THREE-PHASE FILTERS

for chassismounting

Your number one name for EMC

Three-phase chassis-mounting powerline filters

CONTENTS

General information

Introduction to three-phase filters	2
Filter selection chart	3
Understanding EMC standards and	
filter specifications	4
EMC measurement and	
engineering services	6
Ordering information	7

Three-phase filters

FN 251			•	•	•	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	•	8	3
FN 258			•																						. '	10)
FN 351			•																						. '	12	2
FN 359																									. •	14	ı

Three-phase + neutral filters

FN 256	•	•	•	•	•	•	•			•	•	•		•	•	•	•	•		•	•	. 1	6
FN 354	•																					. 1	8
FN 355	•																					.2	0
FN 356	•																					.2	2

Filter input/output connections	.24
Addresses and contact information	.25

Powerline filters – a vital element of today's equipment designs

In today's world, more electrical energy is being generated at increasing levels of power, and more and more low power energy is being used for the transmission and processing of data. The result is vastly increased 'electronic smog' or noise. This noise can disrupt, and even destroy, electronic devices: an unacceptable situation, and one which is illegal in certain markets. The electronics industry must strive to protect equipment against such 'noise'.

Noise, or interference, travels two ways. Switches - such as semiconductors - can emit interference, and be susceptible to it. The same is true for data processing equipment. The most common method of protection is the use of powerline filters, in conjunction with screening or gasket materials.

The mains, or powerline, filter is the key element in eliminating mains-borne interference. This filter not only has to meet the requirements of electro-magnetic compatibility (EMC), but safety aspects as well. For some applications, the filter also has to protect equipment from destructive voltages on the power line, such as those caused by lightning.

Schaffner is one of the world's leading suppliers of electromagnetic compatibility (EMC) products. The breadth of our product range, the high attenuation characteristics of our filters under various load conditions, our dedication to quality and above all our organization's unique experience in filter design and manufacturing which spans more than 25 years - is your guarantee of excellence.

Power electronic devices such as industrial frequency converters, as well as machine tools, are typical application areas for three-phase powerline filters. In addition to this industrial market sector, these types of filter are also suitable for mainframe computer systems, large uninterruptible power supplies, and medical equipment such as X-ray machines.

Total commitment to quality

Schaffner's aim is to provide all its customers with fault-free products. To achieve this, 100% of our products undergo rigorous final testing. To ensure high quality we have instituted a system which meets all the stringent requirements of ISO 9001/EN 29001. The phrase 'Quality Assurance' is not just a slogan for us; it is applied in practice, and the Schaffner brand truly stands for reliability and quality.

Wide product range

This catalog describes three-phase powerline filters for currents from 3A to 1200A, which are suitable for the majority of high power office and mainframe computer equipment, as well as medium to high power industrial applications. All the filters are supplied in chassismounting metal cases, facilitating good connection to earth and optimum high frequency performance. Versions are also available with a neutral line, or different operating voltages up to 690VAC, enabling designers to quickly locate the most economic and technically suitable EMC solutions for their projects.

Safety standard IEC 950

The IEC 950 standard is a key safety specification for computers, business and industrial applications. A primary requirement is protection for personnel who come into contact with terminal equipment. Compliance with this standard by equipment manufacturers is essential especially for deliveries within Europe by virtue of the newly-introduced legislation. The standard applies in Europe under the designation EN 60950 and the USA as UL 1950.

Most of Schaffner's three-phase filters are so constructed that the test requirements called for in IEC 950 (basic and supplementary isolation) can be met.

Further information on this topic can be found in the application note 'IEC 950', which your local Schaffner representative will be pleased to send you.

	SCS	
Swiss Association	on for Quality and Manage	ment Systems
SQS confilm between the out- in confirmation with the into	prize named believ has established and applies an initional standards for quality wavagement and as Daued on the result of the repeat audit it grants	appropriate management system surgace (ISO 9006 senter).
Sch	affner Electronics L	d.
	CH-4542 Luterbach	
Whole com	pany / Electromagnetic con	npatibility
th	e SQS Certificate ISO, 900	1
This SQS	Zolikofez, 7 July 1997 Confiltute remains valid and and including 6 Jul Scope canadian 19 Registration camber 19534-64	y 2080
Managing Chastler (828	Register of contribution SUS	Viar-particles' of converting 303
- Allere	Lege	Afin
905	ia a member of the EQNet - International Network 5 Quality System Assessments and Certification. Assessments and SEES 082 and SEES 822	for

Time to market

The key reasons for choosing ready-made threephase filters are convenience and cost. Although you can design your own filter using discrete components, or have a custom solution designed and assembled for you, the timescales involved especially if safety approvals are required invariably rule this approach out. The availability of off-the-shelf filters is particularly important to industrial users and system commissioning personnel, who often require next-day delivery of fit-and-forget EMC solutions simply to meet contractual obligations or to avoid incurring penalty clauses.

Ready-made filters provide a convenient singlesource solution. The following guide to Schaffner's three-phase products - with brief details on key parameters - will help you to identify one or more filters for closer review of specifications. From this initial selection, a review of the circuit diagram and detailed specifications in the following pages will tell you if the module is suitable for your application, allowing you to choose a unit (or units) for trial. Schaffner's application engineers, based in numerous sales outlets around the world, are available to provide in-depth advice if you require it.

General technical information

Insertion loss

The insertion loss characteristics of the filters are measured in accordance with the CISPR 17

standard. Two test conditions are specified in Section 4.2 of the CISPR 17 standard, namely input and output impedances of $50/50\Omega$ and $0.1/100\Omega$.

In general, three-phase filters perform the same in the face of differential interference as in the 50 Ω insertion loss test. In order to show the performance under realistic conditions, Schaffner also shows the attenuation curves obtained from the 0.1/100 Ω test, which are more meaningful for common mode interference. The inductance of the chokes used in the filters can change under load because of a saturation effect, which can also affect insertion loss.

Flammability classification

All the filters in this catalog comply with the requirements of UL 94V2 or UL 94V0.

Climatic classification

Schaffner three-phase filters comply with the climatic classification 25/085/21 according to DIN IEC 68 Part 1 (ambient temperature -25 to +85°C).

Component tolerances

Parameter	- Tol.	+ Tol.	Test
Inductance	30%	50%	1kHz
Capacitance	20%	20%	1kHz
Resistance	10%	10%	DC

Current ratings

The nominal currents stated refer to an ambient temperature of θ_N = 40'C or θ_N = 50'C. The

maximum operating current at any other ambient

temperature $\boldsymbol{\theta}$ can be calculated by means of the following formula:

Leakage current

Operational conditions

The values given in the technical filter specifications are based on IEC 1000-2-4, section 5.5, and the following conditions: nominal voltage 440VAC for standard types, 520VAC for H types, 690VAC for HV types; nominal frequency 50Hz; tolerance of capacitance \pm 20%; unsymmetrical input voltage \pm 3%.

