

Very Low TCR High-Precision Current Sense Resistor Surface Mount Metal Strip Power Resistors

FEATURES

 Temperature coefficient of resistance to ±25 ppm/°C max. (-55°C to +170°C, +20°C Ref.)

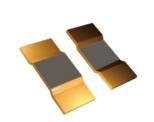
• Power rating: to 4 W

• Resistance tolerance: to ±0.5%

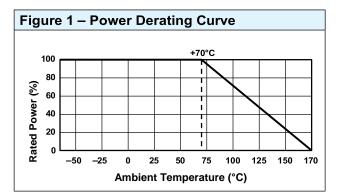
Resistance: 3 mΩ

Short time overload: ±0.5% Max.
Maximum current: up to 36 A

• AEC-Q200 qualified


 Proprietary processing techniques produce low resistance values and improved TCR

Working Temperature -65°C to +170°C


· Solderable terminations

KEY APPLICATIONS

- · Switching and linear power supplies
- · Precision current-sensing
- · Power management systems
- Automotive
- · Power amplifiers
- · Measurement instrumentation
- · Precision instrumentation amplifiers
- · Medical and automatic test equipment
- · DC current sensing circuits
- · Communication systems
- · High current applications for the automotive market

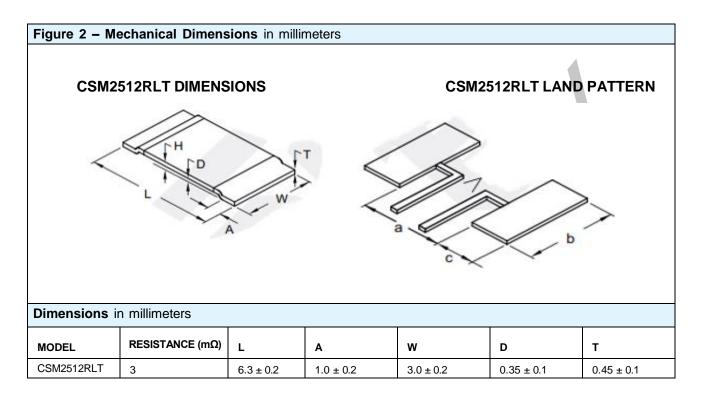
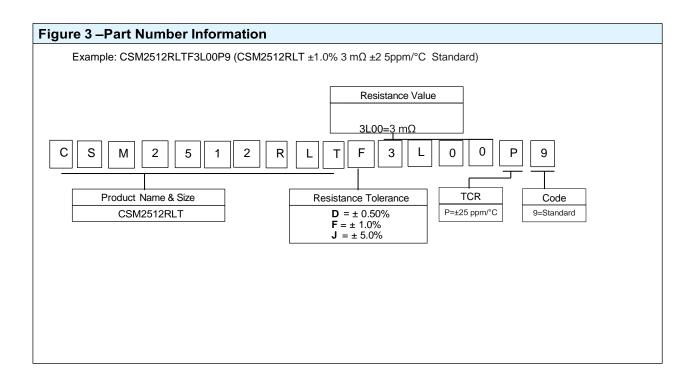


Table 1 – Specifications				
PARAMETER	CSM2512RLT			
Resistance	3 mΩ			
Power Rating at 70°C	4 W (3 mΩ)			
Maximum Current(1)	36 A			
Tolerance	±0.5%, ±1%, ±5%			
Temperature Coefficient Max. (-55°C to +170°C, +20°C Ref.)	±25 ppm/°C			
Operating Temperature Range	−65°C to +170°C			
Maximum Working Voltage	(P × R) ^{1/2}			

Notes

(1) Maximum current for a given resistance value is calculated using $I = \sqrt{P/R}$



Land Pattern Dimensions in millimeters					
MODEL	RESISTANCE (mΩ)	а	С	b	
CSM2512RLT	3	3.9 ± 0.25	1.8 ± 0.25	3.4 ± 0.25	

