

TP65H300G4LSGB

650V SuperGaN® GaN FET in PQFN (source tab)

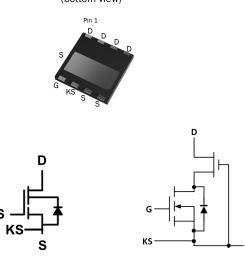
Description

The TP65H300G4LSGB 650V, 240m Ω Gallium Nitride (GaN) FET is a normally-off device using Transphorm's Gen IV platform. It combines a state-of-the-art high voltage GaN HEMT with a low voltage silicon MOSFET to offer superior reliability and performance.

The Gen IV SuperGaN[®] platform uses advanced epi and patented design technologies to simplify manufacturability while improving efficiency over silicon via lower gate charge, output capacitance, crossover loss, and reverse recovery charge.


Related Literature

- AN0003: Printed Circuit Board Layout and Probing
- <u>AN0007</u>: Recommendations for Vapor Phase Reflow
- <u>AN0009</u>: Recommended External Circuitry for GaN FETs
- AN0012: PQFN Tape and Reel Information
- AN0014: Low cost driver solution


Product Series and Ordering Information

Part Number	Package	Package Configuration
TP65H300G4LSGB-TR*	8x8 PQFN	Source

* "-TR" suffix refers to tape and reel. Refer to AN0012 for details.

PQFN (bottom view)

Cascode Schematic Symbol

Cascode Device Structure

October 30, 2023 tp65h300g4lsgb.1v1

Features

- Gen IV technology
- JEDEC-qualified GaN technology
- Dynamic R_{DS(on)eff} production tested
- Robust design, defined by
 - Wide gate safety margin
 - Transient over-voltage capability
- Very low QRR
- Reduced crossover loss
- · RoHS compliant and Halogen-free packaging

Benefits

- Achieves increased efficiency in both hard- and softswitched circuits
 - Increased power density
 - Reduced system size and weight
 - Overall lower system cost
- Easy to drive with commonly-used gate drivers
- GSD pin layout improves high speed design

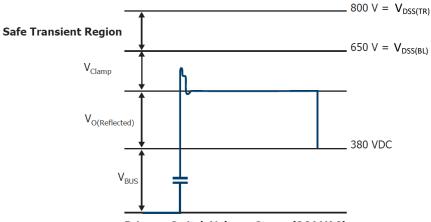
Applications

- Consumer
- Power adapters
- Low power SMPS
- Lighting

Key Specifications		
V _{DS} (V) min	650	
V _{DSS(TR)} (V) max	800	
$R_{DS(on)}(m\Omega)$ max*	312	
Q _{RR} (nC) typ	14	
Q _G (nC) typ	5	

 * Dynamic $R_{\text{DS(on)}}\text{;}$ see Figures 18 and 19

Absolute Maximum Ratings (Tc=25 °C unless otherwise stated.)


Symbol	Parameter		Limit Value	Unit		
V _{DSS}	Drain to source voltage (T _J = -	55°C to 150°C)	650			
$V_{\text{DSS}(\text{TR})}$	Transient drain to source voltage ^a		800	V		
V _{GSS}	Gate to source voltage		±12			
P _D	Maximum power dissipation @	Maximum power dissipation @Tc=25°C		Maximum power dissipation @Tc=25°C		W
1-	Continuous drain current @Tc=25°C b		6.5	A		
ID	Continuous drain current @Tc=100°C b		4.1	A		
I _{DM}	Pulsed drain current (pulse w	Pulsed drain current (pulse width: 10µs)		A		
Tc	Operating temperature	Case	-55 to +150	°C		
٦	Operating temperature	Junction		°C		
Ts	Storage temperature	Storage temperature		°C		
T _{SOLD}	Reflow soldering temperature °		260	°C		

