Outline Dimensions                           | 23 |
| Ordering Guide                               | 23 |
| Evaluation Boards                            | 23 |
|                                              |    |

# **SPECIFICATIONS**

# 1 GHz TO 9 GHz

Supply voltage ( $V_{DD}$ ) = 5 V, quiescent current ( $I_{DQ}$ ) = 110 mA, bias resistance ( $R_{BIAS}$ ) = 1150  $\Omega$ , and  $T_{CASE}$  = 25°C, unless otherwise noted.

#### Table 1. Specifications for 1 GHz to 9 GHz

| Parameter                                  | Min | Тур   | Max | Unit  | Test Conditions/Comments                                |
|--------------------------------------------|-----|-------|-----|-------|---------------------------------------------------------|
| FREQUENCY RANGE                            | 1   |       | 9   | GHz   |                                                         |
| GAIN (S21)                                 | 23  | 25.5  |     | dB    |                                                         |
| Gain Variation over Temperature            |     | 0.053 |     | dB/°C |                                                         |
| NOISE FIGURE                               |     | 3     |     | dB    |                                                         |
| RETURN LOSS                                |     |       |     |       |                                                         |
| Input (S11)                                |     | 15    |     | dB    |                                                         |
| Output (S22)                               |     | 18    |     | dB    |                                                         |
| OUTPUT                                     |     |       |     |       |                                                         |
| Power for 1 dB Compression (OP1dB)         | 11  | 13.5  |     | dBm   |                                                         |
| Saturated Output Power (P <sub>SAT</sub> ) |     | 15.5  |     | dBm   |                                                         |
| OIP3                                       |     | 25    |     | dBm   | Measurement taken at P <sub>OUT</sub> per tone = −4 dBm |
| Second-Order Intercept (OIP2)              |     | 32    |     | dBm   | Measurement taken at P <sub>OUT</sub> per tone = −4 dBm |
| POWER ADDED EFFICIENCY (PAE)               |     | 6.5   |     | %     | Measured at P <sub>SAT</sub>                            |

# 9 GHz TO 19 GHz

 $V_{DD}$  = 5 V,  $I_{DQ}$  = 110 mA,  $R_{BIAS}$  = 1150  $\Omega,$  and  $T_{CASE}$  = 25°C, unless otherwise noted.

#### Table 2. Specifications for 9 GHz to 19 GHz

| Parameter                       | Min  | Тур   | Max | Unit  | Test Conditions/Comments                                |
|---------------------------------|------|-------|-----|-------|---------------------------------------------------------|
| FREQUENCY RANGE                 | 9    |       | 19  | GHz   |                                                         |
| S21                             | 24.5 | 27    |     | dB    |                                                         |
| Gain Variation over Temperature |      | 0.054 |     | dB/°C |                                                         |
| NOISE FIGURE                    |      | 2.5   |     | dB    |                                                         |
| RETURN LOSS                     |      |       |     |       |                                                         |
| S11                             |      | 23    |     | dB    |                                                         |
| S22                             |      | 15    |     | dB    |                                                         |
| OUTPUT                          |      |       |     |       |                                                         |
| OP1dB                           | 11   | 13    |     | dBm   |                                                         |
| P <sub>SAT</sub>                |      | 15.4  |     | dBm   |                                                         |
| OIP3                            |      | 24.5  |     | dBm   | Measurement taken at P <sub>OUT</sub> per tone = −4 dBm |
| OIP2                            |      | 29    |     | dBm   | Measurement taken at P <sub>OUT</sub> per tone = −4 dBm |
| PAE                             |      | 6.7   |     | %     | Measured at P <sub>SAT</sub>                            |

# **SPECIFICATIONS**

# 19 GHz TO 22 GHz

 $V_{DD}$  = 5 V,  $I_{DQ}$  = 110 mA,  $R_{BIAS}$  = 1150  $\Omega,$  and  $T_{CASE}$  = 25°C, unless otherwise noted.

