BUSSMANN SERIES

EDC10

10 x 32 mm high breaking capacity EV fuse

Product features

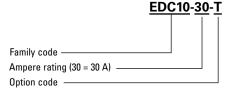
- · 10 x 32 mm fuse
- · Current rating: 30 A to 60 A
- · 420/500 Vac, 500 Vdc rating
- High breaking capacity for high energy application
- Designed to JASO D622, ISO8820-8, GB/T31465
- Produced in a factory with ISO9001 & IATF16949 certification
- Minimum breaking capacity 300% In at rated DC voltage
- · Bolt-down terminal and PCB terminal options

Applications

- · Uninterruptible power supplies (UPS)
- 3-phase EVSE and charging infrastructure
- Motor protection
- · Vac input protection in rectifiers
- · Vac output in inverters
- Electric vehicle junction boxes and auxiliary load protection

Agency information

cURus Recognition file number: E91958


Environmental compliance

Ordering part number

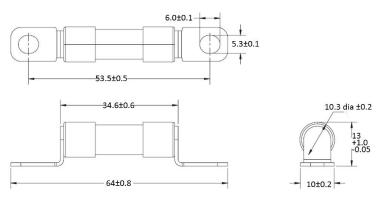
Option code

PCB = 2 pin PCB terminal T= Bolt down terminal

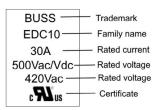
Electrical characteristics

Amps (A)	Minimum (seconds)	Maximum (seconds)
1.0 ln	3600	-
3.5 ln	-	10

Product specifications

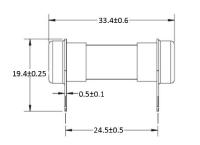

Part number	Rated voltage	Rated current (A)	Breaking capacity	Typical cold resistance 1 (m Ω)	Typical voltage drop (mV)
EDC10-30	500 Vac 420 Vac 500 Vdc	30	500 Vac/3 kA 420 Vac/10 kA 500 Vdc/10 kA	3.0	130
EDC10-40	500 Vac 420 Vac 500 Vdc	40	500 Vac/3 kA 420 Vac/10 kA 500 Vdc/10 kA	2.2	140
EDC10-50	500 Vac 420 Vac 500 Vdc	50	500 Vac/3 kA 420 Vac/10 kA 500 Vdc/10 kA	1.6	130
EDC10-60	500 Vac 420 Vac 500 Vdc	60	500 Vac/3 kA 420 Vac/6 kA 500 Vdc/10 kA	1.3	130

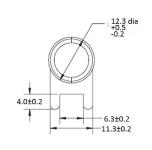
^{1.} Cold resistance is measured at <10% In and +25 °C ambient temperature

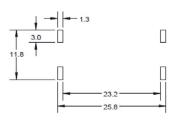

Dimensions- mm

Tolerances unless otherwise specified One place $x.x = \pm 0.3$ mm Two places $x.xx = \pm 0.13$ mm

T: Bolt down terminal




Part marking


Note: recommend tightening torque is 4.5+/-1.0 Nm for M5 Screw

2P: 2 pin PCB terminal

PCB layout 2P: 2 pin PCB terminal

General specifications

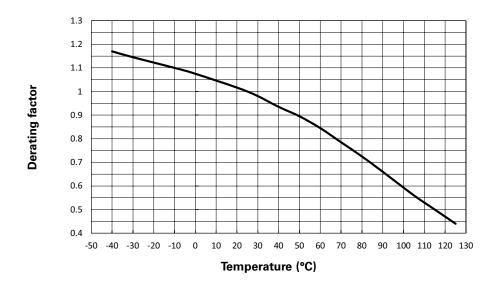
Operating temperature: -40 °C to +125 °C with proper derating factor applied

Strength of terminals: JASO D622 6.3.9, mounting torque 4.5 +/-1 Nm, 3 times

- Temperature humidity cycling: JASO D622 6.3.4.1,
 a) maintain the samples at standard conditions for 4 hours
 b) increase T to 55 +/-2 °C at 95% to 99% RH within 0.5 hours
 c) maintain T at 55 +/-2 °C at 95% to 99% RH for 10 hours
 d) decrease T to -40 +/-2 °C within 2.5 hours; the humidity is uncontrolled
 e) maintain T at -40 +/-2 °C for 2 hours; the humidity is uncontrolled
- e) maintain T at -40 +/-2 °C within 1.5 hours from -40 +/-2 °C; the humidity is uncontrolled g) maintain T at 120 +/-2 °C for 2 hours; the humidity is uncontrolled h) allow to return to RT within 1.5 hours; the humidity is uncontrolled 10 cycles.