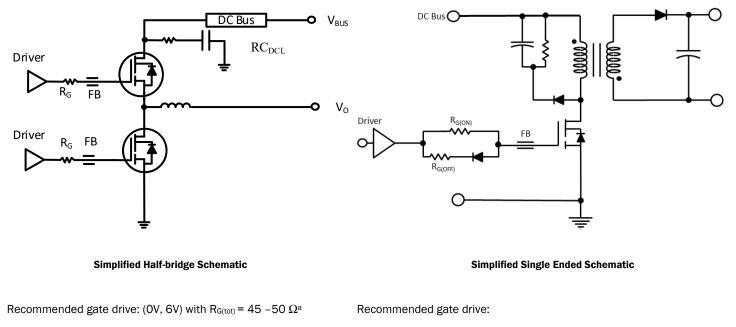
Notes:

a. In off-state, spike duration < 30µs, Non-repetitive

b. For increased stability at high current operation, see Circuit Implementation on page 3

c. Reflow MSL3

Primary Switch Voltage Stress (264 VAC)


Thermal Resistance

Symbol	Parameter	Maximum	Unit
R _{0JC}	Junction-to-case	5.5	°C/W
Roja	Junction-to-ambient ^d	50	°C/W

Notes:

d. Device on one layer epoxy PCB for drain connection (vertical and without air stream cooling, with 6cm² copper area and 70µm thickness)

Circuit Implementation

For additional driver configurations/options please see application note AN0009.

 $\begin{array}{l} \mbox{Gate drive: (0V, 6V): } R_{\rm G(ON)} = 50 \mbox{ to } 150 \ \Omega; \ R_{\rm G(OFF)} = 0 \mbox{ to } 10 \ \Omega \\ \mbox{Gate drive*: (-6V, 6V): } R_{\rm G(ON)} = 50 \mbox{ to } 100 \ \Omega; \ R_{\rm G(OFF)} = 0 \mbox{ to } 20 \ \Omega \\ \end{array}$

*Drop-in with discrete e-mode gate drive that level shifts any standard silicon MOSFET controller with integrated driver (i.e. NCP1342)

Gate Ferrite Bead (FB)	Required DC Link RC Snubber (RC_{DCL}) ^b
240Ω @ 100MHz	4.7—10nF + 3.3Ω

Notes:

a. For bridge topologies only. $R_{\rm G}$ could be much smaller in single ended topologies.

b. $\mathsf{RC}_{\mathsf{DCL}}$ should be placed as close as possible to the drain pin.

TP65H300G4LSGB

Electrical Parameters (T_=25°C unless otherwise stated)

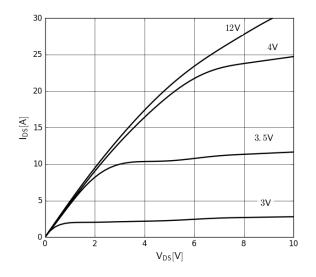
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
Forward D	evice Characteristics	4	1	1	1		
$V_{\text{DSS}(\text{BL})}$	Maximum drain-source voltage	650	-	_	V	V _{GS} =OV	
$V_{GS(th)}$	Gate threshold voltage	2	2.4	2.8	V	_	
$\Delta V_{GS(th)}/T_J$	Gate threshold voltage temperature coefficient	_	-5.8	_	mV/°C	$V_{DS}=V_{GS}$, $I_D=0.5mA$	
Daar y rr	Drain-source on-resistance a	_	240	312	mΩ	V_{GS} =6V, I _D =6.5A, T _J =25 °C	
$R_{\text{DS(on)eff}}$		_	492	_	11152	V _{GS} =6V, I _D =6.5A, T _J =150°C	
I _{DSS}	Drain-to-source leakage current	_	1.2	12	μA	V _{DS} =650V, V _{GS} =0V, T _J =25°C	
1055		_	8	_	μ/ τ	V _{DS} =650V, V _{GS} =0V, T _J =150°C	
	Gate-to-source forward leakage current	_	-	100		V _{GS} =12V	
I _{GSS}	Gate-to-source reverse leakage current	_	-	-100	nA	V _{GS} =-12V	
CISS	Input capacitance	_	414	_		V _{GS} =0V, V _{DS} =400V, <i>f</i> =1MHz	
Coss	Output capacitance	_	16	_	pF		
C _{RSS}	Reverse transfer capacitance	_	1.2	_			
C _{O(er)}	Output capacitance, energy related ^b	_	24	_	рF	V_{GS} =0V, V_{DS} =0V to 400V	
C _{O(tr)}	Output capacitance, time related °	_	47	_	рг		
Q_{G}	Total gate charge	_	5	_		V_{DS} =400V, V_{GS} =0V to 10V, I_D =6.5A	
Q _{GS}	Gate-source charge	_	1.5	_	nC		
Q_{GD}	Gate-drain charge	_	0.8	_			
Qoss	Output charge	_	19	_	nC	V_{GS} =0V, V_{DS} =0V to 400V	
t _{D(on)}	Turn-on delay	_	20	_	ns	V_{DS} =400V, V_{GS} =0V to 6V, I_{D} =6.5A, R_{G} =65 Ω , Z_{FB} =330 Ω at	
t _R	Rise time	-	2.4	_			
$t_{D(off)}$	Turn-off delay	_	31.2	_		$10-0.5A, R_{G}=0.522, Z_{FB}=3.5022 at 100MHz (See Figure 14)$	
t⊧	Fall time	_	10.6	_			

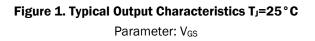
Notes:

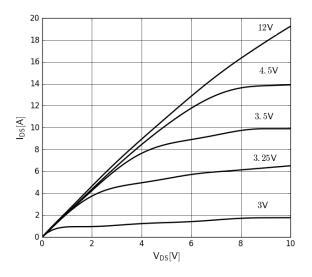
a. Dynamic $R_{\text{DS}(\text{on})}$ value; see Figures 18 and 19 for conditions

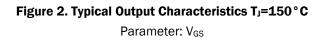
b.

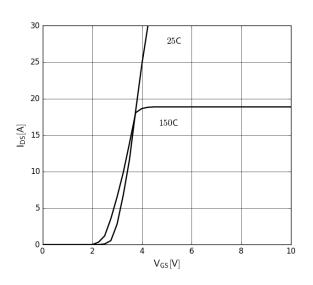
Equivalent capacitance to give same stored energy from 0V to 400V Equivalent capacitance to give same charging time from 0V to 400V c.

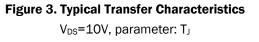

Electrical Parameters (T_=25°C unless otherwise stated)

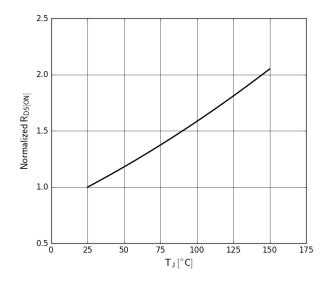

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
Reverse Dev	ice Characteristics		·	•	•		
ls	Reverse current	_	_	3.7	A	V_{GS} =0V, T _C =100°C, ≤20% duty cycle	
N		-	1.7	-	V	V _{GS} =0V, I _S =5A	
V _{SD}	Reverse voltage ^a	_	1.2	-		V _{GS} =0V, I _S =2A	
t _{RR}	Reverse recovery time	-	16	-	ns	I _S =10A, V _{DD} =400V,	
Q_{RR}	Reverse recovery charge	-	23	-	nC	di/dt=1000A/ms	


Notes:


a. Includes dynamic R_{DS(on)} effect


Typical Characteristics (Tc=25°C unless otherwise stated)







TP65H300G4LSGB

Typical Characteristics (Tc=25 °C unless otherwise stated)

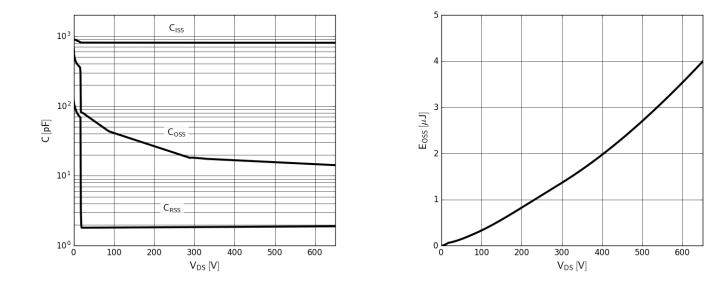


Figure 5. Typical Capacitance

V_{GS}=0V, f=1MHz

Figure 6. Typical Coss Stored Energy

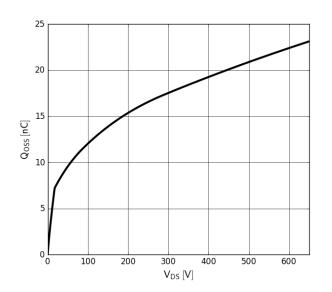


Figure 7. Typical Qoss

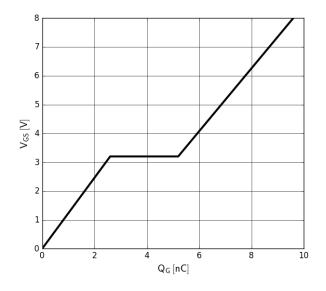


Figure 8. Typical Gate Charge I_{DS} =10A, V_{DS} =400V

Typical Characteristics (Tc=25 °C unless otherwise stated)

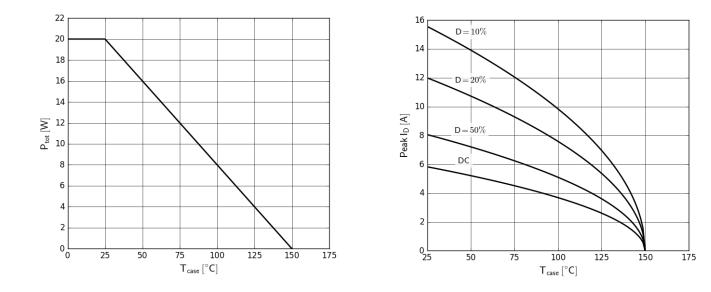
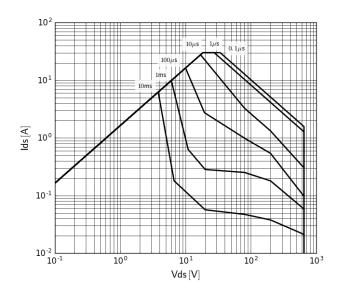
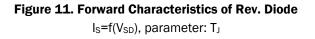




Figure 9. Power Dissipation

Figure 10. Current Derating Pulse width $\leq 10\mu s$, $V_{GS} \geq 10V$

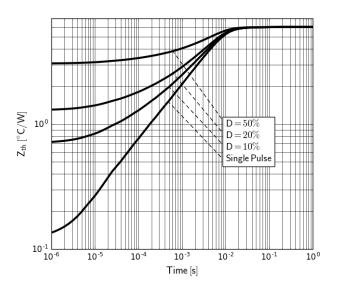


Figure 12. Transient Thermal Resistance

Typical Characteristics (Tc=25 °C unless otherwise stated)

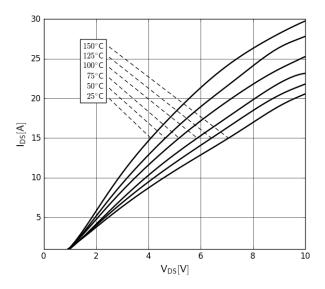
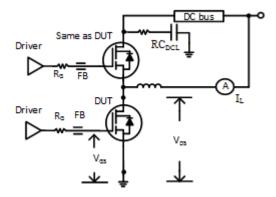



Figure 13. Safe Operating Area $T_c=25$ °C

Test Circuits and Waveforms

Figure 14. Switching Time Test Circuit (see circuit implementation on page 3 for methods to ensure clean switching)