#### Table 3. Specifications for 19 GHz to 22 GHz

| Parameter                       | Min | Тур   | Max | Unit  | Test Conditions/Comments                                |
|---------------------------------|-----|-------|-----|-------|---------------------------------------------------------|
| FREQUENCY RANGE                 | 19  |       | 22  | GHz   |                                                         |
| S21                             | 24  | 26.5  |     | dB    |                                                         |
| Gain Variation over Temperature |     | 0.054 |     | dB/°C |                                                         |
| NOISE FIGURE                    |     | 3     |     | dB    |                                                         |
| RETURN LOSS                     |     |       |     |       |                                                         |
| S11                             |     | 15    |     | dB    |                                                         |
| S22                             |     | 20    |     | dB    |                                                         |
| OUTPUT                          |     |       |     |       |                                                         |
| OP1dB                           | 10  | 12    |     | dBm   |                                                         |
| P <sub>SAT</sub>                |     | 15.3  |     | dBm   |                                                         |
| OIP3                            |     | 23    |     | dBm   | Measurement taken at P <sub>OUT</sub> per tone = −4 dBm |
| OIP2                            |     | 43    |     | dBm   | Measurement taken at P <sub>OUT</sub> per tone = −4 dBm |
| PAE                             |     | 5.5   |     | %     | Measured at P <sub>SAT</sub>                            |

# DC SPECIFICATIONS

#### Table 4. DC Specifications

| Parameter                                      | Min | Тур    | Max | Unit |
|------------------------------------------------|-----|--------|-----|------|
| SUPPLY CURRENT                                 |     |        |     |      |
| I <sub>DQ</sub>                                |     | 110    |     | mA   |
| Amplifier Current (I <sub>DQ_AMP</sub> )       |     | 107.15 |     | mA   |
| R <sub>BIAS</sub> Current(I <sub>RBIAS</sub> ) |     | 2.85   |     | mA   |
| SUPPLY VOLTAGE                                 |     |        |     |      |
| V <sub>DD</sub>                                | 3   | 5      | 5.5 | V    |

# **ABSOLUTE MAXIMUM RATINGS**

#### Table 5. Absolute Maximum Ratings

| Parameter                                                                                                                              | Rating          |
|----------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Drain Bias Voltage (V <sub>DD</sub> )                                                                                                  | 6.5 V           |
| RF Input Power (RFIN)                                                                                                                  | 23 dBm          |
| Continuous Power Dissipation (P <sub>DISS</sub> ), T <sub>CASE</sub> = 85°C<br>(Derate 20.6 mW/°C Above 85°C)                          | 1.8 W           |
| Temperature                                                                                                                            |                 |
| Storage Range                                                                                                                          | -65°C to +150°C |
| Operating Range                                                                                                                        | -40°C to +85°C  |
| Quiescent Channel (T <sub>CASE</sub> = 85°C, V <sub>DD</sub> = 5 V,<br>I <sub>DQ</sub> = 110 mA, Input Power (P <sub>IN</sub> ) = Off) | 112°C           |
| Maximum Channel                                                                                                                        | 175°C           |

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

#### THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

 $\theta_{JC}$  is the channel-to-case thermal resistance.

#### Table 6. Thermal Resistance<sup>1</sup>

| Package Type                                       | θ <sub>JC</sub> | Unit |
|----------------------------------------------------|-----------------|------|
| CP-16-35                                           |                 |      |
| Quiescent, T <sub>CASE</sub> = 25°C                | 39.4            | °C/W |
| Worst-Case <sup>2</sup> , T <sub>CASE</sub> = 85°C | 48.5            | °C/W |

<sup>1</sup> Thermal resistance varies with operating conditions.

<sup>2</sup> Worst-case across all specified operating conditions.

# **ELECTROSTATIC DISCHARGE (ESD) RATINGS**

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.

