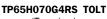


650V SuperGaN[®] GaN FET in TOLT (source tab)

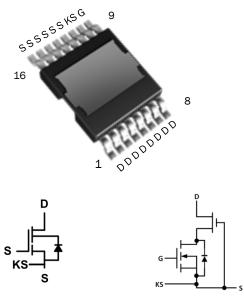
Description

The TP65H070G4RS 650V, $72m\Omega$ Gallium Nitride (GaN) FET is a normally-off device. It combines state-of-the-art high voltage GaN HEMT and low voltage silicon MOSFET technologies—offering superior reliability and performance.

The Gen IV SuperGaN® platform uses advanced epi and patented design technologies to simplify manufacturability while improving efficiency over silicon via lower gate charge, output capacitance, crossover loss, and reverse recovery charge


Related Literature

- AN0009: Recommended External Circuitry for GaN FETs
- AN0003: Printed Circuit Board Layout and Probing
- AN0010: Paralleling GaN FETs
- AN0014: Low cost driver solution


Ordering Information

Part Number	Package	Package Configuration		
TP65H070G4RS-TR	TOLT	Source		

 \star "-TR" suffix refers to tape and reel. Refer to AN0012 for details.

Cascode Schematic Symbol

Cascode Device Structure

- Gen IV technology
- JEDEC-qualified GaN technology
- Dynamic R_{DS(on)eff} production tested
- Robust design, defined by
 - Wide gate safety margin
 - Transient over-voltage capability
- Very low QRR
- Reduced crossover loss
- RoHS compliant and Halogen-free packaging
- Top-side cooling

Benefits

- Achieves increased efficiency in both hard- and softswitched circuits
 - Increased power density
 - Reduced system size and weight
 - Overall lower system cost
- · Easy to drive with commonly-used gate drivers

RoHS

• GSD pin layout improves high speed design

Applications

- Datacom
- Broad industrial
- PV inverter
- Servo motor
- Computing

Key Specifications

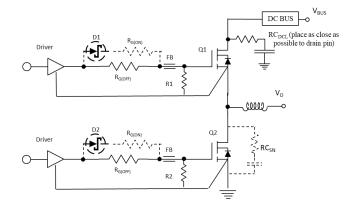
V _{DSS} (V)	650
V _{DSS(TR)} (V)	800
$R_{DS(on)eff}(m\Omega)$ max*	85
Q _{oss} (nC) typ	78
Q _G (nC) typ	9

* Dynamic on-resistance; see Figures 18 and 19

Absolute Maximum Ratings (Tc=25°C unless otherwise stated.)

Symbol	Parameter		Limit Value	Unit
V _{DSS}	Drain to source voltage $(T_J = -$	55°C to 150°C)	650	
V _{DSS(TR)}	Transient drain to source volta	Transient drain to source voltage (a)		V
V _{GSS}	Gate to source voltage		±20	
PD	Maximum power dissipation @	Maximum power dissipation @Tc=25°C		W
1	Continuous drain current @Tc	Continuous drain current @Tc=25°C ^(b)		А
lD	Continuous drain current @Tc=100°C (b)		18.4	А
I _{DM}	Pulsed drain current (pulse wi	Pulsed drain current (pulse width: 10µs)		А
Tc	Operating tomporature	Case	-55 to +150	°C
٦	Operating temperature Junction		-55 to +150	°C
Ts	Storage temperature	Storage temperature		°C
T _{SOLD}	Soldering peak temperature (c)		260	°C

Notes:


c. For 10 sec., 1.6mm from the case

Thermal Resistance

Symbol	Parameter	Maximum	Unit
R _{ejc}	Junction-to-case	1	°C/W
R _{OJA}	Junction-to-ambient	62	°C/W

<sup>a. In off-state, spike duration < 30 μs, non-repetitive.
b. For increased stability at high current operation, see Circuit Implementation on page 3</sup>

Circuit Implementation

For additional gate driver options/configurations, please see Application Note $\underline{\text{ANOOO9}}$