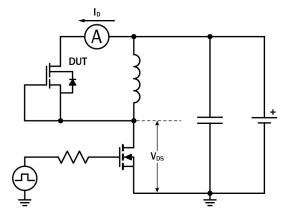


Figure 16. Diode Characteristics Test Circuit

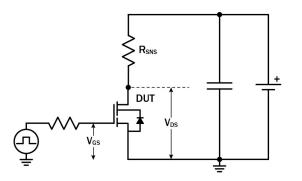


Figure 18. Dynamic RDS(on)eff Test Circuit

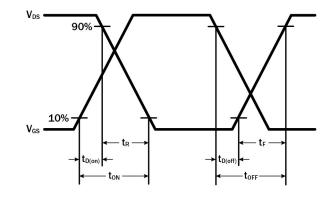


Figure 15. Switching Time Waveform

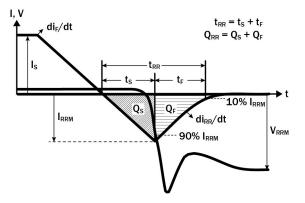
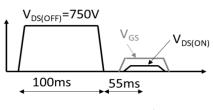



Figure 17. Diode Recovery Waveform

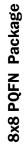
 $R_{DS(ON) Eff} = V_{DS(ON)}/I_D$

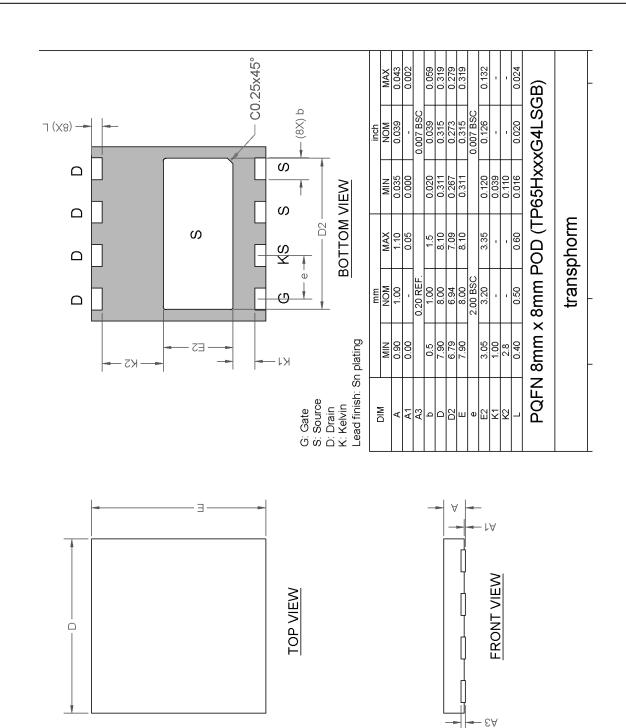
Figure 19. Dynamic RDS(on)eff Waveform

Design Considerations

The fast switching of GaN devices reduces current-voltage crossover losses and enables high frequency operation while simultaneously achieving high efficiency. However, taking full advantage of the fast switching characteristics of GaN switches requires adherence to specific PCB layout guidelines and probing techniques.

Before evaluating Transphorm GaN devices, see application note <u>Printed Circuit Board Layout and Probing for GaN Power</u> <u>Switches</u>. The table below provides some practical rules that should be followed during the evaluation.


When Evaluating Transphorm GaN Devices:


DO	DO NOT
Minimize circuit inductance by keeping traces short, both in the drive and power loop	Twist the pins of TO-220 or TO-247 to accommodate GDS board layout
Minimize lead length of TO-220 and TO-247 package when mounting to the PCB	Use long traces in drive circuit, long lead length of the devices
Use shortest sense loop for probing; attach the probe and its ground connection directly to the test points	Use differential mode probe or probe ground clip with long wire
See AN0003: Printed Circuit Board Layout and Probing	

GaN Design Resources

The complete technical library of GaN design tools can be found at transphormusa.com/design:

- Evaluation kits
- Application notes
- Design guides
- Simulation models
- Technical papers and presentations

Mechanical

TP65H300G4LSGB