### ESD Ratings for ADL8102

#### Table 7. ADL8102, 16-Lead LFCSP

| ESD Model | Withstand Threshold (V) | Class |
|-----------|-------------------------|-------|
| НВМ       | ±350                    | 1A    |

#### **ESD CAUTION**



ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

#### PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



Figure 2. Pin Configuration

002

#### Table 8. Pin Function Descriptions

| Pin Number          | Mnemonic         | Description                                                                                                                                                                      |
|---------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1, 3, 7, 9, 11, 14  | GND              | Ground. Connect to a ground plane, which has low electrical and thermal impedance. For the interface schematic, see Figure 6.                                                    |
| 2                   | RFIN             | RF Input. The RFIN pin is AC-coupled and matched to 50 Ω. For the interface schematic, see Figure 5.                                                                             |
| 4, 5, 8, 12, 15, 16 | NIC              | No Internal Connection. This pin is not connected internally. For normal operation, this pin must be connected to ground.                                                        |
| 6                   | RBIAS            | Bias Setting Resistor. Connect a resistor between RBIAS and VDD to set I <sub>DQ</sub> . For more details, see Table 1 and Figure 75. For the interface schematic, see Figure 3. |
| 10                  | RFOUT            | RF Output. The RFOUT pin is AC-coupled and matched to 50 Ω. For the interface schematic, see Figure 4.                                                                           |
| 13                  | VDD              | Drain Bias. Connect this pin to the supply voltage. For the interface schematic, see Figure 4.                                                                                   |
|                     | GROUND<br>PADDLE | Ground Paddle. Connect the exposed ground paddle to a ground plane, which has low electrical and thermal impedance.                                                              |

#### **INTERFACE SCHEMATICS**



Figure 3. RBIAS Interface Schematic



Figure 4. VDD and RFOUT Interface Schematic

Figure 5. RFIN Interface Schematic

Figure 6. GND Interface Schematic



Figure 7. Broadband Gain and Return Loss vs. Frequency,  $V_{DD}$  = 5 V,  $I_{DQ}$  = 110 mA,  $R_{BIAS}$  = 1150  $\Omega$ 



Figure 8. Gain vs. Frequency for Various Temperatures, 1 GHz to 25 GHz,  $V_{DD}$ = 5 V,  $I_{DQ}$  = 110 mA,  $R_{BIAS}$  = 1150  $\Omega$ 



Figure 9. Gain vs. Frequency for Various  $I_{DQ}$  and  $R_{BIAS}$  Values, 1 GHz to 25 GHz,  $V_{DD}$  = 5 V



Figure 10. Gain vs. Frequency for Various Supply Voltages, 1 GHz to 25 GHz,  $I_{DQ}$  = 110 mA



Figure 11. Gain vs. Frequency for Various Temperatures, 1 GHz to 25 GHz,  $V_{DD}$  = 3 V,  $I_{DQ}$  = 47 mA,  $R_{BIAS}$  = 1150  $\Omega$ 



Figure 12. Gain vs. Frequency for Various  $I_{DQ}$  and  $R_{BIAS}$  Values, 1 GHz to 25 GHz,  $V_{DD}$  = 3 V



Figure 13. Input Return Loss vs. Frequency for Various Temperatures, 1 GHz to 25 GHz,  $V_{DD}$  = 5 V,  $I_{DQ}$  = 110 mA,  $R_{BIAS}$  = 1150  $\Omega$ 



Figure 14. Input Return Loss vs. Frequency for Various I<sub>DQ</sub> and R<sub>BIAS</sub> Values, 1 GHz to 25 GHz, V<sub>DD</sub> = 5 V



Figure 15. Input Return Loss vs. Frequency for Various Supply Voltages, 1 GHz to 25 GHz,  $I_{DQ}$  = 110 mA



Figure 16. Input Return Loss vs. Frequency for Various Temperatures, 1 GHz to 25 GHz,  $V_{DD}$  = 3 V,  $I_{DO}$  = 47 mA,  $R_{BIAS}$  = 1150  $\Omega$ 