Layout Recommendations for hard switching Gate Loop:

- Gate Driver: SiLab Si823x/Si827x
- Keep gate loop compact (using Kelvin source)
- Minimize coupling with power loop

Power loop:

- Minimize power loop path inductance
- Minimize switching node coupling with high and low power plane
- Add DC bus noise filter (RC_{DCL}) to reduce to voltage ringing
- Add Switching node snubber for high current operation

Parameter	Symbol	Value
Single Gate Resistor ^(d)	$R_{G} \ (R_{G(OFF)} \ only)$	45 Ω (D1/D2/R _{G(ON)} : NS)
Dual Gate Resistor ^(d)	$R_{G(ON)} / R_{G(OFF)}$	30 Ω / 45 Ω
Dual Gate Resistor ^(d)	Effective $R_{G(ON)} / R_{G(OFF)}$	18 Ω / 45 Ω
Operating frequency	F _{sw}	≤300 kHz
Gate Ferrite Bead	FB	180 – 330 Ω at 100MHz ^(d)
Gate-to-source Resistor	R1/R2	10 kΩ
DC Link RC Noise Filter	RC _{DCL}	4.7nF + 5Ω
Switching Node RC Snubber	RC _{SN}	Not Necessary ^(e)
Gate Driver	Driver	Si823x/Si827x or similar

Simplified Half-bridge Schematic (See also on Figure 15)

Note:

e.

d. For every design and layout, a range of ferrite beads (FB), R_G and DC link RC filter should be evaluated to help suppress any high frequency ringing and optimize performance

 RC_{SN} (47pF + 15 Ω) is needed if

- R_G is smaller than recommendations
- Layout is not optimized
- Requires high current operation

Electrical Parameter (T_J=25 °C unless otherwise stated)

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
Forward Device Characteristics							
$V_{(BL)DSS}$	Drain-source voltage	650	-	-	V	V _{GS} =OV	
$V_{\text{GS}(\text{th})}$	Gate threshold voltage	3.3	4	4.8	V	V _{DS} =V _{GS} , I _D =0.7mA	
	Drein course en registance (f)	-	72	85	mΩ	V _{GS} =10V, I _D =18A,T _J =25°C	
$R_{DS(on)eff}$	Drain-source on-resistance (f)	_	148	_		V _{GS} =10V, I _D =18A, T _J =150°C	
		_	1.2	12		V _{DS} =650V, V _{GS} =0V, T _J =25°C	
I _{DSS}	Drain-to-source leakage current	_	8	_	μA	V _{DS} =650V, V _{GS} =0V, T _J =150°C	
	Gate-to-source forward leakage current	-	-	100		V _{GS} =20V	
I _{GSS}	Gate-to-source reverse leakage current	_	_	-100	nA	V _{GS} =-20V	
CISS	Input capacitance	-	638	-			
C _{OSS}	Output capacitance	-	72	_	pF	V _{GS} =0V, V _{DS} =400V, <i>f</i> =1MHz	
C_{RSS}	Reverse transfer capacitance	-	2	-			
$C_{\text{O}(\text{er})}$	Output capacitance, energy related ^(g)	-	105	-	pF	V_{GS} =0V, V_{DS} =0V to 400V	
C _{O(tr)}	Output capacitance, time related ^(h)	-	194	-	рг	$v_{\rm GS} = 0^{\circ}, v_{\rm DS} = 0^{\circ} t_{\rm O}^{\circ} 400^{\circ}$	
Q_{G}	Total gate charge	-	9	-		V_{DS} =400V, V_{GS} =0V to 10V, I_D =18A	
Q_{GS}	Gate-source charge	-	3.7	_	nC		
Q_{GD}	Gate-drain charge	-	2.4	-			
Qoss	Output charge	-	80	-	nC	V_{GS} =0V, V_{DS} =0V to 400V	
t _{D(on)}	Turn-on delay	_	43.4	_			
t _R	Rise time	-	6.2	-	ns	V_{DS} =400V, V_{GS} =0V to 12V,	
$t_{\text{D(off)}}$	Turn-off delay	-	56	_		I_D =18A, R_G =50 Ω	
t _F	Fall time	-	7.2	-			

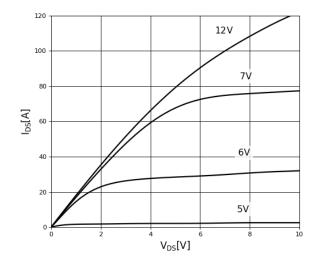
Notes:

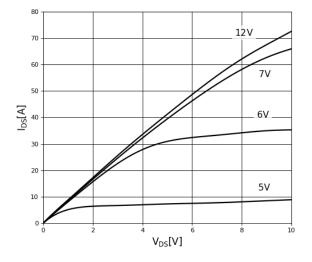
f. Dynamic on-resistance; see Figures 19 and 20 for test circuit and conditions

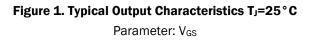
g. Equivalent capacitance to give same stored energy as V_{DS} rises from 0V to 400V

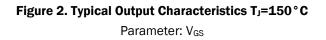
h. Equivalent capacitance to give same charging time as V_{DS} rises from OV to 400V

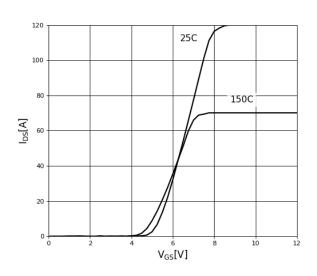
Electrical Parameters (T_=25°C unless otherwise stated)

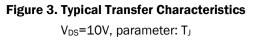

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
Reverse Device Characteristics							
Is	Reverse current	_	_	18	А	V_{GS} =0V, T _C =100°C, ≤25% duty cycle	
		_	2.4	_	V	V _{GS} =0V, I _S =18A	
V_{SD}	Reverse voltage (i)	_	1.7	_		V _{GS} =0V, I _S =9A	
t _{RR}	Reverse recovery time	_	80	_	ns	I _S =18A, V _{DD} =400V,	
Q_{RR}	Reverse recovery charge ^(j)	_	0	_	nC	di/dt=1000A/ms	

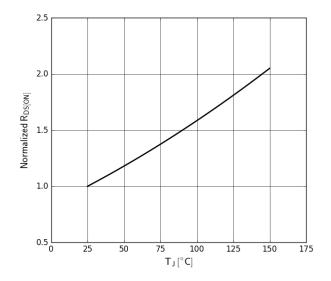

Notes:


Includes dynamic R_{DS(on)} effect Excludes Qoss i.


j.


Typical Characteristics (Tc=25 °C unless otherwise stated)





Typical Characteristics (Tc=25 °C unless otherwise stated)

