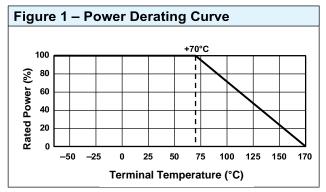


High-Precision Low-TCR Current Sense Resistor Surface Mount Metal Strip Power Resistors

FEATURES

- Temperature coefficient of resistance to ±25 ppm/°C max. (-55°C to +170°C, 20°C Ref.)
- Power rating: to 8 W
- Resistance tolerance: to ±0.5%
 Resistance range: 1 mΩ to 5 mΩ
 Short time overload: ±0.5% Max.
- Maximum current: up to 89 A
- · AEC-Q200 qualified
- Proprietary processing techniques produce low resistance values and improved TCR
- Working Temperature -55°C to +170°C
- · Solderable terminations


KEY APPLICATIONS

- · Switching and linear power supplies
- · Precision current-sensing
- · Power management systems
- Automotive
- · Power amplifiers
- · Measurement instrumentation
- Testing & Measurement Equipment
- · Medical and automatic test equipment
- · DC low frequency sampling circuits
- · Communication systems
- · High current applications for the automotive market

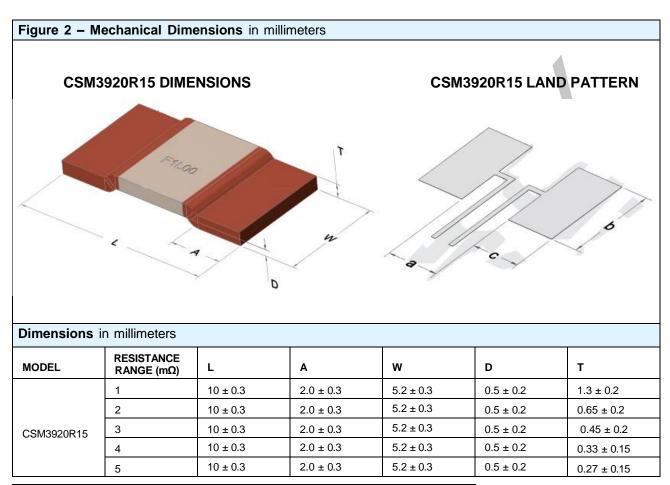
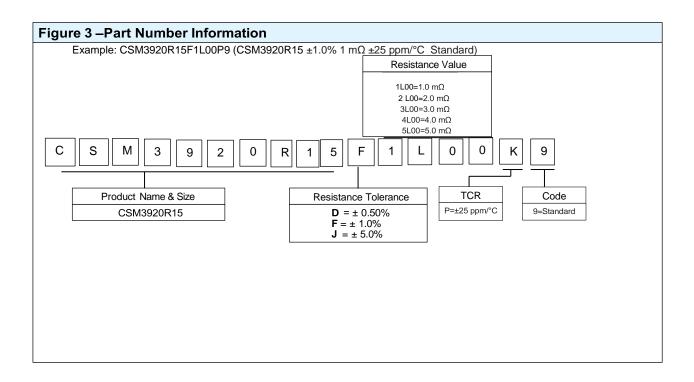


Table 1 – Specifications				
PARAMETER	CSM3920R15			
Resistance Range	1 m Ω to 5 m Ω			
Power Rating at 70°C	8 W (1 mΩ) 6 W (2 mΩ) 5 W (3 mΩ) 4 W (4 mΩ) 3 W (5 mΩ)			
Maximum Current ⁽¹⁾	89 A			
Tolerance	±0.5%, ±1%, ±5%			
Temperature Coefficient Max. (-55°C to +170°C, 20°C Ref.)	±25 ppm/°C			
Operating Temperature Range	-55°C to +170°C.			
Maximum Working Voltage	(P × R) ^{1/2}			

Notes

⁽¹⁾ Maximum current for a given resistance value is calculated using $I = \sqrt{P/R}$


Land Pattern Dimensions in millimeters						
MODEL	RESISTANCE RANGE (mΩ)	а	С	b		
CSM3920R15	1 to 5	5.6 ± 0.1	2.7 ± 0.2	6.2 ± 0.2		