Figure 17. Input Return Loss vs. Frequency for Various I<sub>DQ</sub> and R<sub>BIAS</sub> Values, 1 GHz to 25 GHz, V<sub>DD</sub> = 3 V



Figure 18. Output Return Loss vs. Frequency for Various Supply Voltages, 1 GHz to 25 GHz,  $I_{DQ}$  = 110 mA



Figure 19. Output Return Loss vs. Frequency for Various Temperatures, 1 GHz to 25 GHz,  $V_{DD}$  = 5 V,  $I_{DO}$  = 110 mA,  $R_{BIAS}$  = 1150  $\Omega$ 



Figure 20. Output Return Loss vs. Frequency for Various I<sub>DQ</sub> and R<sub>BIAS</sub> Values, 1 GHz to 25 GHz, V<sub>DD</sub> = 5 V



Figure 21. Reverse Isolation vs. Frequency for Various Temperatures, 1 GHz to 25 GHz,  $V_{DD}$  = 5 V,  $I_{DQ}$  = 110 mA,  $R_{BIAS}$  = 1150  $\Omega$ 



Figure 22. Output Return Loss vs. Frequency for Various Temperatures, 1 GHz to 25 GHz,  $V_{DD}$  = 3 V,  $I_{DQ}$  = 47 mA,  $R_{BIAS}$  = 1150  $\Omega$ 



Figure 23. Output Return Loss vs. Frequency for Various I<sub>DQ</sub> and R<sub>BIAS</sub> Values, 1GHz to 25 GHz, V<sub>DD</sub> = 3 V



Figure 24. Reverse Isolation vs. Frequency for Various Temperatures, 1 GHz to 25 GHz,  $V_{DD}$  = 3 V,  $I_{DQ}$  = 47 mA,  $R_{BIAS}$  = 1150  $\Omega$ 



Figure 25. Reverse Isolation vs. Frequency for Various  $I_{DQ}$  and  $R_{BIAS}$  Values, 1 GHz to 25 GHz,  $V_{DD}$  = 5 V



Figure 26. Reverse Isolation vs. Frequency for Various Supply Voltages, 1 GHz to 25 GHz,  $I_{DO}$  = 110 mA



Figure 27. Noise Figure vs. Frequency for Various Temperatures, 1 GHz to 25 GHz,  $V_{DD}$  = 5 V,  $I_{DQ}$  = 110 mA,  $R_{BIAS}$  = 1150  $\Omega$ 



Figure 28. Reverse Isolation vs. Frequency for Various  $I_{DQ}$  and  $R_{BIAS}$  Values, 1 GHz to 25 GHz,  $V_{DD}$  = 3 V



Figure 29. Noise Figure vs. Frequency for Various Supply Voltages, 1 GHz to 25 GHz,  $I_{DQ}$  = 110 mA



Figure 30. Noise Figure vs. Frequency for Various Temperatures, 1GHz to 25 GHz,  $V_{DD}$  = 3 V,  $I_{DQ}$  = 47 mA,  $R_{BIAS}$  = 1150  $\Omega$ 



Figure 31. Noise Figure vs. Frequency for Various  $I_{DQ}$  and  $R_{BIAS}$  Values, 1 GHz to 25 GHz,  $V_{DD}$  = 5 V



Figure 32. OP1dB vs. Frequency for Various Temperatures, 1 GHz to 24 GHz,  $V_{DD}$  = 5 V,  $I_{DO}$  = 110 mA,  $R_{BIAS}$  = 1150  $\Omega$ 



Figure 33. OP1dB vs. Frequency for Various  $I_{DQ}$  and  $R_{BIAS}$  Values, 1 GHz to 24 GHz,  $V_{DD}$  = 5 V



Figure 34. Noise Figure vs. Frequency for Various  $I_{DQ}$  and  $R_{BIAS}$  Values, 1 GHz to 25 GHz,  $V_{DD}$  = 3 V