Worst case conditions

Worst case conditions are based on the assumption that two of the three lines were disconnected. For the calculation of the leakage current the voltage of one phase towards the ground UP \rightarrow E 50Hz is used; capacitance tolerance ± 20%.

The values calculated under worst case conditions are equal to the values corresponding to the operational conditions on standard Japanese networks. In the case of a network with a neutral line, the values corresponding to the European operational conditions are equal to the Japanese operational conditions with a neutral line.

Schaffner's 3-phase chassis-mounting filter range

Rapid selection Using the current rating and attenuation performance indicators, together with the major features shown on the right, this table allows you to quickly identify a 'short list' of filter families which are potentially suitable for your application, for subsequent detailed investigation using the technical specifications on the following pages.

For currents up to 280A

For high currents

Understanding EMC standards and filter specifications

This section introduces the standards and regulations associated with EMC protection, and provides detailed information to help you understand filter design and specifications. It will help you identify for your application the right specifications and type of filter.

Interference protection standards

Until recently most countries have had their own regulations and standards governing electro-magnetic interference (EMI) or radio frequency interference (RFI). However, on the 1 January 1996 the European Directive 89/336/EMC on electro-magnetic compatibility (EMC) came into force. This directive brings a common approach to EMC to every member state of the European Union. Common standards will be used throughout Europe to ensure that technical trade barriers are removed. As well as controlling EMI emissions from equipment, the directive also calls for equipment to be immune to external electro-magnetic disturbances.

Types of standards:

Basic standards describe the general and fundamental rules for meeting the requirements. Terminology, phenomena, compatibility levels, measurement, test techniques and classification of EM environments are so described within.

Generic standards refer to specific environments. They set minimal EMI levels which equipment in these environments must meet. Where no product specific standards exist then the generic standards are to be used. Generic standards describe household and industrial EMI environments.

Products standards are for specific products or product groups. These standards are coordinated with the generic standards.

In countries outside Europe other standards will be used, such as the FCC in the USA. Table 1 shows the main European standards.

Permissible noise limits

The various standards set down limits for conducted EMI emissions. These limits are measured in voltage and given in dB μ V where 0dB is 1 μ V. The interference is measured using measurement equipment which has defined bandwidths and receivers. The two receivers used are a quasi-peak detector, and an average detector.

To ensure repeatability of the measurements, the impedance of the mains supply must be constant. The standards calls for a defined artificial mains network - sometimes called a line impedance stabilisation network (LISN) which gives a defined impedance to the noise and also helps filter any noise on the mains which may affect the measurements.

Figure 1 shows the limits of EN 50081-1 the European generic standard for residential, commercial and light industrial environments, and Figure 2 of EN 50081-2, the European generic standard for the industrial environment.

Above 30MHz, radiated noise interference is measured instead of conducted noise. This takes place on an open field test site using defined antennas.

Product type		Emissions	5	Immunity
	Harmonics	Voltage fluctuations	Radio interference	All aspects
Household appliances & portable tools: vacuum cleaners, washing machines, heating, cooking equipment, dimmers	EN 60555-2	EN 60555-3	EN 55014	EN 50082-1
Luminaires with discharge lamps	EN 60555-2		EN 55015	EN 50082-1
TV receivers	EN 60555-2		EN 55013	EN 55020
Information Technology Equipment (ITE)	EN 60555-2		EN 55022	EN 55024 all parts
Mains signalling equipment			EN 50065-1	EN 50082-2
Industrial, scientific and medical eqpt. designed to generate RF energy			EN 55011	EN 50082-2
Industrial electronic power and control equipment			EN 50081-2	EN 50082-2
Industrial non-electronic equipment			EN 50081-2 (if producing RF interference)	

Table 1. European EMC standards

Figure 1. Permissible interference limits for EN 50081-1

Figure 2. EN 50081-2 limits

Interference sources and spectrums

The most common source of conducted EMI is power electronic products such as switched mode power supplies (SMPS), pulse width modulated (PWM) frequency converters or motor drives, and phase angle controllers.

The emissions spectrum typically starts off very large at low frequency and rolls off as frequency increases. The point at which the noise falls below the permitted limits depends on several factors, the most important being the frequency of operation and the rise time of the semiconductor devices.

Interference spectrums generated can be either continuous, as in the case of phase angle controllers, (Figure 3) or discrete which is typical of the SMPS (Figure 4).

Frequency (Hz)

Figure 4. Discrete spectrum

Interference propagation

EMI can propagate by two means:

- by radiation where the energy can be coupled either through magnetic or electric field, or as an electro-magnetic wave between the source and the victim
- by conduction where the EMI energy will propagate along power supply lines and data cables

Radiated and conducted EMI cannot be thought of as totally separate problems, because noise conducted along a cable may be radiated as the cable acts as an antenna. The radiation will increase as the cable length becomes comparable to the wavelength of the noise. Also, the cable will act as a receiving antenna and pick up radiated interference.

Below around 150MHz, the most efficient radiating devices in a system are usually the power supply and data cables. Proper filtering of these cables will reduce radiation due to the cables as well as conducted interference.

Above around 150MHz, PCB tracks and short internal cables will start to become efficient antennas. To reduce this radiation a PCB should be laid out to reduce track length and loop areas; ground planes should be used if possible. Decoupling of digital ICs is very important and shielding may be necessary.

Interference types

To understand the problems associated with conducted EMI it is first necessary to understand the two modes of conducted noise: differential mode (or symmetrical mode) and common mode (or asymmetrical mode). Differential mode interference creates a voltage between the phases of the system and is independent of earth; the differential mode currents flow along one phase and returns along another phase (Figure 5).

Common mode noise creates a voltage between each phase and the earth. The common mode currents flow from the noise source to the earth (usually via a parasitic capacitance) along the earth path and returns along the phases (Figure 6). A power line filter must be designed to attenuate both common mode and differential mode interference.

Figure 5. Differential mode interference (VDM)

Figure 6. Common mode interference (VCM)

SCHAFFNER

Expert EMC Support

EMC measurement and engineering services

In addition to offering one of the world's most comprehensive ranges of standard filter products, Schaffner offers the full complement of measurement and engineering services to support equipment manufacturers and users.

