

Trench Schottky Rectifier, Very Low Leakage

NRVTSS5100E, NRVTSAF5100E

Features

- Fine Lithography Trench-based Schottky Technology for Very Low Forward Voltage and Low Leakage
- Fast Switching with Exceptional Temperature Stability
- Low Power Loss and Lower Operating Temperature
- Higher Efficiency for Achieving Regulatory Compliance
- High Surge Capability
- NRV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These are Pb-Free and Halide-Free Devices

Typical Applications

- Switching Power Supplies including Wireless, Smartphone and Notebook Adapters
- High Frequency and DC-DC Converters
- Freewheeling and OR-ing diodes
- Reverse Battery Protection
- Instrumentation
- LED Lighting

Mechanical Characteristics:

- Case: Epoxy, Molded
- Epoxy Meets Flammability Rating UL 94-0 @ 0.125 in.
- Lead Finish: 100% Matte Sn (Tin)
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds

1

• Device Meets MSL 1 Requirements

SCHOTTKY BARRIER RECTIFIERS 5 AMPERES 100 VOLTS

SMB CASE 403A

SMA-FL CASE 403AA STYLE 6

MARKING DIAGRAMS

A = Assembly Location Y = Year

WW = Work Week
■ Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

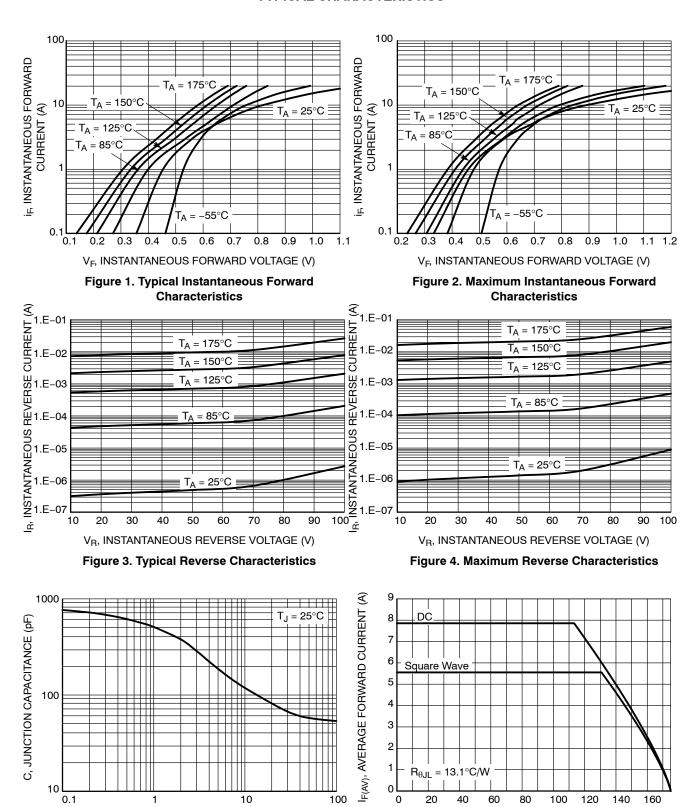
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	100	V
Average Rectified Forward Current (T _L = 100°C)	I _{F(AV)}	5.0	А
Peak Repetitive Forward Current, (Square Wave, 20 kHz, T _L = 83°C)	I _{FRM}	10	А
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	50	А
Storage Temperature Range	T _{stg}	-65 to +175	°C
Operating Junction Temperature	TJ	-55 to +175	°C
ESD Rating (Human Body Model)		1B	
ESD Rating (Charged Device Model)		> 1000	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Characteristic			Max	Unit
Maximum Thermal Resistance, Steady State (Note 1)				°C/W
(NRVTSAF5100E) Junction-to-Lead		$R_{ heta JL}$	25	
	Junction-to-Ambient	$R_{ heta JA}$	90	
(NRVTSS5100E)	Junction-to-Lead	$R_{ heta JL}$	13.1	
	Junction-to-Ambient	$R_{ heta JA}$	71.1	

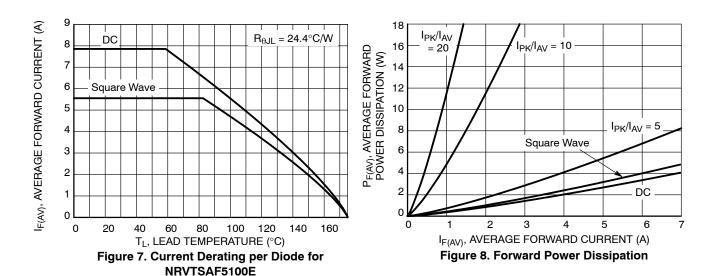

^{1.} Assumes 600 mm² 1 oz. copper bond pad, on a FR4 board

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit
Instantaneous Forward Voltage (Note 2)	٧F			V
$(i_F = 3.0 \text{ A}, T_J = 25^{\circ}\text{C})$		0.56	-	
$(i_F = 5.0 \text{ A}, T_J = 25^{\circ}\text{C})$		0.65	0.69	
(i _F = 3.0 A, T _J = 125°C)		0.50	-	
$(i_F = 5.0 \text{ A}, T_J = 125^{\circ}\text{C})$		0.56	0.62	
Reverse Current (Note 2)	i _R			
(Rated dc Voltage, T _J = 25°C)		2.6	29	μΑ
(Rated dc Voltage, T _J = 125°C)		2.2	5	mA
Diode Capacitance	C _d			pF
(Rated dc Voltage, T _J = 25°C, f = 1 MHz)		54.4		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