Figure 35. OP1dB vs. Frequency for Various Temperatures, 1 GHz to 24 GHz,  $V_{DD}$  = 3 V,  $I_{DQ}$  = 47 mA,  $R_{BIAS}$  = 1150  $\Omega$ 



Figure 36. OP1dB vs. Frequency for Various  $I_{DQ}$  and  $R_{BIAS}$  Values, 1 GHz to 24 GHz,  $V_{DD}$  = 3 V



Figure 37. OP1dB vs. Frequency for Various Supply Voltages, 1 GHz to 24 GHz, I<sub>DQ</sub> = 110 mA



Figure 38.  $P_{SAT}$  vs. Frequency for Various Temperatures, 1 GHz to 24 GHz,  $V_{DD}$  = 5 V,  $I_{DO}$  = 110 mA,  $R_{BIAS}$  = 1150  $\Omega$ 



Figure 39.  $P_{SAT}$  vs. Frequency for Various  $I_{DQ}$  and  $R_{BIAS}$  Values, 1 GHz to 24 GHz,  $V_{DD}$  = 5 V



Figure 40.  $P_{SAT}$  vs. Frequency for Various Supply Voltages, 1 GHz to 24 GHz,  $I_{DQ}$  = 110 mA



Figure 41.  $P_{SAT}$  vs. Frequency for Various Temperatures, 1 GHz to 24 GHz,  $V_{DD}$  = 3 V,  $I_{DQ}$  = 47 mA,  $R_{BIAS}$  = 1150  $\Omega$ 



Figure 42.  $P_{SAT}$  vs. Frequency for Various  $I_{DQ}$  and  $R_{BIAS}$  Values, 1 GHz to 24 GHz,  $V_{DD}$  = 3 V



Figure 43. PAE Measured at  $P_{SAT}$ vs. Frequency for Various Temperatures, 1 GHz to 24 GHz,  $V_{DD}$  = 5 V,  $I_{DQ}$  = 110 mA,  $R_{BIAS}$  = 1150  $\Omega$ 



Figure 44. PAE Measured at  $P_{SAT}$  vs. Frequency for Various  $I_{DQ}$  and  $R_{BIAS}$ Values, 1 GHz to 24 GHz,  $V_{DD}$  = 5 V



Figure 45. PAE Measured at  $P_{SAT}$  vs. Frequency for Various Supply Voltages, 1 GHz to 24 GHz,  $I_{DQ}$  = 110 mA



Figure 46. PAE Measured at  $P_{SAT}$  vs. Frequency for Various Temperatures, 1 GHz to 24 GHz,  $V_{DD}$  = 3 V,  $I_{DQ}$  = 47 mA,  $R_{BIAS}$  = 1150  $\Omega$ 



Figure 47. PAE Measured at  $P_{SAT}$  vs. Frequency for Various  $I_{DQ}$  and  $R_{BIAS}$ Values, 1 GHz to 24 GHz,  $V_{DD}$  = 3 V



Figure 48. P<sub>DISS</sub> vs. P<sub>IN</sub> at Various Frequencies, T<sub>CASE</sub> = 85°C, V<sub>DD</sub> = 5 V



Figure 49. P<sub>DISS</sub> vs. P<sub>IN</sub> at Various Frequencies, T<sub>CASE</sub> = 85°C, V<sub>DD</sub> = 3 V



Figure 50.  $P_{OUT}$ , Gain, PAE, and  $I_{DD}$  vs.  $P_{IN}$ , Power Compression at 5 GHz,  $V_{DD}$ = 5 V,  $R_{BIAS}$  = 1150  $\Omega$ 



Figure 51.  $P_{OUT}$ , Gain, PAE, and  $I_{DD}$  vs.  $P_{IN}$ , Power Compression at 10 GHz,  $V_{DD}$  = 5 V,  $R_{BIAS}$  = 1150  $\Omega$ 