EMC testing

Schaffner operates the most sophisticated EMC test facilities available anywhere today - with extensive investment in screened rooms, specialist test equipment, and application engineering teams - distributed at seven locations throughout the world. Services available at these locations include:

- · Faraday cage and open field testing
- harmonics instrumentation for current and voltage to the 49th harmonic
- radio emission measurements to CISPR, EN, VDE, FCC, Mil or SEV
- simulation of electro-magnetic fields
- simulation of short-term DC or AC mains failures
- · simulation of transient parasitic voltages
- electro-static discharges to IEC 801-2, VDE 0843 part 2 specifications
- · AC and DC insulation testing

Engineering services

Schaffner has extensive engineering experience in solving EMC problems. In addition to testing and measuring services Schaffner can provide the expert engineering support to help you bring your equipment to market quickly and efficiently; services available include:

- custom filter design

 to optimize filter performance, and solve space, layout, mounting or connection problems
- circuit and equipment design - advising on circuit and equipment or enclosure design to overcome EMC problems
- · turnkey component design and build

Ordering information

For all three-phase filters

FN	<u>25</u> 1 & - x	(/ y		
		L output connections	01 = solder-lug 03 = clamp terminal with M4 screw 05 = AMP fast-on 06 = solder-lug/fast-on combination 07 = wire 24 = screw lead - through M6 28 = screw lead - through M10 29 = terminal block 33 = terminal block 34 = terminal block 35 = terminal block 36 = terminal block 40 = terminal block 40 = terminal block 46 = strip terminal block 52 = strip terminal block 99 = busbar connections	for details see mechanical data
		H = high voltage HV = very high volta P = medium leaka L = low leakage c	age ge current urrent	
		filter type		

Examples:

FN 251-8/07 Type FN 251; current rating 8A; with wire output connections
FN 351H-50/33 Type FN 351H (high voltage); current rating 50A; with safety terminal block connections
FN 258L-55/07 Type FN 258L (low leakage current); current rating 55A; with wire output connections

Filter for motor drives

This filter family provides a very economic solution for overcoming EMI problems with motor drives and inverters. All FN 251 filters employ advanced two-stage LCR filter circuitry with non-saturating toroidal inductors, and have a very low leakage current which helps maximize performance and ensure operational reliability.

- 4 to 24A current ratings
- compact size
- · insulated safety input terminals
- wire outputs

Technical specifications

Maximum operating voltage: 440VAC at 40°C; Operating frequency: DC to 60Hz at 40°C Hipot test voltage: $P \Rightarrow E 2000VAC$; $P \Rightarrow P 1700VDC$ MTBF at 40°C, 400V per Mil-HB-217F: 160,000 hours

Protection category: IP20

Overload: 4 times rated current at switch on, then 1.5 times rated current for 1 minute, once per hour

Filte	er.	Current ratings A at 40°C (25°)	Leakage current [†] (400V/50Hz) mA	Power loss W	C L mH	compor L1 mH	nent valı Cx μF	ues/pha Cy nF	se R kΩ	Connections input	Connections output	Weigh kg
FN	251 - 4 / 07	4 (4.6)	0.5	5.5	7	1.5	1	15	470	/29	/07	0.75
FN	251 - 8 / 07	8 (9.2)	0.5	7	4.2	1.5	1	15	470	/29	/07	0.75
FN	251 - 16 / 07	16 (18.4)	0.5	14	2.6	0.7	1	15	470	/29	/07	1.8
FN	251 - 24 / 07	24 (27.6)	0.5	18	1	0.5	1	15	470	/29	/07	1.95

† Max. leakage under normal circumstances. Note: if two phases are interrupted, worst case leakage current could reach 7.7 times higher levels.

Mechanical data

Electrical schematic

See table for component values

All dimensions in mm: 1 inch = 25.4mm

* Measurements share this common tolerance unless otherwise stated

SCHAFFNER

FN 251

.A1

FN 251 insertion loss

Per CISPR 17; A = $50\Omega/50\Omega$ sym, B = $50\Omega/50\Omega$ asym, C = $0.1\Omega/100\Omega$ sym, D = $100\Omega/0.1\Omega$ sym

Mechanical drawings See mechanical data table for dimensions

тор

FN 251-16, -24 Input connection: /29

FN 251-4, -8 Input connection: /29

SIDE

тор

FN 258

3-phase inverter/PDS filtering

FN 258 provides state-of-the-art filtering for industrial frequency inverters or power drive systems (PDS). This product sets major new performance standards, through its universal 480V rating; via its slim-line shape which sits neatly alongside the latest inverters; and innovative 2-stage circuitry which provides superlative performance that meets the latest EMC standards (EN 55011/55014, IEC 22G/21/CDV, UL1283 and the new EN 133200).

- 7 to 180A current ratings
- 480V/50°C ratings for world compatibility and simple specification
- slim book-style housing
- designed for long cable lengths (50m/54yds+)
- meets UL and new EN 133200 standards

Technical specifications

Maximum operating voltage: 480VAC at 50°C. Operating frequency: DC to 60Hz at 50°C Hipot test voltage: $P \Rightarrow E$ 2800VDC; $P \Rightarrow P$ 1700VDC

MTBF at 50°C, 400V per Mil-HB-217F: 220,000 hours

Protection category: IP20

Overload: 4 times rated current at switch on, then 1.5 times rated current for 1 minute, once per hour

(† SL11 EN 133200 Up to 130A (pending)

Filter	Current ratings	Leakage current [†] (480V/50Hz)	Power loss	Cor ΣL	mpone ΣCx	ent val ΣCv	ues/pł R1	nase R2	Connections input	Conn	ections output	Weight
	A at 50°C (40°)	mA	W	mH	μF	μF	MΩ	MΩ				kg
FN 258 - 7 / ??	7 (8)	18.0	4.5	4.5	4	1.5	1.5	0.68	/29	/07	/29	1.1
FN 258 - 16 / ??	16 (18)	20.0	9	3.0	5.9	1.5	1.5	0.68	/29	/07	/29	1.7
FN 258 - 30 / ??	30 (34)	26.5	14	2.0	6.6	2.2	1.5	0.68	/33	/07	/33	1.8
FN 258 - 42 / ??	42 (47)	28.2	19	1.5	6.6	2.3	1.5	0.68	/33	/07	/33	2.8
FN 258 - 55 / ??	55 (62)	28.2	20	1.1	6.6	2.3	1.5	0.68	/34	/07	/34	3.1
FN 258 - 75 / ??	75 (85)	28.2	20	0.9	6.6	2.3	1.5	0.68	/34	-	/34	4
FN 258 - 100 / ??	100 (113)	28.2	36	0.9	6.6	2.3	1.5	0.68	/35	-	/35	5.5
FN 258 - 130 / ??	130 (145)	32.8	40	0.6	11	2.3	1.5	0.68	/35	-	/35	7.5
FN 258 - 180 / ??	180 (204)	32.8	61	0.13	11	2.3	1.5	0.68	/40	/07	/40	11

[†] Max. leakage under normal circumstances. Note: if two phases are interrupted, worst case leakage current could reach 5.6 times higher levels. Filters with lower leakage current (P [3.5mA] and L [0.8mA] types) are available on request. The insertion loss values of the P and L types are not identical with those of the standard versions.