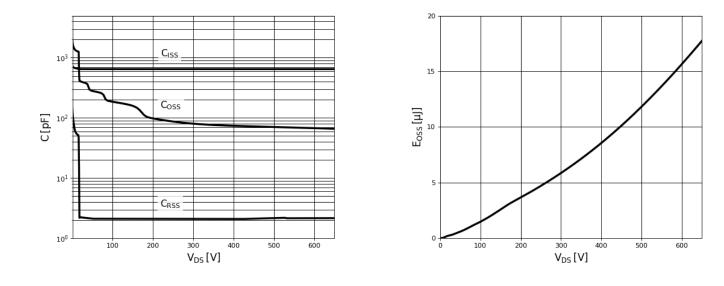
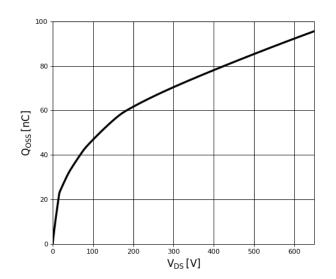
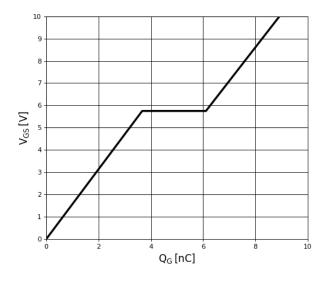
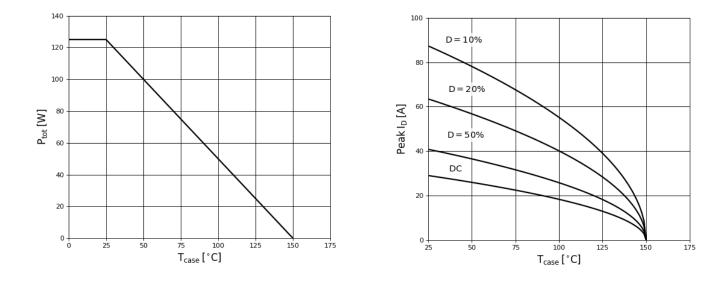
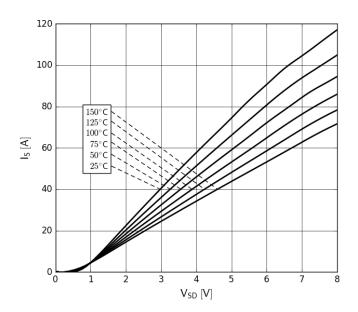



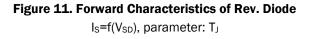
Figure 5. Typical Capacitance

 V_{GS} =0V, f=1MHz

Figure 6. Typical Coss Stored Energy


Figure 8. Typical Gate Charge I_{DS}=18A, V_{DS}=400V


Typical Characteristics (Tc=25°C unless otherwise stated)

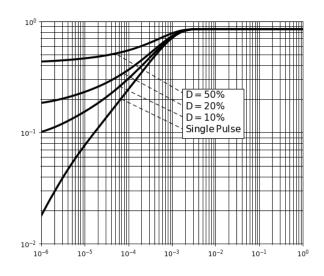
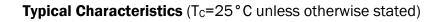
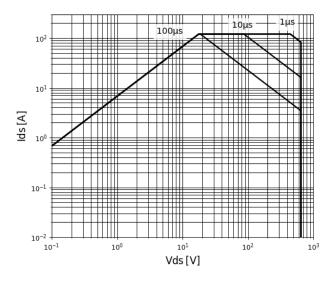


Figure 9. Power Dissipation


Figure 10. Current Derating Pulse width $\leq 10\mu s$, $V_{GS} \geq 10V$



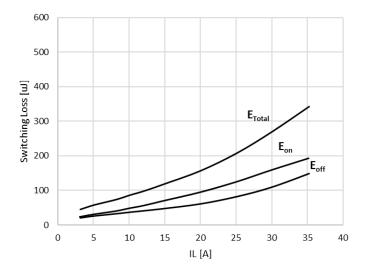


Figure 13. Safe Operating Area Tc=25°C

Figure 14. Inductive Switching Loss T_c=25 °C Rg=50 Ω , V_{DS}=400V

ure

Test Circuits and Waveforms

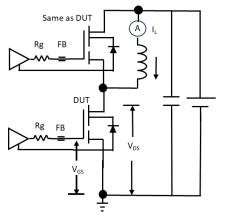
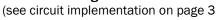