TYPICAL CHARACTERISTICS



 $\label{eq:VR} V_R,\, \text{REVERSE VOLTAGE (V)}$ Figure 5. Typical Junction Capacitance

T_L, LEAD TEMPERATURE (°C)

Figure 6. Current Derating per Diode for NRVTSS5100E

TYPICAL CHARACTERISTICS

1000 100 50% Duty Cycle 20% R_(t), (°C/W) 10% 🗒 10 5% # 2% 1% 0.1 0.000001 0.00001 0.0001 0.001 0.01 0.1 10 100 1000 1

t, PULSE TIME (S)

Figure 9. Transient Thermal Response, Junction-to-Ambient, for NRVTSS5100E

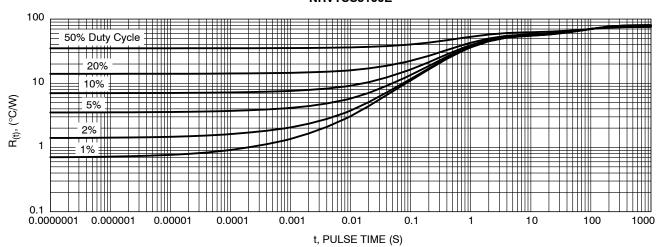
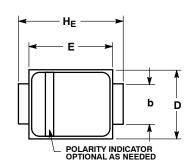


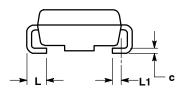
Figure 10. Transient Thermal Response, Junction-to-Ambient, for NRVTSAF5100E

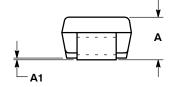
ORDERING INFORMATION

Device	Package	Shipping [†]
NRVTSAF5100ET3G	SMA-FL (Pb-Free)	5000 / Tape & Reel
NRVTSS5100ET3G	SMB (Pb-Free)	2500 / Tape & Reel
NRVTSS5100ET3G-GA01	SMB (Pb-Free)	2500 / Tape & Reel

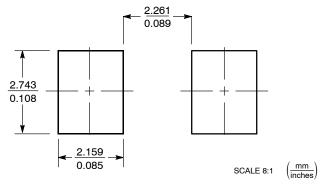
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.




SMB CASE 403A-03 **ISSUE J**


DATE 19 JUL 2012

SCALE 1:1 **Polarity Band**


Non-Polarity Band

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCL.
- 3. DIMENSION b SHALL BE MEASURED WITHIN DIMENSION L1.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	MOM	MAX
Α	1.95	2.30	2.47	0.077	0.091	0.097
A1	0.05	0.10	0.20	0.002	0.004	0.008
b	1.96	2.03	2.20	0.077	0.080	0.087
С	0.15	0.23	0.31	0.006	0.009	0.012
D	3.30	3.56	3.95	0.130	0.140	0.156
E	4.06	4.32	4.60	0.160	0.170	0.181
HE	5.21	5.44	5.60	0.205	0.214	0.220
L	0.76	1.02	1.60	0.030	0.040	0.063
L1		0.51 REF			0.020 REF	

GENERIC MARKING DIAGRAM*

Polarity Band

Non-Polarity Band

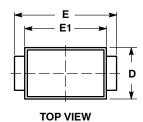
XXXXX = Specific Device Code = Assembly Location Α

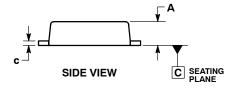
= Year WW = Work Week = Pb-Free Package

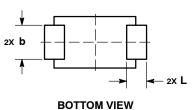
(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98ASB42669B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SMB		PAGE 1 OF 1	

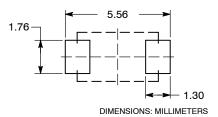

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.





SMA-FL CASE 403AA ISSUE O

DATE 02 MAR 2011



NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS.

	MILLIMETERS		
DIM	MIN	MAX	
Α	0.90	1.10	
b	1.25	1.65	
С	0.15	0.30	
D	2.40	2.80	
Е	4.80	5.40	
E1	4.00	4.60	
	0.70	1 10	

RECOMMENDED SOLDER FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON55210E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SMA-FL		PAGE 1 OF 1

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales