# Wire Bondable Vertical SiCap WLSC 0101 1nF BV30



# General description

WLSC capacitors target power supplies decoupling and filtering of active devices. They are based on PICS Integrated Passive technology.

This product is a single 1nF capacitor in 0101 package size. Other capacitance values and other package size are available as a single die or capacitor array; please feel free to contact us.

WLSC capacitors are directly mounted on the PCB application using die bonding or wire bonding processes. Standard FR4 PCB can be used. The bottom electrode is in TiNiAu and the top electrode is in TiWAu. Other top finishings such as Aluminum are available on request.

#### Key features

- Compatible with MLCC footprint
- Ultra-high stability of capacitance value:
  - $_{\circ}$  Temperature 70ppm/K (-55  $^{\circ}$ C to +150  $^{\circ}$ C)
  - o Voltage <-0.02%/Volt
  - Negligible capacitance loss through ageing
- Low profile 0.1mm
- Small size 0.25 x 0.25 mm (0101 format)

- Break down voltage: 30V
- Low leakage current
- High reliability
- High operating temperature (up to 150 °C)
- Compatible with high temperature cycling during manufacturing operations (exceeding 300 °C)
- Compatible with EIA 0101 footprint
- Applicable for standard wire bonding assembly (ball and wedge)

#### Key applications

- Any demanding applications, such as medical, aerospace, automotive industrial...
- Supply decoupling / filtering of active device
- High reliability applications
- Battery operated devices
- High temperature applications
- High volumetric efficiency (i.e. capacitance per unit volume)



#### **Functional diagram**

The next figure provides implementation set-up diagram.




Figure 1 Block Diagram

# Electrical performances

| Symbol                  | Parameter                         | Conditions                               | Min. | Тур. | Max.                                     | Unit              |
|-------------------------|-----------------------------------|------------------------------------------|------|------|------------------------------------------|-------------------|
| С                       | Capacitance value                 | @+25°C                                   | -    | 1    | -                                        | nF                |
| $\Delta C_P$            | Capacitance tolerance (1)         | @+25°C                                   | -15  |      | +15                                      | %                 |
| T <sub>OP</sub>         | Operating temperature             |                                          | -55  | 20   | 150                                      | °C                |
| T <sub>STG</sub>        | Storage temperature (2)           |                                          | -70  | -    | 165                                      | °C                |
| $\Delta C_T$            | Capacitance temperature variation | -55 °C to 150 °C                         | _    | 70   | -                                        | ppm/K             |
| RV <sub>DC</sub>        | Rated voltage (3)                 |                                          | -    | -    | 16 <sup>(4)</sup><br>14.7 <sup>(5)</sup> | V <sub>DC</sub>   |
| BV                      | Break down voltage                | @+25°C                                   | 30   | _    | -                                        | V                 |
| $\Delta C_{	ext{RVDC}}$ | Capacitance voltage variation     | From 0 V to RV <sub>DC</sub> ,<br>@+25°C | _    | -    | -0.02                                    | %/V <sub>DC</sub> |
| IR                      | Insulation resistor               | @RV <sub>DC</sub> , +25°C, 120s          | -    | 10   | -                                        | GΩ                |
| ESR                     | Equivalent Serial Resistance      | @+25°C, shunt mode                       | -    | 900  | -                                        | mOhm              |
| ESL                     | Equivalent Serial Inductance      | @+25°C, SRF shunt mode                   | _    | 17   | -                                        | рН                |
| ESD                     | HBM stress (6)                    | JS-001-2017                              | 2    | -    | -                                        | kV                |

Table 1 - Electrical performances

- (1): other tolerance available upon request
- (2): without packaging
  (3): Lifetime is voltage and temperature dependent, please refer to application note 'Lifetime of 3D capacitors'
- (4): 10 years of intrinsic life time prediction at 100°C continuous operation
- (5): 10 years of intrinsic life time prediction at 150°C continuous operation
- (6): please refer to application note 'ESD Challenge in 3D Murata Integrated Passive technology'

For extended frequency range (up to 26GHz), see Ultra large band Wire bonding vertical Silicon Capacitor (UWSC).



# Impedance characteristic of 1nF WLSC in Shunt mode

# 1000 Impedance ESR Impedance E

Figure 2 - 1nF WLSC measurement results (Impedance characteristic versus Frequency in shunt mode)

# Schematic of 1nF WLSC in Shunt mode

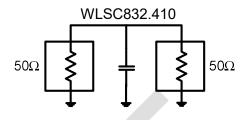



Figure 3 - 1nF WLSC measurement schematic

# **Example of mounted 0101**

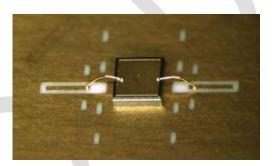



Figure 4 - micro picture of mounted 0101 WLSC





# Pinning definition

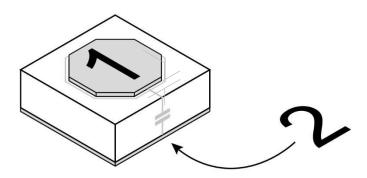



Figure 5 Pinning definition

| pin # | Symbol | Coordinates X / Y |
|-------|--------|-------------------|
| 1     | Signal | 0.0 / 0.0         |
| 2     | GND    | Backside          |

Table 2 - Pining description. Reference (0,0) located at the centre of the die.

#### **Ordering Information**

Murata Integrated Passive Devices delivers products with AQL level II (0.65). Tighter quality levels are available upon request.

| Part number      | Package                     |                   |                                                                 |  |  |
|------------------|-----------------------------|-------------------|-----------------------------------------------------------------|--|--|
| Part number      | Packaging                   | Finishing         | Description                                                     |  |  |
| 935146832410-F1T | 6" FFC <sup>(1)</sup>       | Au <sup>(2)</sup> | 1nF/0101 – 1 bondpad –<br>0.25 x 0.25mm x 0.10mm <sup>(3)</sup> |  |  |
| 935146832410-F2T | 8" FFC <sup>(1)</sup>       | Au <sup>(2)</sup> | 1nF/0101 – 1 bondpad –<br>0.25 x 0.25mm x 0.10mm <sup>(3)</sup> |  |  |
| 935146832410-E1T | 6" grip ring <sup>(1)</sup> | Au <sup>(2)</sup> | 1nF/0101 – 1 bondpad –<br>0.25 x 0.25mm x 0.10mm <sup>(3)</sup> |  |  |
| 935146832410-W0T | Waffle pack<br>400units     | Au <sup>(2)</sup> | 1nF/0101 – 1 bondpad –<br>0.25 x 0.25mm x 0.10mm <sup>(3)</sup> |  |  |

Table 3 - Packaging and ordering information

- (1) Other film frame carrier are possible on request
- (2) Au = TiWAu (0.3 $\mu$ m) / Au (3 $\mu$ m)
- (3) Refer to Figure 9

| Product Name | Die Name  | Description                                             |
|--------------|-----------|---------------------------------------------------------|
| WLSC832.410  | WR0101410 | WLSC 1nF/0101/BV30 – 1 bondpad – 0.25 x 0.25mm x 0.10mm |

Table 4 - Die information





#### Pad Metallization

This wire bondable capacitor is delivered as standard with the bottom electrode in TiNiAu ( $_{\text{Ti} (0.1 \, \mu\text{m})/\text{Ni} (0.3 \, \mu\text{m})/\text{Au}}$ ) and top electrode in TiWAu ( $_{\text{TiWAu} (0.3 \, \mu\text{m})/\text{Au} (3 \, \mu\text{m})}$ ).

Other Metallization, such as thick Gold or Aluminum top pads are possible on request.

Silicon dies are not sensitive to humidity, please refer to applications notes 'Assembly Notes' section 'Handling precautions and storage'.

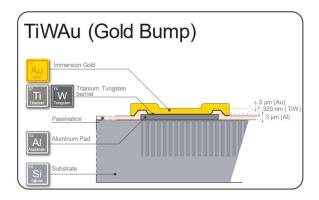



Figure 6 - Top electrode description

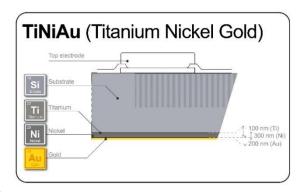



Figure 7 - Bottom electrode description

#### Material regulation

This product is RoHS compliant at the time of publication. For further information about regulation compliancy, please ask your sales representative.

#### Package outline

The product is delivered as a bare silicon die.

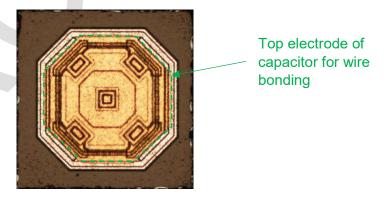



Figure 8 — micro-picture view

| A (mm)     | B (mm)     | C (mm)      | d (mm) | e (mm) | f (mm) | g (mm) |
|------------|------------|-------------|--------|--------|--------|--------|
| 0.25 ±0.03 | 0.25 ±0.03 | 0.10 ±0.015 | 0.175  | 0.175  | 0.175  | 0.175  |

Table 5 - Dimensions and tolerances



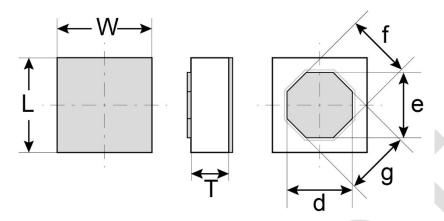



Figure 9 - Package outline drawing

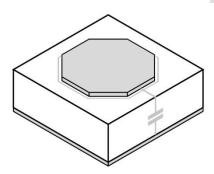



Figure 10 - Package isometric view



#### Assembly

WLSC capacitors are directly mounted on the PCB application using die bonding and wire bonding. It is applicable for standard wire bonding assembly (ball and wedge).

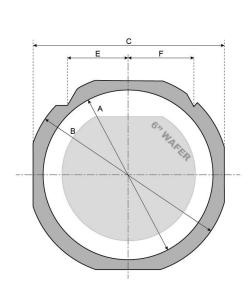
For further information, please see our mounting application note.

The attachment techniques recommended by Murata on the customer's substrates are fully detailed in specific documents available on our website. To assure the correct use and proper functioning of Murata capacitors please download the assembly instructions on <a href="https://www.murata.com/en-us/products/capacitor/siliconcapacitors">https://www.murata.com/en-us/products/capacitor/siliconcapacitors</a> and read them carefully.



Figure 11 Scan this QR Code to access the Murata Silicon Capacitor web page




# Packaging format

Please refer to application note 'Products Storage Conditions and Shelf Life'.

# Film Frame Carrier:

With UV curable dicing tape (UV performed).

Good dies are identified using the SINF electronic mapping format. No ink is added on wafer to label other dies.



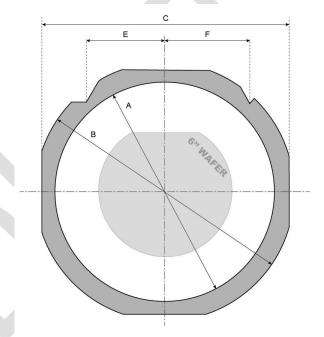



Figure 12 FF070 Frame with a 6" wafer

Figure 13 FF108 Frame with a 6" wafer

| Frame<br>Reference   | Frame<br>Style | Inside<br>diameter<br>A | Outside<br>diameter<br>B | Width<br>C | Thickness | Pin<br>location<br>E | Pin<br>location<br>F |
|----------------------|----------------|-------------------------|--------------------------|------------|-----------|----------------------|----------------------|
| FF070 <sup>(1)</sup> | DTF-2-6-1      | 7.638"                  | 8.976"                   | 8.346"     | 0.048"    | 2.370"               | 2.5"                 |
| FF108 <sup>(1)</sup> | DTF-2-8-1      | 9.842"                  | 11.653"                  | 10.866"    | 0.048"    | 2.381"               | 2.5"                 |