Fig-

15. Switching Time Test Circuit

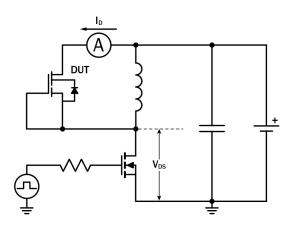


Figure 17. Diode Characteristics Test Circuit

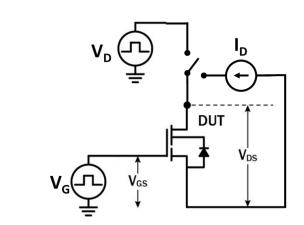


Figure 19. Dynamic RDS(on)eff Test Circuit

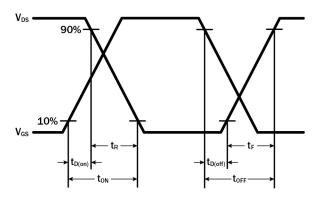


Figure 16. Switching Time Waveform

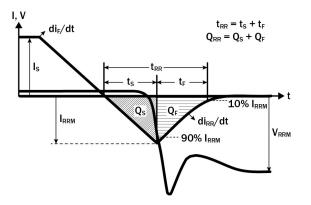
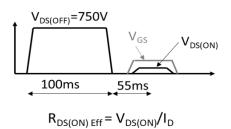
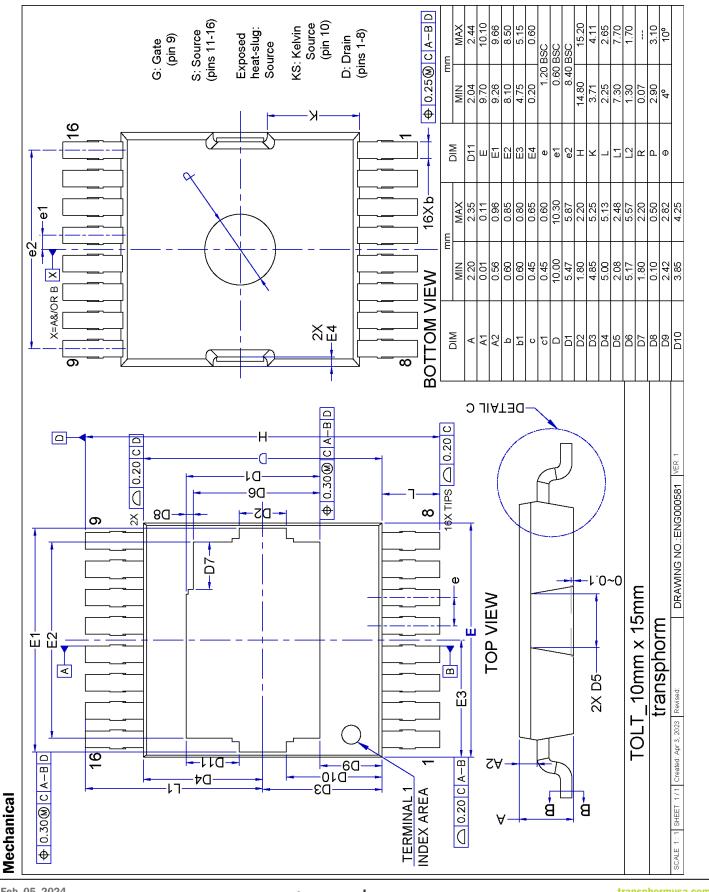



Figure 18. Diode Recovery Waveform

Design Considerations

The fast switching of GaN devices reduces current-voltage crossover losses and enables high frequency operation while simultaneously achieving high efficiency. However, taking full advantage of the fast switching characteristics of GaN switches requires adherence to specific PCB layout guidelines and probing techniques.

Before evaluating Transphorm GaN devices, see application note <u>Printed Circuit Board Layout and Probing for GaN Power</u> <u>Switches</u>. The table below provides some practical rules that should be followed during the evaluation.


When Evaluating Transphorm GaN Devices:

DO	DO NOT
Minimize circuit inductance by keeping traces short, both in the drive and power loop	Twist the pins of TO-220 or TO-247 to accommodate GDS board layout
Minimize lead length of TO-220 and TO-247 package when mounting to the PCB	Use long traces in drive circuit, long lead length of the devices
Use shortest sense loop for probing; attach the probe and its ground connection directly to the test points	Use differential mode probe or probe ground clip with long wire
See AN0003: Printed Circuit Board Layout and Probing	

GaN Design Resources

The complete technical library of GaN design tools can be found at transphormusa.com/design:

- Reference designs
- Evaluation kits
- Application notes
- Design guides
- Simulation models
- Technical papers and presentations

Feb. 05, 2024 tp65h070g4rs.1v3

transphormusa.com