Test	Test Method	Standards	Typical	Max.	
High Temperature	1000h@+170°C, unpowered	AEC-Q200 TEST 3	△R≤±0.5%	△R≤±1.0%	
Storage		MIL-STD-202 Method 108	△NC.U±2/10	△N≥±1.U%	
	-55°C, 15min~ambient				
Thermal Shock	temperature<20s~+155°C, 15min,	AEC-Q200 TEST 16	△R≤±0.1%	△R≤±0.5%	
	1000 cycles	MIL-STD-202 Method 107			
Bias Humidity	+85°C, 85%RH, powered no less than	AEC-Q200 TEST 7	△R≤±0.2%	△R≤±0.5%	
	10% rated power for 1000h	MIL-STD-202 Method 103			
	2000h @ +70°C, rated power, 90min	AFC 0200 TEST 9			
Load Life	on, 30min off	AEC-Q200 TEST 8 MIL-STD-202 Method 108	△R≤±0.5%	△R≤±1.0%	
	+70°C refers to terminal temperature	WILL STD ZOZ WIEUTOU 100			
	Immerse in solvent for 3 min and			•	
Resistance to Solvent	wipe 10 times. Three cycles of three	AEC-Q200 TEST 12	Clear marking.		
	solvents. Dry at ambient	MIL-STD-202 Method 215	No visible damage		
	temperature after cleaning Half Sine Wave, peak acceleration				
Mechanical shock	100g's, pulse duration 6ms, 3 times	AEC-Q200 TEST 13			
	in each of six directions, on three	MIL-STD-202 Method 213	△R≤±0.05%	△R≤±0.2%	
	different axes				
	10-2KHz, 5g's, 20min/cycle, 12 cycles	AEC-Q200 TEST 14			
Vibration	in each directions of X Y Z	MIL-STD-202 Method 204	△R≤±0.05%	△R≤±0.2%	
Resistance to		AEC-Q200 TEST 15			
Solder Heat	+260°C tin bath for 10s	MIL-STD-202 Method 210	△R≤±0.2%	△R≤±0.5%	
	+			l	
Solderability	+245°C tin bath for 3s	AEC-Q200 TEST 18	No visible damage		
Solderability	1245 C till bath 101 33	IEC 60115-1 4.17	95% minimum coverage		
TCR	-55°C and +170°C, +20°C Ref.	AEC-Q200 TEST 19	Max. value ± 25ppm/°C		
	,	IEC 60115-1 4.8			
		450 0000 TSS 5 5			
Substrate Bending	2mm. Duration: 60s	AEC-Q200 TEST 21	△R≤±0.01%	△R≤±0.1%	
		AEC-Q200-005			
Short time Overload	5x rated voltage, 5s	IEC 60115-1 4.13	△R≤±0.1%	△R≤±0.5%	
Low Temperature	-55°C, unpowered for 1h, load rated				
Operation	power for 45min, unpowered for	IEC 60068-2-14.36	△R≤±0.1%	△R≤±0.5%	
- I- 2:	15min				
	Apply T=24 h/cycle, zero power,				
Moisture Resistance	method 7a and 7b are not required	MIL-STD-202 Method 106	△R≤±0.1%	△R≤±0.5%	
Low Temperature					
Storage	-55°C for 96h, unpowered	IEC 60068-2-1	△R≤±0.1%	△R≤±0.5%	

5

Legal Disclaimer Notice

Vishay Precision Group, Inc.

Disclaimer

ALL PRODUCTS. PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Vishay Precision Group, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "VPG"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

The product specifications do not expand or otherwise modify VPG's terms and conditions of purchase, including but not limited to, the warranty expressed therein.

VPG makes no warranty, representation or guarantee other than as set forth in the terms and conditions of purchase. To the maximum extent permitted by applicable law, VPG disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Information provided in datasheets and/or specifications may vary from actual results in different applications and performance may vary over time. Statements regarding the suitability of products for certain types of applications are based on VPG's knowledge of typical requirements that are often placed on VPG products. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. You should ensure you have the current version of the relevant information by contacting VPG prior to performing installation or use of the product, such as on our website at vpgsensors.com.

No license, express, implied, or otherwise, to any intellectual property rights is granted by this document, or by any conduct of VPG.

The products shown herein are not designed for use in life-saving or life-sustaining applications unless otherwise expressly indicated. Customers using or selling VPG products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify VPG for any damages arising or resulting from such use or sale. Please contact authorized VPG personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Copyright Vishay Precision Group, Inc., 2014. All rights reserved.

Document No.: 63999 Revision: 15-Jul-2014 1