Mechanical data

Current	-7	-16	-30	-42	-55	-75	-100	-130	-180	Tol.* ± mm
Α	255	305	335	32	29	329	379 ± 1.5	439 ± 1.5	438 ± 1.5	± 1
В	126 ± 0.8	142 ± 0.8	150 ± 1	185	±1	220	220	240	240	± 1.5
С	50	55	60	70	80	80	90 ± 0.8	110 ± 0.8	110 ± 0.8	± 0.6
D	225 ± 0.8	275 ± 0.8	305	30	00	300	350 ± 1.2	400 ± 1.2	400 ± 1.2	± 1
Е	240	290	320	31	14	314	364	414	413	± 0.5
F	25	30	35	45	55	55	65	80	80	± 0.3
G			6.5				6.5		6.5	± 0.2
Н	30	00	400	50	00				500	± 15
J		1 ± 0.1		1.	.5	1	.5	3	4	± 0.2
L		9		1	2				15	± 1
0		M5		N	16	M6	M	10	M10	-
Р	AWG 16	AWG 14	AWG 10	AWG 8	AWG 6				50mm ²	-

All dimensions in mm; 1 inch = 25.4mm

* Measurements share this common tolerance unless otherwise stated

Electrical schematic

See table for component values

FN 258 insertion loss

Per CISPR 17; A = $50\Omega/50\Omega$ sym, B = $50\Omega/50\Omega$ asym, C = $0.1\Omega/100\Omega$ sym, D = $100\Omega/0.1\Omega$ sym

7 amp types

16 amp types

30 amp types

100 amp types

100 k

1M

10 M

dB

70

60

50

40

30

20

10

C

-20

10 k

42 amp types

55 amp types

75 amp types

100 k

c

D

1M

10 M

dB

70

60

50

40

30

20

10

-201 10k

F

180 amp types

Note: the insertion loss values of the P and L types are not identical with those of the standard versions

Mechanical drawings See mechanical data table for dimensions

BOTTOM VIEW

END/SIDE VIEW

130 amp types

11

SCHAFFNER

High-power filter

FN 351 provides highly effective filtering solutions for industrial frequency inverters and drives, delivering standard-setting performance which has been widely imitated. Available in an extremely wide range of power ratings and two voltage levels the filter employs special core winding and inductor techniques which remain effective under extreme EMI.

- 5 to 280A current ratings, 440V and 520V versions
- high differential/common mode attenuation
- IEC 950 compliant

Technical specifications

Maximum operating voltage: 440VAC at 40°C for standard types; 520VAC at 40°C for H types Hipot test voltage: standard: $P \Rightarrow E 2600VDC$; $P \Rightarrow P 1900VDC$; $H: P \Rightarrow E 2800VDC$, $P \Rightarrow P 2300VDC$

MTBF at 40°C, 400V per Mil-HB-217F: 135,000 hours standard types, 100,000 hours H types Protection category: IP20

Overload: 4 times rated current at switch on, then 1.5 times rated current for 1 minute, once per hour

up to 110V*

FN 351

up to 110V* up to 110V

Approvals are for standard voltage types only * pending for connections /46, /47 and /52

Filter	Current ratings	Leakage current [†]	Power		Compon	ent values	s/phase		Phase	Weight
		IEC 1000-2-4	loss	L	ΣCx	ΣCy	R1	R2	connections	
	A at 40°C (25°)	mA at 50Hz	W	mH	μF	μF	MΩ	MΩ		kg
FN 351 - 5/??	5 (5.8)	1.9	6	12	1.6	0.17	2	-	/29	1.1
FN 351 -8/??	8 (9.2)	1.9	7	7.6	1.6	0.17	2	-	/29	1.8
FN 351H - 8/??	8 (9.2)	2.7	7	7.6	1.5	0.18	2	-	/29	1.8
FN 351 - 16/??	16 (18.4)	1.9	8	5.2	3.4	0.17	1.5	-	/29 /46	1.8
FN 351H - 16/??	16 (18.4)	2.7	8	5.2	3	0.18	1.5	-	/29	1.8
FN 351 - 25/??	25 (28.8)	28.0	8	2.2	4.4	1.8	1.5	1.1	/33 /46	3
FN 351H - 25/??	25 (28.8)	35.2	8	2.2	3	1.7	1.5	1.1	/33	3
FN 351 - 36/??	36 (41.5)	28.0	9	1.3	4.4	1.8	1.5	1.1	/33 /47	3
FN 351H - 36/??	36 (41.5)	35.2	9	1.3	3	1.7	1.5	1.1	/33	3
FN 351 - 50/??	50 (57.7)	29.6	11	0.8	4.4	2	1.5	1.1	/33 /34 /47 /52	3.1
FN 351H - 50/??	50 (57.7)	35.2	11	0.8	3	1.7	1.5	1.1	/33 /34	3.1
FN 351 - 64/??	64 (73.8)	29.6	15	0.65	4.4	2	1.5	1.1	/33 /34 /47 /52	3.3
FN 351H - 64 / ??	64 (73.8)	35.2	15	0.65	3	1.7	1.5	1.1	/33	3.3
FN 351 - 80/??	80 (92.3)	31.8	23	0.85	6.7	2.2	1.5	1.1	/34	9.5
FN 351H - 80/??	80 (92.3)	41.3	23	0.85	6.1	2.2	1.5	1.1	/34	9.5
FN 351 - 110/??	110 (127)	31.8	25	0.5	6.7	2.2	1.5	1.1	/35	9.5
FN 351H - 110/??	110 (127)	41.3	25	0.5	6.1	2.2	1.5	1.1	/35	9.5
FN 351 - 180/??	180 (207)	31.3	49	0.5	5	2.2	1.5	1.1	/36	13
FN 351H - 180/??	180 (207)	40.7	49	0.5	5	2.2	1.5	1.1	/36	13
FN 351 - 280/??	280 (323)	35.8	70	0.3	10	2.6	1.5	1.1	/37	28
FN 351H - 280 / ??	280 (323)	46.5	70	0.3	10	2.6	1.5	1.1	/37	28

† Max. leakage under normal circumstances. Note: if two phases are interrupted, worst case leakage current could reach 7.6 times (5A to 16A types) or 6.0 times (25A to 280A types) higher levels. Measured at: standard types 400VAC: H types 520VAC.