Test	Test Method	Standards	Typical	Max.
Thermal Shock	55°C~+125°C, 1000 cycles, measured 24±2h after test	JESD22 Method JA-104	∆R≤±0.1%	∆R≤±0.5%
Load Life	+70°C, 2000h, rated power, measured 24±2h after test	MIL-STD-202 Method 108	∆R≤±0.5%	△R≤±1.0%
Resistance to Solvent	Immerse in solvent for 3 min and then wipe 10 times 3 cycles of 3 solvents, clean and dry at ambient temperature	MIL-STD-202 Method 215	Clear marking. No visible damage	
Mechanical shock	100g, 6ms, half-sine shock wave, 3 times/direction, 18 times measured 24±2h after test	MIL-STD-202 Method 107	∆R≤±0.05%	△R≤±0.2%
Vibration	Frequency varied 10Hz to 2000Hz in 20 minutes, acceleration 5g X-Y-Z direction °C 12 cycles	MIL-STD-202 Method 204	∆R≤±0.05%	∆R≤±0.2%
Resistance to Solder Heat	+260, ±5°C, 10s±1s, measured 24±2h after test	MIL-STD-202 Method 210	∆R≤±0.2%	∆R≤±0.5%
Solderability	+235°C±5°C, 2s±0.5s	J-STD-202	No visible damage 95% minimum coverage	
TCR	-55°C and +170°C, +20°C Ref.	IEC 60115-1 4.8	Max. value ± 25ppm/°C	
Substrate Bending	2mm. Duration: 60s	AEC-Q200-005	△R≤±0.01%	∆R≤±0.1%
Short time Overload	5x rated power for 5s, measured 24±2h after test	MIL-STD-202 Method 201	∆R≤±0.1%	∆R≤±0.5%
Low Temperature Storage	-65°C for 96h, measured 24±2h after test	IEC 60068-2-1	∆R≤±0.1%	∆R≤±0.5%
Moisture Resistance	T=24h/cycle, no load, 7a and 7b not required, measured 24±2h after test	MIL-STD-202 Method 106	∆R≤±0.2%	∆R≤±0.5%
High temp. & high humidity	+85°C, 85%RH, 10% of rated power, 1000h, measured 24±2h after test	MIL-STD-202 Method 103	∆R≤±0.2%	∆R≤±0.5%
Terminal strength	Force 17.7N, hold for 60s	AEC-Q200-006	∆R≤±0.01%	∆R≤±0.1%
Low temp. operation	-55°C, no load for 1h, rated voltage load for 45 min, no load for 15 min	IEC 60115-1 4.36	∆R≤±0.2%	△R≤±0.5%

Legal Disclaimer Notice

Vishay Precision Group, Inc.

Disclaimer

ALL PRODUCTS. PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Vishay Precision Group, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "VPG"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

The product specifications do not expand or otherwise modify VPG's terms and conditions of purchase, including but not limited to, the warranty expressed therein.

VPG makes no warranty, representation or guarantee other than as set forth in the terms and conditions of purchase. To the maximum extent permitted by applicable law, VPG disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Information provided in datasheets and/or specifications may vary from actual results in different applications and performance may vary over time. Statements regarding the suitability of products for certain types of applications are based on VPG's knowledge of typical requirements that are often placed on VPG products. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. You should ensure you have the current version of the relevant information by contacting VPG prior to performing installation or use of the product, such as on our website at vpgsensors.com.

No license, express, implied, or otherwise, to any intellectual property rights is granted by this document, or by any conduct of VPG.

The products shown herein are not designed for use in life-saving or life-sustaining applications unless otherwise expressly indicated. Customers using or selling VPG products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify VPG for any damages arising or resulting from such use or sale. Please contact authorized VPG personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Copyright Vishay Precision Group, Inc., 2014. All rights reserved.

Document No.: 63999 Revision: 15-Jul-2014 1