Figure 52.  $P_{OUT}$ , Gain, PAE, and  $I_{DD}$  vs.  $P_{IN}$ , Power Compression at 20 GHz,  $V_{DD}$  = 5 V,  $R_{BIAS}$  = 1150  $\Omega$ 



Figure 53.  $P_{OUT}$ , Gain, PAE, and  $I_{DD}$  vs.  $P_{IN}$ , Power Compression at 5 GHz,  $V_{DD}$ = 3 V,  $R_{BIAS}$  = 1150  $\Omega$ 



Figure 54.  $P_{OUT}$ , Gain, PAE, and  $I_{DD}$  vs.  $P_{IN}$ , Power Compression at 10 GHz,  $V_{DD}$  = 3 V,  $R_{BIAS}$  = 1150  $\Omega$ 



Figure 55.  $P_{OUT}$ , Gain, PAE, and  $I_{DD}$  vs.  $P_{IN}$ , Power Compression at 20 GHz,  $V_{DD}$  = 3 V,  $R_{BIAS}$  = 1150  $\Omega$ 



Figure 56. OIP3 vs. Frequency for Various Temperatures, 1 GHz to 25 GHz,  $V_{DD}$  = 5 V,  $I_{DQ}$  = 110 mA,  $R_{BIAS}$  = 1150  $\Omega$ 



Figure 57. OIP3 vs. Frequency for Various I\_{DQ} and R\_{BIAS} Values, 1 GHz to 25 GHz, V\_{DD} = 5 V



Figure 58. OIP3 vs. Frequency for Various Supply Voltages, 1 GHz to 25 GHz,  $I_{DQ}$  = 110 mA



Figure 59. OIP3 vs. Frequency for Various Temperatures, 1 GHz to 25 GHz,  $V_{DD}$  = 3 V,  $I_{DQ}$  = 47 mA,  $R_{BIAS}$  = 1150  $\Omega$ 



Figure 60. OIP3 vs. Frequency for Various  $I_{DQ}$  and  $R_{BIAS}$  Values, 1 GHz to 24 GHz,  $V_{DD}$  = 3 V



Figure 61. OIP2 vs. Frequency for Various Temperatures, 1 GHz to 25 GHz,  $V_{DD}$  = 5 V,  $I_{DQ}$  = 110 mA,  $R_{BIAS}$  = 1150  $\Omega$ 



Figure 62. OIP2 vs. Frequency for Various  $I_{DQ}$  and  $R_{BIAS}$  Values, 1 GHz to 25 GHz,  $V_{DD}$  = 5 V



Figure 63. OIP2 vs. Frequency for Various Supply Voltages, 1 GHz to 25 GHz,  $I_{DQ} = 110 \text{ mA}$ 



Figure 64. OIP2 vs. Frequency for Various Temperatures, 1 GHz to 25 GHz,  $V_{DD}$  = 3 V,  $I_{DQ}$  = 47 mA,  $R_{BIAS}$  = 1150  $\Omega$ 



Figure 65. OIP2 vs. Frequency for Various  $I_{DQ}$  and  $R_{BIAS}$  Values, 1 GHz to 25 GHz,  $V_{DD}$  = 3 V



Figure 66. Third-Order Intermodulation (IM3) vs.  $P_{OUT}$  Per Tone for Various Frequencies,  $V_{DD}$  = 5 V,  $R_{BIAS}$  = 1150  $\Omega$ 



Figure 67. IM3 vs.  $P_{OUT}$  Per Tone for Various Frequencies,  $V_{DD}$  = 3 V,  $R_{BIAS}$  = 1150  $\Omega$ 



Figure 68. Phase Noise vs. Frequency at 5 GHz for Various  $P_{OUT}$  Values



Figure 69. I<sub>DQ</sub> vs. R<sub>BIAS</sub> at Various Supply Voltages, 0  $\Omega$  to 2000  $\Omega$ 