Mechanical data

Current	-5	-8 (std voltage)	-8, -16 (H type)	-25, -36	5, -50, -64	-80, -110	-180	-280	Tol.* ± mm
Α	150	180		200		400	510	700	± 1
В	105	115		150		170 ± 1	180 ± 1	260 ± 1	± 0.5
С	50	60	65		75†	90 ± 1	115 ± 1	130 ± 1	± 0.5
D	75	85		120		350	360	530	± 1
Е	85		115			373	470 ± 0.5	660 ± 0.5	± 0.3
F	90	100 ± 0.5		136		130 ± 0.2	156 ± 0.5	220 ± 0.5	± 0.3
G	0	.7	0.7/1.0 1			0	4 ±	± 0.1	
Н	19		20 ± 2			25	2	± 1	
Κ	17		17 ± 0.	5		20	3	0	± 1
Μ	6.5		6.4			15	1	6	± 0.2
Ν						6.5	9 ±	± 0.2	
Ρ		N	6		M10	M	-		

Electrical schematic

See table for component values

All dimensions in mm; 1 inch = 25.4mm

* Measurements share this common tolerance unless otherwise stated

FN 351 insertion loss

Per CISPR 17; A = $50\Omega/50\Omega$ sym, B = $50\Omega/50\Omega$ asym, C = $0.1\Omega/100\Omega$ sym, D = $100\Omega/0.1\Omega$ sym

5 amp types

8 amp types

16 amp types

64 amp types

dB

70

60

50

40

30

20

10

dB 70 60 50 40 20 10 100k 1M 10M 10 k

25 amp types

36 amp types

110 amp types

dE 60 50 40 В 30 20 10 10 k 100k 1M 10M

10 k

100k

1M

10M

50 amp types

dB

70

60

50

40

30

20

10

-20

180 amp types

0 10 -20 10 k 100 k 1M

280 amp types

10 M

80 amp types dB

Mechanical drawings

See mechanical data table for dimensions

FN 351-180, -280

2-stage high current 3-phase filter FN 359

FN 359 sets a new standard in EMC filtering solutions for industrial frequency inverters or power drive systems, UPSs and other high power equipment. This family is additionally offered in a very high voltage version to match every type of power supply in use worldwide. Despite availability in a wide range of current ratings, all FN 359s come in the same compact, lightweight package, simplifying OEM system building.

- 250 to 1200A current ratings
- 440, 520 or 690VAC versions for worldwide compatibility
- small leakage current
- compact, light 'one-size' packaging
- built to meet UL, CSA and EN 133200 standards

Electrical schematic

See table for component values

Technical specifications

Maximum operating voltage: standard types 440VAC; H types 520VAC; HV types 690VAC Operating frequency: DC to 60Hz at 50°C

Hipot test voltage: standard: P \Rightarrow E 2600VDC, P \Rightarrow P 1900VDC; H: P \Rightarrow E 2750VDC,

 $P \Rightarrow P 2250VDC$; HV: $P \Rightarrow E 3050VDC$, $P \Rightarrow P 3000VDC$; all for 2s (factory test)

MTBF at 40°C, per Mil-HB-217F: standard types 155,000 hours; H types 109,000 hours; HV types 128,000 hours

MTBF at 25°C, per Mil-HB-217F: standard types 307,000 hours; H types 222,000 hours; HV types 257,000 hours

Overload: 4 times rated current at switch on, then 1.5 times rated current for 1 minute, once per hour

Design corresponding to: UL 1283, CSA 22.2 No 8 1986, EN 133200

Filter	Current ratings	Leakage current [†]	Power	Co	mpone	nt valu	ies/pha	ase	Phase	Weight
	A at 50°C	IEC 1000-2-4 mA at 50Hz	loss W	ΣL μH	ΣCx μF	ΣCy μF	R1 MΩ	R2 MΩ	connections	kg
FN 359 - 250/99	250	39	37	157	11	2.3	1	0.68	busbar	16
FN 359H - 250/99	250	51	37	157	11	2.3	1	0.68	busbar	17
FN 359HV - 250/99	250	60	37	157	5.5	2.1	1.5	0.68	busbar	17
FN 359 - 300/99	300	39	48	157	11	2.3	1	0.68	busbar	16
FN 359H - 300/99	300	51	48	157	11	2.3	1	0.68	busbar	17
FN 359HV - 300/99	300	60	48	157	5.5	2.1	1.5	0.68	busbar	17
FN 359 - 400/99	400	39	65	157	11	2.3	1	0.68	busbar	18.5
FN 359H - 400/99	400	51	65	157	11	2.3	1	0.68	busbar	19.5
FN 359HV - 400/99	400	60	65	157	5.5	2.1	1.5	0.68	busbar	19.5
FN 359 - 500/99	500	39	75	165	11	2.3	1	0.68	busbar	19.5
FN 359H - 500/99	500	51	75	165	11	2.3	1	0.68	busbar	20.5
FN 359HV - 500/99	500	60	75	165	5.5	2.1	1.5	0.68	busbar	20.5
FN 359 - 600/99	600	39	87	165	11	2.3	1	0.68	busbar	20.5
FN 359H - 600/99	600	51	87	165	11	2.3	1	0.68	busbar	21.5
FN 359HV - 600/99	600	60	87	165	5.5	2.1	1.5	0.68	busbar	21.5
FN 359 - 900/99	900	39	104	63	11	2.3	1	0.68	busbar	33
FN 359H - 900/99	900	51	104	63	11	2.3	1	0.68	busbar	33.5
FN 359HV - 900/99	900	60	104	63	5.5	2.1	1.5	0.68	busbar	34.5
FN 359 - 1200/99	1200	39	146	63	11	2.3	1	0.68	busbar	35
FN 359H - 1200/99	1200	51	146	63	11	2.3	1	0.68	busbar	35.5
FN 359HV - 1200/99	1200	60	146	63	5.5	2.1	1.5	0.68	busbar	36.5

[†]Max. leakage under normal circumstances. Note: if two phases are interrupted, worst case leakage current could reach 5.7 times higher levels. Measured at: standard types 400VAC; H types 520VAC; HV types 690VAC.

FN 359 insertion loss

Per CISPR 17; A = $50\Omega/50\Omega$ sym, B = $50\Omega/50\Omega$ asym, C = $0.1\Omega/100\Omega$ sym, D = $100\Omega/0.1\Omega$ sym

250A types

dB

70

60

50

40

30

20

10

-20

300A types

dB

70

60

50

40

30-

20

10

-20L 10k

dE

70

60

50

40

30

20

-20 10k

10 M

1N

500A types

600A types

100

900A/1200A types

100 k

1M

10 M

dB в 70 60 50 40 30 D 20 10 -20-10 k 100 k 1M 10 N

Mechanical drawings See mechanical data table for dimensions

SIDE VIEW

TOP/END VIEW

I/O connections

FN 359 filters are fitted with an M12 screw for earth connection, and busbar-type connectors for phase terminals (dimensions vary according to current rating - see table).

Dimension		Current rating of filter							
	250/300A	400A	500A	600A	900A	1200A	mm		
A	20	25	25	30	50	60	±0.1		
В	5	6	8	8	10	10	±0.1		
C	15	18	18	23	17	17	±0.5		
D	47	47	47	57	100	100	±1.5		
E	8.5	10.5	10.5	10.5	13	13	±0.2		
F	-	-	-	-	26	26	±0.2		
G	-	-	-	-	20	26	±0.2		

All dimensions in mm; 1 inch = 25.4mm

SCHAFFNER

3-phase + neutral filter

The FN 256 family of filters is designed specifically for applications involving asymmetric loads, ranging from industrial control to medical electronics systems. These typically involve separate - and often unfiltered - frequency inverters and switch-mode power supplies on different phases, causing current imbalance and significant interference problems. Employing single-stage LCR circuits for each phase and the neutral line, FN 256 series filters provide particularly high attenuation of both symmetrical and asymmetrical interference. A special lightweight housing with a very small footprint ensures that the filters can be easily accommodated on control panels and in crowded equipment cabinets.

- 8 to 64A current ratings
- high attenuation
- small leakage current
- very compact dimensions

Technical specifications

Maximum operating voltage: 480VAC (520VAC on request) at 50°C Operating frequency: DC to 60Hz at 50°C Hipot test voltage: P/N \Rightarrow E 3000VDC for 2s; P/N \Rightarrow P 2100VDC for 2s MTBF at 50°C, 400V per Mil-HB-217F: 8/16A 1,300,000 hours; 25/36/64A 600,000 hours Protection category: IP20 Overload: 4 times rated current at switch on, then 1.5 times rated current for 1 minute, once per hour Temperature range: -25°C to +100°C Flammability class: UL 94V2

Filter **Current ratings** Leakage current Power Phase Weight Component values/phase (480V/50Hz) loss ΣCx ΣСу R₂ connections н **R1** A at 50°C (40°) W mA mΗ μF μF MΩ MΩ kg í. FN 256 - 8 / ?? 8 (9.1) 3.4 2.9 1.78 2.20 0.19 0.68 1.50 /46 1.0 FN 256 - 16/?? 16 (18.1) 3.4 5.6 1.14 2.20 0.19 0.68 1.50 /46 1.1 FN 256 - 25 / ?? 25 (28.3) 9.8 4.40 0.82 /47 1.4 34 1.57 0.19 0.68 FN 256 - 36 / ?? 36 (40.8) 3.4 10.9 1.10 4.40 0.19 0.68 0.82 /47 1.5 FN 256 - 64 / ?? 64 (72.6) 3.4 17.2 1.00 4.40 0.19 0.68 0.82 /52 2.2

* Max leakage under normal circumstances. Note: if two phases are interrupted, worst-case leakage current could reach 6 times higher levels.

Mechanical data

Current	-8, -16	-25, -36	-64	Tol. ± mm
А	143	153	153	± 1
В	115	125	125	± 0.5
С	80	115	125	± 0.5
D	120	130	140	± 0.5
Е	130	142	158	± 1
F	156	166	176	± 1
G	1	1	1.5	± 0.1
Н	80	90	100	± 0.3
	127.5	137.5	137.5	± 0.5
J	6.5	6.5	6.5	± 0.1
Κ	M6	M6	M6	-
L	59	94	99	± 1
Μ	13.5	14.5	20	± 1

All dimensions in mm; 1 inch = 25.4mm

FN 256

16

FN 256 insertion loss

Per CISPR 17; A = $50\Omega/50\Omega$ sym, B = $50\Omega/50\Omega$ asym, C = $0.1\Omega/100\Omega$ sym, D = $100\Omega/0.1\Omega$ sym

8 amp types

aв

70 60

50

40 30

20

-20 L 10 k

Δ 10

16 amp types

70

60

50

40

30

20

10

-20L 10k

100 k

1M

10 M

٨

dВ

70

60

50-

40

30

20

10

-20上 10k

100 k

1M

ue 70 60-50-40-

10 M

36 amp types

64 amp types

100 k

1M

10 M

Mechanical drawings See mechanical data table for dimensions

SIDE VIEW

High-attenuation filter

The FN 354 family of filters is intended primarily for applications that demand extremely effective interference protection across a broad frequency spectrum. Advanced two-stage LCR filter circuits with non-saturating toroidal inductors, in conjunction with feed-through capacitors on each of the three phases and the neutral line, ensure that these filters provide very high attenuation in the upper frequency band.

- 4 to 25A current ratings
- high attenuation up to 300MHz
- three phases + neutral + earth connections
- choice of solder, fast-on or shrouded terminals
- suitable for Y and Δ networks

Maximum operating voltage: 440VAC at 40°C; Operating frequency: DC to 60Hz at 40°C Hipot test voltage: $P \Rightarrow E$ 2000VAC; $P \Rightarrow P$ 1100VDC (1700VAC for 4 and 6A types) MTBF at 40°C, 400V per Mil-HB-217F: 400,000 hours for 4 and 6A types

Overload: 4 times rated current at switch on, then 1.5 times rated current for 1 minute, once per hour

Filte	r	Current ratings	Leakage current [†]	Power	Component values/phase						Phase	Phase connections		
		A at 40°C (25°)	(400V/50Hz) mA	loss W	L mH	L1 µH	Cx μF	Cy nF	Cy1 nF	R MΩ	2	Ø		kg
FN	354 - 4 / ??	4 (4.6)	0.71	2.5	0.3	4	0.33	15	-	1	/01		/05	0.225
FN	354 - 6 / ??	6 (6.9)	0.71	4.0	0.5	4	0.47	15	-	1	/01	/03	/05	0.38
FN	354 - 12 / ??	12 (13.8)	0.72	10.0	0.08	1700	2.2	15	-	0.33			/05	0.68
FN	354 - 15 / ??	15 (17.3)	0.40	18.0	3	100	0.47	0.01	2.5	0.5		/03		5.45
FN	354 - 25 / ??	25 (28.8)	1.94	30.0	1.4	60	0.47	0.01	0.035	0.5		/03		5.6

†Max. leakage under normal circumstances. Note: if two phases are interrupted, worst-case leakage current could reach 6.7 times higher levels.

Mechanical data

Current	-4	-6	-12	-15, -25	tol.* ± mm
Α	103 ± 5	120 ± 0.5	150	270	± 1
В	43 ± 0.8	55	65	155	± 1
С	40.5 ± 0.5	50.5 ± 0.5	60	110	± 1
D	80	95	125		± 1
Е	95	110	140	230	± 0.3
F	35	45	55	115 ± 0.3	± 0.2
G	0.	.5	0.75		± 0.1
Н	15	2	2	30	± 1
	7	1	1	9.5 ± 0.5	± 1
Κ	29	3	6	35.5	± 1
Μ	3.8 :	± 0.1	4.4 x 7.5	7	± 0.2
Р		PG13.5	-		
Q			SAK4	± 2	
U	26.5	28	32.5		± 0.3

All dimensions in mm; 1 inch = 25.4mm

Electrical schematic

See table for component values

SCHAFFNER

FN 354

^{*} Measurements share this common tolerance unless otherwise stated

FN 354 insertion loss

Per CISPR 17; A = $50\Omega/50\Omega$ sym, B = $50\Omega/50\Omega$ asym, C = $0.1\Omega/100\Omega$ sym, D = $100\Omega/0.1\Omega$ sym

100k

1M

10M

4 amp types

6 amp types

dB

70

60

50

40

30

20

10

-20

10 k

D

12 amp types

dB 70 60 50 40 30 20 10 10 -20 10 k 100k 1M 10M

15 amp types

25 amp types

Mechanical drawings See mechanical data table for dimensions

FRONT

/01 connections shown

19

General-purpose filter

The FN 355 family of general-purpose filters provides a cost-effective interference suppression solution for a wide variety of applications. Available in seven versions, with current ratings from 3 to 20A, the filters employ a single-stage 4-line LC circuit with non-saturating toroidal inductors, and have a very low leakage current. FN 355 filters are contained within an extremely compact housing, making them ideal for use in situations where space is at a premium.

