MESSTECHNIK & PRÜFSERVICE 2024

Härteprüfung von Kunststoffen (Shore)

SAUTER SAUTER

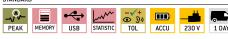
Digitales Shore-Härteprüfgerät SAUTER HE

Shore-Härteprüfgerät mit umfangreichen Funktionen

Merkmale

- Zur Härtebestimmung von Kunststoffen per Eindringungsmessung
- In Shore A: Gummi, Elastomere, Neopren, Silikon, Vinyl, weiche Kunststoffe, Filz, Leder und ähnliche Materialien
- 2 Shore D: Kunststoffe, Kunstharz, Resopal, Epoxid, Plexiglas etc.
- Verschiedene Messmodi: Durchnittswert, Maximumwert, zeitlicher Ablauf
- Grenzwert-Alarm-Funktion, die bei Unter- bzw.
 Überschreiten der festgelegten Grenzwerte ein akustisches und optisches Signal auslöst
- Eingabe der Werkstücknummer möglich
- Einstellen der Messzeit von 0 bis 99 Sekunden
- Empfohlen für interne Vergleichsmessungen
- Montierbar auf die Prüfstände SAUTER TI-HEA (für Shore A), SAUTER TI-HED (für Shore D) zur Verbesserung des Messergebnisses, siehe Zubehör
- Großes Display mit Hintergrundbeleuchtung
- Akkustandsanzeige
- · Datenschnittstelle USB, serienmäßig
- 4 Lieferung im robusten Tragekoffer

Technische Daten


- Toleranz: 1 % von [Max]
- Gesamtabmessungen B×T×H 153×50×29 mm
- Nettogewicht ca. 0,20 kg
- Interner Datenspeicher für bis zu 500 Ergebnisse
- Prüfkraft Härtemessung
 SAUTER HEA: 10 N
 SAUTER HED: 50 N
- Durchmesser der Messsonde: 18 mm
- · Materialstärke der Probe min. 6 mm
- Akkubetrieb intern, im Lieferumfang enthalten, Betriebsdauer bis zu 20 h ohne Hinterleuchtung, Ladezeit ca. 3 h

Zubehör

- Shore-Vergleichsplatten zur Prüfung und Kalibrierung von Shore-Härteprüfgeräten.
 Durch regelmäßiges Abgleichen erhöht sich die Messgenauigkeit wesentlich

- Werkskalibrierung der Vergleichsplatten, SAUTER 961-170
- Prüfstand für HEA 100, SAUTER TI-HEA
- Prüfstand für HED 100, SAUTER TI-HED

STANDARD

Modell Härteskalen Messbereich Ablesbarkeit

SAUTER			[Max]	[d]	
HEA 100	NEW	Shore A	100 HA	0,1 HA	
HED 100	NEW	Shore D	100 HD	0,1 HD	

MESSTECHNIK & PRÜFSERVICE 2024

SAUTER Piktogramme

Justierprogramm CAL

Zum Einstellen der Genauigkeit. Externe Justierreferenz notwendig

Kalibrier-Block

Standard zur Justierung bzw. Justierung des Messgerätes

Peak-Hold-Funktion

Erfassung des Spitzenwertes innerhalb eines Messprozesses

Scan-Modus

Kontinuierliche Messdatenerfassung und -anzeige im Display

Push und Pull

Das Messgerät kann Zug-und Druckkräfte erfassen

Längenmessung Erfasst die geometrischen Abmessungen eines Prüfobjekts bzw. die Bewegungslänge eines Prüfvorgangs

Fokus-Funktion

Erhöht die Messgenauigkeit eines Geräts innerhalb eines bestimmten Messbereichs

Interner Speicher

Zur Sicherung von Messwerten im Gerätespeicher

Datenschnittstelle RS-232

Bidirektional, zum Anschluss von Drucker und PC

Profibus

Zur Übertragung von Daten z. B. zwischen Waagen, Messzellen, Steuerungen und Peripheriegeräten über weite Strecken. Geeignet für sichere, schnelle, fehlertolerante Datenübertragung. Wenig anfällig für magnetische Störeinflüsse.