Figure 70. I<sub>DQ</sub> vs. Supply Voltage, R<sub>BIAS</sub> = 1150 Ω



Figure 71. Phase Noise vs. Frequency at 15 GHz for Various POUT Values



Figure 72. I<sub>DQ</sub> vs.  $R_{BIAS}$  at Various Supply Voltages, 2 k $\Omega$  to 10 k $\Omega$ 



Figure 73. Overdrive Recovery Time vs. P<sub>IN</sub> at 10 GHz, Recovery to Within 90% of Small Signal Gain Value, V<sub>DD</sub> = 5 V, R<sub>BIAS</sub> = 1.15 kΩ

# THEORY OF OPERATION

The ADL8102 has AC-coupled, single-ended input and output ports with impedance that are nominally equal to 50  $\Omega$  over the 1 GHz to 22 GHz frequency range. No external matching components are required. To adjust  $I_{DQ}$ , connect an external resistor between the RBIAS and VDD pins. Figure 74 shows the simplified block diagram.



Figure 74. Simplified Schematic

# **APPLICATIONS INFORMATION**

The basic connections for operating the ADL8102 over the specified frequency range are shown in Figure 75. No external biasing inductor is required, which allows the 5 V supply to be connected to the VDD pin. It is recommended to use 1  $\mu$ F, 100 pF, and 1000 pF power-supply decoupling capacitors. The power-supply decoupling capacitors shown in Figure 75 represent the configuration used to characterize and qualify the ADL8102.

To set  $I_{DQ}$ , connect a resistor (R1) between the RBIAS and VDD pins. A default value of 1150  $\Omega$  is recommended, which results in a nominal  $I_{DQ}$  of 110 mA. Table 1 shows how  $I_{DQ}$  and  $I_{DQ\_AMP}$  vary vs.  $R_{BIAS}$ . The RBIAS pin also draws a current that varies with the value of  $R_{BIAS}$  (see Table 1). Do not leave the RBIAS pin open.

Correct sequencing of the DC and RF power is required to safely operate the ADL8102. During power-up, apply  $V_{DD}$  before the RF power is applied to RFIN, and during power-off, remove the RF power from RFIN before  $V_{DD}$  is powered off.



Figure 75. Typical Application Circuit

For more information on using the evaluation board, refer to the ADL8102-EVALZ user guide.

| able 9. Recommended R <sub>BIAS</sub> | Values for V <sub>DD</sub> = 5 V |
|---------------------------------------|----------------------------------|
|---------------------------------------|----------------------------------|

| R <sub>BIAS</sub> (kΩ) | I <sub>DQ</sub> (mA) | I <sub>DQ_AMP</sub> (mA) | I <sub>RBIAS</sub> (mA) |
|------------------------|----------------------|--------------------------|-------------------------|
| 5.3                    | 40                   | 39.2                     | 0.8                     |
| 3.72                   | 50                   | 48.9                     | 1.1                     |
| 2.24                   | 70                   | 68.3                     | 1.7                     |
| 1.84                   | 80                   | 78                       | 2                       |
| 1.54                   | 90                   | 87.75                    | 2.25                    |
| 1.15                   | 110                  | 107.15                   | 2.85                    |
| 0.85                   | 130                  | 126.55                   | 3.45                    |
| 0.65                   | 150                  | 146                      | 4                       |

## **RECOMMENDED POWER MANAGEMENT CIRCUIT**

Figure 76 shows a recommended power management circuit for the ADL8102. The LT8607 step-down regulator is used to step down a 12 V rail to 6.5 V, which is then applied to the LT3042 low dropout (LDO) linear regulator to generate a low noise 5 V output. While the circuit shown in Figure 76 has an input voltage of 12 V, the input range to the LT8607 can be as high as 42 V.

The 6.54 V regulator output of the LT8607 is set by the R2 and R3 resistors according to the following equation:

$$R2 = R3((VOUT / 0.778 V) - 1)$$
(1)

The switching frequency is set to 2 MHz by the 18.2 k $\Omega$  resistor on the RT pin. The LT8607 data sheet provides a table of resistor values that can be used to select other switching frequencies ranging from 0.2 MHz to 2.200 MHz.