- 3 to 20A current ratings
- · low leakage current
- three phases + neutral + earth connections
- compact size
- suitable for Y and ∆ networks

								-					
Maxi	mur	n op	erating	voltag	j e: 4	40\	/AC	at	40°C; Operatin	g frequency	: DC to 6	60Hz at 4	0°C
			_										

Technical specifications

Hipot test voltage: $P \Rightarrow E$ 2000VAC; $P \Rightarrow P$ 1700VDC

MTBF at 40°C, 400V per Mil-HB-217F: 850,000 hours

Overload: 4 times rated current at switch on, then 1.5 times rated current for 1 minute, once per hour

Filter	Current ratings A at 40°C (25°)	Leakage current [†] (400V/50Hz) mA	Power loss W	Compo L mH	onent value Cx μF	es/phase Cy nF	Phase of	connections	Weight kg
FN 355 - 3/??	3 (3.4)	0.07	1.5	1	0.1	4.7	/01	/05	0.25
FN 355-6/??	6 (6.9)	0.07	1.5	0.45	0.1	4.7	/01	/05	0.25
FN 355 - 10/??	10 (11.5)	0.07	1.7	0.2	0.1	4.7	/01	/05	0.25
FN 355 - 20/??	20 (23)	0.29	3.6	0.12	0.1	22		/03	0.29

† Max. leakage under normal circumstances. Note: if two phases are interrupted, worst-case leakage current could reach 5.8 times higher levels.

Mechanical data

rrent	-3, -6, -10, -20	Tol. ± mm
A	85	± 0.5
В	54	± 0.5
С	40.3	± 1
D	65	± 1
Е	75	± 0.2
G	0.7	± 0.05
Н	11.3	± 0.5
1	28.8	± 0.5
Κ	36.8	± 0.5
L	27	± 0.5
М	6.3	± 0.1
Ν	5.3	± 0.1
Р	50	± 1

All dimensions in mm; 1 inch = 25.4mm

Electrical schematic

SCHAFFNER

Δ networks		

FN 355 insertion loss

Per CISPR 17; A = $50\Omega/50\Omega$ sym, B = $50\Omega/50\Omega$ asym, C = $0.1\Omega/100\Omega$ sym, D = $100\Omega/0.1\Omega$ sym

Mechanical drawings See mechanical data table for dimensions

FRONT

TOP

SCHAFFNER

FN 356

High-current filter

This filter family is designed specifically for high-current applications, such as large frequency inverters for motor drives, and high-power uninterruptible and switch-mode supplies. FN 356 filters are fully compliant with the IEC 950 safety standard, making them particularly suitable for use in large mainframe computer systems. Employing a single-stage LCR circuit for each phase and the neutral line, the filters provide high attenuation of both symmetrical and asymmetrical interference.

- 16 to 100A current ratings
- three phases + neutral + earth connections
- IEC 950 compliant
- meets EN 55011/55014 & VDE 0871/0875

Technical specifications

Maximum operating voltage: 440VAC at 40°C; Operating frequency: DC to 60Hz at 40°C Hipot test voltage: $P \Rightarrow E 2000VAC$; $P \Rightarrow P 1700VDC$

MTBF at 40°C, 400V per Mil-HB-217F: 220,000 hours

Protection category: IP20 for connections /29, /33 and /34

Overload: 4 times rated current at switch on, then 1.5 times rated current for 1 minute,

r hour

Filter	Current ratings A at 40°C (25°)	Leakage current [†] (400V/50Hz) mA	Power loss W	Co L mH	ompone Cx μF	entval Cx1 μF	ues/ph Cy nF	ase R kΩ	Phas	se conne	ections	Weight kg
FN 356 - 16/??	16 (18.4)	0.43	8	1.2	0.68	1	15	220	/06		/29	1.5
FN 356 - 25 / ??	25 (28.8)	0.43	28	1.3	2	2	15	100		/24	/33	2.6
FN 356 - 36/??	36 (41.5)	0.43	30	0.95	2	2	15	100		/24	/33	2.7
FN 356 - 50/??	50 (57.7)	0.43	13	0.55	2	2	15	100		/24	/33	3.9
FN 356 - 100 / ??	100 (115.4)	1.33	14	0.32	2	2	47	100		/28	/34	10

[†]Max. leakage under normal circumstances. Note: if two phases are interrupted, worst-case leakage current could reach 6.0 times higher levels.

Mechanical data

ent	-16 (/29)	-16 (/06)	-25, -36 (/24) -50 (/24) -	·25, -36 (/33)	-50 (/33)	-100 (/28)	-100 (/34)	101.* ± mm		
	189.5	149	140	143.25 ± 0.5	189.5	192 ± 0.5	250	249.6	± 1		
	105	104	105	122 ± 0.5	105	122 ± 0.5	160 ± 0.8		± 1		
	80	50 ± 0.5	80	102	80	102	130		± 1		
	140				140	142.5	2	± 1			
	165.5	44 ± 0.2		44	165.5	168	232	230	± 0.3		
	80	75		75 ± 0.3	50	98 ± 0.3	120 ± 0.3	130 ± 0.3	± 0.2		
	0.7				0.	7	-	± 0.1			
	20	12.3 20			2	0	2	± 1			
		10.8	25	5.4					± 1		
	25	14 :	± 0.5	14	20	35	65	40	± 1		
		27.5 ± 0.5	33.5	33.5			105		± 1		
	13		M5		13						
	6.5					± 0.2					
			М	-							
All dimensions in mm; 1 inch = 25.4mm * Measurements share this common tolerance unless otherwise sta											

Electrical schematic See table for component values

(There is no VDE qualification above 36A)

A B C D E F G G H H L L M M P

FN 356 insertion loss

Per CISPR 17; A = $50\Omega/50\Omega$ sym, B = $50\Omega/50\Omega$ asym, C = $0.1\Omega/100\Omega$ sym, D = $100\Omega/0.1\Omega$ sym

D

100 k

1M

10 M

16 amp types

25 amp types

dB

70

60

50

40

30

20

10

-20

, 10 k А

B

36 amp types

dB 70 60 50-D 40 A 30-20 10 0 20 100 k 1M 10 M , 10 k

100 amp types

Mechanical drawings

See mechanical data table for dimensions

FRONT

FN 356-16 with

/29 connections

FN 356-16 /06 and FN 356-36, -50 with /24 connections (/24 shown)

/33 connections

th FN 356-100 with /28 connections (note centred earth terminal)

₩₩₩

Filter input/output connections

SCHAFFNER

These are the standard types of input and output connections available for Schaffner's range of filter families.