Table 6 - Frame dimensions (inches)

(1) or equivalent



# Expander grip ring 6" diameter:

With UV curable dicing tape (UV performed)

Good dies are identified using the SINF electronic mapping format. No ink is added on wafer to label other dies.

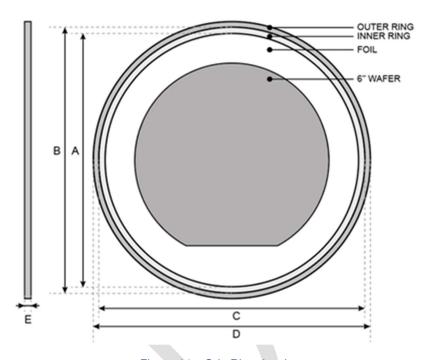



Figure 14 - Grip Ring drawing

| Grip Ring<br>Style | A      | В      | С      | D      | Е      | Locator<br>Notch |
|--------------------|--------|--------|--------|--------|--------|------------------|
| GRP-2620-6         | 7.670" | 7.973" | 7.975" | 8.280" | 0.236" | None             |

Table 7 - Frame dimensions (inches)

(1) or equivalent





# Waffle pack:

Please refer to application note 'Waffle Pack Chip Carrier Handling & Opening Procedure'. Dies are not flipped in the waffle pack cavity (wire bond pad up).

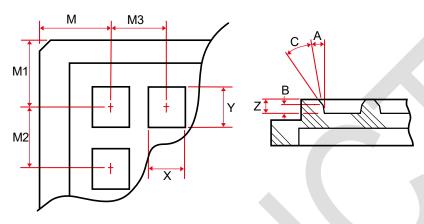



Table 8 - Waffle pack drawing

| External dimensions | Max. capacity | Pocket<br>length X | Pocket<br>width Y | Pocket<br>depth Z |
|---------------------|---------------|--------------------|-------------------|-------------------|
| 2 inches            | 20 x 20       | 0.36 ±0.05         | 0.36 ±0.05        | 0.13 ±0.05        |

Table 9 - Waffle pack dimensions (mm)

| M          | M1         | M2         | М3                    | A        |
|------------|------------|------------|-----------------------|----------|
| 4.55 ±0.08 | 4.55 ±0.08 | 2.18 ±0.05 | 2.18 <sub>±0.05</sub> | 7° ±1/2° |

Table 10 - Waffle pack dimensions (mm)





#### **Definitions**

#### Data sheet status

Objective specification: This data sheet contains target or goal specifications for product development.

**Preliminary specification:** This data sheet contains preliminary data; supplementary data may be published later.

**Product specification:** This data sheet contains final product specifications.

#### Limiting values

Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those given in the Electrical performances sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

#### Application information

Where application information is given, it is advisory and does not form part of the specification.

#### Revision history

| Revision     | Date                       | Description                                 | Author  |
|--------------|----------------------------|---------------------------------------------|---------|
| Release 1.00 | 2019 July 11 <sup>th</sup> | Creation                                    | OGA     |
| Release 2.11 | 2020 Sept. 11th            | General update                              | OGA     |
| Release 3.00 | 2021 May 28th              | Product release                             | OGA     |
| Release 3.01 | 2021 Dec. 09th             | Update of figure 6, by adding micro picture | OGA/SCA |
| Release 3.02 | 2023 June 17th             | Finishing cross section added               | OGA     |

#### Disclaimer / Life support applications

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Murata customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Murata for any damages resulting from such improper use or sale.

Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.

Murata Integrated Passive Solutions S.A. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice.