The output voltage of the LT3042 is set by the R4 resistor connected to the SET pin according to the following equation:

$$VOUT = 100\,\mu A \times R4\tag{2}$$

Choose PGFB resistors to trigger the power-good (PG) signal when the output is just under 95% of the target voltage of 5 V. The output of the LT3042 has 1% initial tolerance and another 1% variation over temperature. The PGFB tolerance is roughly 3% over temperature, and adding resistors results in a bit more (5%), therefore, putting 5% between the output and PGFB works well. In addition, the PG open-collector is pulled up to the 5 V output to give a convenient 0 V to 5 V voltage range. Table 10 provides the recommended resistor values for operation at 5 V, 3.3 V, and 3 V.

| Table 10. | Recommended  | Resistor  | Values  | for O | perating | at 5 | V. 3.3 | V. and 3         | V |
|-----------|--------------|-----------|---------|-------|----------|------|--------|------------------|---|
|           | necommentaca | 110313101 | vulues. | 101 0 | peruting | alu  | ,      | <b>v</b> , unu v |   |

| LDO Output Voltage (V) | R4 (kΩ) | R7 (kΩ) | R8 (kΩ) |
|------------------------|---------|---------|---------|
| 5                      | 49.9    | 442     | 30.1    |
| 3.3                    | 33.2    | 287     | 30.1    |
| 3                      | 30.1    | 255     | 30.1    |

The LT8607 can source a maximum current of 750 mA, and the LT3042 can source a maximum current of 200 mA. If the 5 V power supply voltage is being developed as a bus supply to serve another component, higher current devices can be used. The LT8608 and LT8609 step-down regulators can source a maximum current to 1.5 A and 3 A, respectively, and these devices are pin-compatible with the LT8607. The LT3045 linear regulator, which is pin-compatible with the LT3042, can source a maximum current to 500 mA.



Figure 76. Recommended Power Management Circuit

### USING THE RBIAS PIN TO ENABLE AND DISABLE THE ADL8102

By attaching a single-pole, double throw (SPDT) switch to the RBIAS pin, an enable and/or disable circuit can be implemented as shown in Figure 77. The ADG719 CMOS switch is used to connect the R<sub>BIAS</sub> resistor either to supply or ground. When the R<sub>BIAS</sub> resistor is connected to ground, the overall current consumption reduces to 4.73 mA with no RF signal present and 4.92 mA when the RF input level is –10 dBm.

Figure 78 shows a plot of the turn on and/or turn off response time of the RF output envelope when the IN pin of the ADG719 is pulsed.



Figure 77. Fast Enable and/or Disable Circuit Using an SPDT



Figure 78. On and/or Off Response of the RF Output Envelope When the IN Pin of the ADG719 Is Pulsed

# **OUTLINE DIMENSIONS**



Dimensions Shown in millimeters

Updated: June 30, 2023

#### ORDERING GUIDE

| Model <sup>1, 2</sup> | Temperature Range | Package Description               | Packing Quantity | Package Option |
|-----------------------|-------------------|-----------------------------------|------------------|----------------|
| ADL8102ACPZN          | -40°C to +85°C    | 16-Lead LFCSP (3 mm x 3 mm w/ EP) | Reel, 0          | CP-16-35       |
| ADL8102ACPZN-R7       | -40°C to +85°C    | 16-Lead LFCSP (3 mm x 3 mm w/ EP) | Reel, 1500       | CP-16-35       |

<sup>1</sup> Z = RoHS-Compliant Part.

<sup>2</sup> The lead finish of the ADL8102ACPZN and ADL8102ACPZN-R7 is nickel palladium gold.

# **EVALUATION BOARDS**

| Model <sup>1</sup> | Description      |
|--------------------|------------------|
| ADL8102-EVALZ      | Evaluation Board |

<sup>1</sup> Z = RoHS-Compliant Part.