Schaffner can also produce filters with other popular output connectors, or user-specific interfaces, to custom order. Please call your local sales office to discuss requirements.

Type /03

Type /05

Industry-standard size fast-on terminal, 6.3 x 0.8mm.

Clamp terminal with M4 screw.

Type /07

Insulated wire, stripped ready for soldering. Wire gauge varies according to filter.

Type /29

Safety terminal block for 6mm² or AWG 10 cables.

Type /35

Safety terminal block for 50mm² or AWG 1/0 cables.

Type /46

Strip terminal block for solid wire 10mm², flex wire 6mm², AWG 8. *without neutral line

Type /24 M6 screw lead-through.

Type /33

Safety terminal block for 10mm² or AWG 6 cables.

Type /36 and /40

Safety terminal block for 95mm² or AWG 4/0 cables.

Type /47

Strip terminal, block for solid wire 16mm², flex wire 10mm², AWG 6. *without neutral line

P/N F Ð ()10.5

Type /01

Solder lug with a hole capable of accommodating several small wires.

Type /06

Industry-standard size fast-on which may also be used as a solder lug, 6.3 x 0.8mm.

Type /28 M10 screw lead-through.

Type /34 Safety terminal block for 25mm² or AWG 3 cables.

Type /37

Safety terminal block for 150mm² or AWG 6/0 cables.

Type /52

Strip terminal, block for solid wire 25mm², flex wire 16mm², AWG 4. *without neutral line

Schaffner's worldwide sales, distribution and production network

HEADQUARTERS

Schaffner Elektronik AG Nordstrasse 11 CH-4542 Luterbach Switzerland Tel: (032) 6816 626 Fax: (032) 6816 641

EUROLOGISTICS CENTER

Schaffner 1A, avenue de Suisse F-68311 Illzach **France** Tel: (03) 89 31 04 00 Fax: (03) 89 31 04 01

FACTORIES

Schaffner Elektronik AG Nordstrasse 11 CH-4542 Luterbach Switzerland Tel: (032) 6816 626 Fax: (032) 6816 641

Schaffner Ltd National Technological Park Castletroy Limerick **Ireland** Tel: (061) 332233 Fax: (061) 332584

Schaffner EMC Co Ltd 67 Moo 4 Tambol Ban Klang Amphur Muang PO Box 14 Lamphun 51000 Thailand Tel: (053) 581 104 Fax: (053) 581 019

SALES SUBSIDIARIES

Schaffner Beijing Liaison Office Room 203, Bright China Chang An Building No. 7 Jianguomennei Dajie Beijing 100005 **China** Tel: (10) 6510 1761 Fax: (10) 6510 1763

Schaffner SA 43 rue Michel Carré F-95103 Argenteuil **France** Tel: (01) 34 34 30 60 Fax: (01) 39 47 02 28

Rhone Alpes F-38560 Champ sur Drac Tel: (04) 76 68 64 00 Fax: (04) 76 68 63 70

Rennes F-35510 Cesson-Sévigné Tel: (02) 99 22 70 00 Fax: (02) 99 22 70 07 Schaffner Elektronik GmbH Schoemperlenstrasse 12B D-76185 Karlsruhe Germany Tel: (0721) 56 910 Fax: (0721) 56 9110

Northern Germany D-59581 Warstein Tel: (02902) 97 56 10 Fax: (02902) 97 56 80

Schaffner EMC Srl Via Galileo Galilei, 47 I-20092 Cinisello Balsamo (MI) Italy Tel: (02) 66 04 30 45 Fax: (02) 61 23 943

Schaffner EMC KK 2-31-6 Kamiuma Setagaya-Ku Tokyo 154-0011 Japan Tel: (03) 3418 5822 Fax: (03) 3418 3013

Schaffner EMC Pte Ltd 1200 Depot Road 06-01 Singapore 109675 Singapore Tel: 377 3283 Fax: 377 3281

Schaffner EMC AB Turebergstorg 1,6 S-19186 Sollentuna Sweden Tel: (08) 921121 Fax: (08) 929690

Schaffner Altrac AG Mühlehaldenstrasse 6 CH-8953 Dietikon Switzerland Tel: (01) 744 6111 Fax: (01) 744 6161

Schaffner EMC Ltd Ashville Way Molly Millar's Lane Wokingham Berks RG41 2PL UK Tel: (0118) 9770070 Fax: (0118) 9792969

Schaffner EMC Inc 9-B Fadem Road Springfield, NJ 07081 USA Toll free: 800 367 5566 Tel: (973) 379 7778 Fax: (973) 379 1151

West Coast Irvine, CA 92718 Tel: (949) 457 9400 Fax: (949) 457 9510

DISTRIBUTORS

Austria Eurodis Electronics GmbH Tel: 1 610 620

Belgium SEI Belgium Tel: 2 456 0747

Czech Republic Energo Praga Ltd. Tel: 2 6111 2665

Denmark Avnet Nortec A/S Tel: 44 88 08 00

Finland Electro Ferrum Oy Tel: 19 326 616

Greece P. Caritato & Assoc. S.A. Tel: 1 902 2003

Netherlands SEI Benelux B.V. Tel: 76 57 22 500

Norway Avnet Nortec A/S Tel: 66 773 600

Poland Astat Sp. Tel: 61 84 88 871

Portugal Aprec Tel: 63 65 11 78

Spain Selco S.A. Tel: 91 637 1011

Sweden Avnet Nortec AB Tel: 8 629 1400

Turkey Artest Elektronik Tel: 216 478 1757

Australia Westek Industrial Products Pty Ltd. Tel: 3 9369 8802

Brasil Teknikao Ind e Com Ltda Tel: 11 834 5544

Hong Kong Denetron (HK) Ltd. Tel: 2 707 9132

India Vishal Agencies Tel: 40 711 2079

Israel RDT Components Ltd. Tel: 3 645 0707

Japan Nemic Lambda K.K. Tel: 3 3447 4411 SSR Engineering Co. Ltd. Tel: 3 3493 6613 Unidux Inc Tel: 422 32 4500

Korea Power EMC TEK Tel: 2 501 5852

New Zealand MHS Technologies Ltd. Tel: 4 567 7016

Republic of South Africa Electronic Building Elements Tel: 12 803 7680

Taiwan Bandtek Int. Co. Ltd. Tel: 2 2747 3733

SCHAFFNER

Schaffner Elektronik AG CH-4542 Luterbach, Switzerland Tel: [+41] (32) 6816 626 Fax: [+41] (32) 6816 641 www.schaffner.com 690-342F

Benteli Hallwag/October 1998

© 1997 Schaffner Elektronik. Specifications subject to change without notice. All trademarks recognised.

Certilied ISO 9001 supplier requirements of the ISO 9001 standard.

This document has been carefully checked. However, Schaffner does not assume any liability for errors or inaccuracies.