Profinet

Ermöglicht den effizienten Datenaustausch zwischen dezentralen Peripheriegeräten (Waagen, Messzellen, Messinstrumenten etc.) und einer Steuerungseinheit (Controller). Besonders vorteilhaft beim Austausch von komplexen Messwerten, Geräte-, Diagnose- und Prozessinformationen. Einsparpotential durch kürzere Inbetriebnahmezeiten und Geräteintegrationen möglich

Datenschnittstelle USB

Zum Anschluss des Messinstruments an Drucker. PC oder andere Peripheriegeräte

Datenschnittstelle Bluetooth'

Zur Datenübertragung von Waage/Messinstrument zu Drucker, PC oder anderen Peripheriegeräten

Datenschnittstelle WLAN

Zur Datenübertragung von Waage/Messinstrument zu Drucker, PC oder anderen Peripheriegeräten

Datenschnittstelle Infrarot

Zur Datenübertragung von Messinstrument zu Drucker, PC oder anderen Peripheriegeräten

Steuerausgang (Optokoppler, Digital I/O)

Zum Anschluss von Relais, Signallampen, Ventilen etc.

Schnittstelle Analog

Zum Anschluss eines geeigneten Peripheriegerätes zur analogen Messwertverarbeitung

Analogausgang

Zur Ausgabe eines elektrisches Signals in Abhängigkeit der Belastung (z. B Spannung 0 V - 10 V oder Stromstärke 4 mA - 20 mA)

Statistik

Das Gerät berechnet aus den gespeicherten Messwerten statistische Daten. wie Durchschnittswert. Standardabweichung etc.

PC Software

Zur Übertragung der Messdaten vom Gerät an einen PC

Drucker

An das Gerät kann ein Drucker zum Ausdruck der Messdaten angeschlossen

Netzwerkschnittstelle

Zum Anschluss der Waage/ des Messinstruments an ein Ethernet-Netzwerk

KERN Communication Protocol (KCP)

Ist ein standardisierter Schnittstellen-Befehlssatz für KERN-Waagen und andere Instrumente, der das Abrufen und Steuern aller relevanten Parameter und Gerätefunktionen erlaubt. KERN Geräte mit KCP kann man so ganz einfach in Computer, Industriesteuerungen und andere digitale Systeme integrieren

GLP/ISO-Protokoll **Printer**

Von Messwerten mit Datum, Uhrzeit und Seriennummer. Nur mit SAUTER-Druckern

Maßeinheiten

Umschaltbar z. B. auf nichtmetrische Einheiten. Weitere Details siehe Internet

Messen mit Toleranzbereich

(Grenzwertfunktion) Oberer und unterer Grenzwert programmierbar. Der Messvorgang wird durch ein akustisches oder optisches Signal unterstützt, siehe jeweiliges Modell

Staub- und Spritzwasserschutz IPxx

Die Schutzklasse ist im Piktogramm angegeben vgl. DIN EN 60529:2000-09, IEC 60529:1989+A1:1999 +A2:2013

ZERO

Rücksetzen der Anzeige auf 0

Batterie-Betrieb

Für Batterie-Betrieb vorbereitet. Der Batterietyp ist beim jeweiligen Gerät angegeben

Akku-Betrieb

Wiederaufladbares Set

Steckernetzteil

230V/50Hz. Serienmäßig Standard FU. Auf Bestellung auch in Standard GB, AUS oder US lieferbar

Integriertes Netzteil

Integriert, 230V/50Hz in EU. Weitere Standards, wie z. B. GB, AUS, US auf Anfrage

Motorisierter Antrieb

Die mechanische Bewegung erfolgt durch einen Elektromotor

Motorisierter Antrieb

Die mechanische Bewegung erfolgt durch einen Schrittsynchronmotor (Stepper)

Fast-Move

Die gesamte Verfahrlänge kann durch eine einzige Hebelbewegung umfasst werden

Konformitätsbewertung

Artikel mit Bauartzulassung zum Bau eichfähiger Systeme

DAkkS-Kalibrierung

Die Dauer der DAkkS-Kalibrierung in Tagen ist im Piktogramm angegeben

Werkskalibrierung (ISO)

Die Dauer der Werkskalibrierung in Tagen ist im Piktogramm angegeben

Paketversand per Kurierdienst

Die Dauer der internen Produktbereitstellung in Tagen ist im Piktogramm angegeben

Palettenversand per Spedition

Die Dauer der internen Produktbereitstellung in Tagen ist im Piktogramm angegeben

^{*}Der Name Bluetooth® und die Logos sind eingetragene Warenzeichen und gehören der Bluetooth SIG, Inc.. Jedwede Verwendung dieser Warenzeichen durch die KERN & SOHN GmbH erfolgt unter Lizenz. Andere Warenzeichen oder Markennamen sind eingetragene Warenzeichen ihrer jeweiligen Besitzer