Thermal shock: ISO8820-8 GB/T31465.6, 48 cycles; -40 °C to 100 °C, each cycle 60 minutes

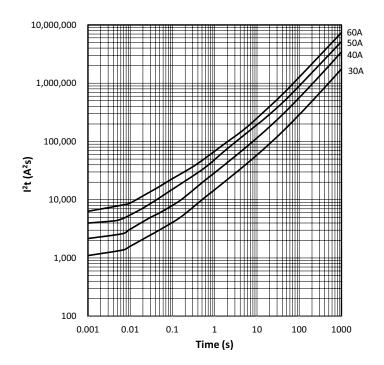
Vibration: JASO D622 6.3.3, 10-55 Hz, 3 directions, 2 hours each direction

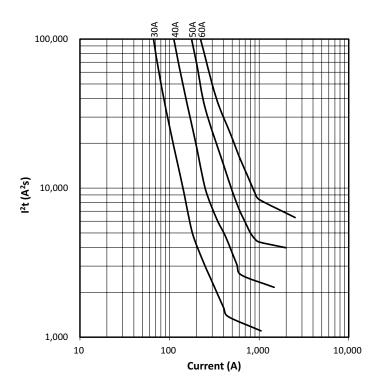

Transient current cycling: JASO D622 6.3.2 (reference), The transient current start from 2.0 In for 0.25 seconds, then drop to 0.5 In and keep this current to 15 seconds to finish one cycle, total 50000 cycles

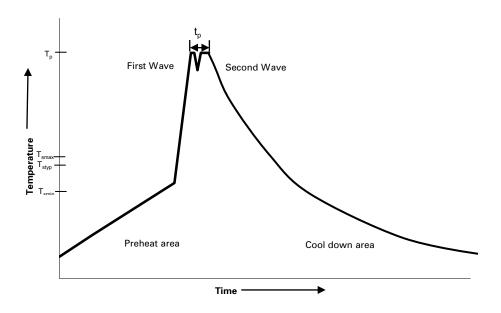
Lubricant & fuel oil resistance: GB/T31465.1-5.4, Wipe the marking with lubricant or oil 30 seconds

Packaging information

Terminals	Inner package	Ship package
T	20 pieces/box	480 pieces/box
PCB	45 pieces/tray	450 pieces/box


Temperature derating curve


Current vs. time curve


I²T vs. time curve

l²t vs. current curve

Wave solder profile--PCB version only

Reference EN 61760-1:2006

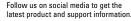
Profile feature		Standard SnPb solder	Lead (Pb) free solder	
Preheat	• Temperature min. (T _{smin})	100 °C	100 °C	
	• Temperature typ. (T _{styp})	120 °C	120 °C	
	• Temperature max. (T _{smax})	130 °C	130 °C	
	Time (T _{smin} to T _{smax}) (t _s)	70 seconds	70 seconds	
Δ preheat to max Temperature		150 °C max.	150 °C max.	
Peak temperature (Tp)*		235 °C − 260 °C	250 °C − 260 °C	
Time at peak temperature (t _p)		10 seconds max 5 seconds max each wave	10 seconds max 5 seconds max each wave	
Ramp-down ra	ate	~ 2 K/s min ~3.5 K/s typ ~5 K/s max	~ 2 K/s min ~3.5 K/s typ ~5 K/s max	
Time 25 °C to 25 °C		4 minutes	4 minutes	

Manual solder

+350 °C (4-5 seconds by soldering iron), generally manual/hand soldering is not recommended.

Life Support Policy: Eaton does not authorize the use of any of its products for use in life support devices or systems without the express written approval of an officer of the Company. Life support systems are devices which support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Eaton reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Eaton also reserves the right to change or update, without notice, any technical information contained in this bulletin.


Eaton Electronics Division 1000 Eaton Boulevard Cleveland, OH 44122

Cleveland, OH 44122 United States Eaton.com/electronics

© 2023 Eaton All Rights Reserved Printed in USA Publication No. ELX1300 BU-ELX22163 May 2023

Eaton is a registered trademark.

All other trademarks are property of their respective owners.

