- FLE�ON

FLE ON Industrial microSD 3.0 Read-Only Mode (ROM) MLC

Version 1.1

Address: 28 Genting Ln, #09-03/04/05 Platinum 28, Singapore 349585 Tel: +65-6493 5035 Fax: +65-6493 5037 Website: http://www.flexxon.com Email: flexxon@flexxon.com

- FLE�ON

TABLE OF CONTENTS

1.	GEN	IERAL DESCRIPTION	1
	1.1	Introduction	.1
	1.2	Product Overview	.2
	1.3	Workflow	.3
2.	PRC	DUCT SPECIFICATIONS	4
	2.1	Performance	.4
	2.2	Power	.4
	2.3	MTBF	.4
3.	ENV	IRONMENTAL SPECIFICATIONS	5
4.	ELE	CTRICAL SPECIFICATIONS	6
	4.1	DC Characteristics	.6
		4.1.1 Bus Operation Conditions for 3.3V Signaling	
	4	4.1.2 Bus Signal Line Load	7
	4.2	AC Characteristic	.8
		4.2.1 microSD Interface timing (Default)	
		4.2.2 microSD Interface Timing (High-Speed Mode)	
		4.2.3 microSD Interface timing (SDR12, SDR25, SDR50 and SDR104 Modes)1	
_		4.2.4 microSD Interface timing (DDR50 Modes) 1	
5.	PAL	ASSIGNMENT1	4
6.	REG	ISTERS1	4
7.	РНҮ	SICAL DIMENSION1	4
8.	ORE	DERING INFORMATION1	4

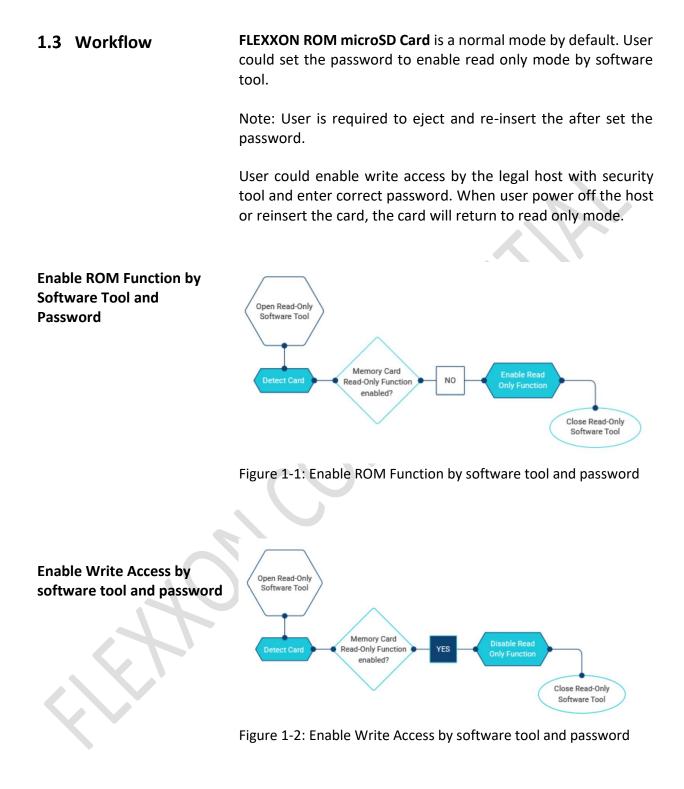
1. GENERAL DESCRIPTION

1.1 Introduction

The Read-Only Mode is highly effective in a memory device to ensure data security. Read-Only mode provides a tamper-proof data storage solution by making it unalterable and the crucial files remain safe.

FLEXXON Read Only Mode (ROM) microSD Card provides security function to prevent the stored data from being stolen, tampered or modified by others. Once you activate the Read-Only mode into the memory card, all the stored data enables access for reading only. None can change, delete, or overwrite anything from the stored data. So, you can preserve the authenticity of the essential files into the memory card and prohibit it from the risk of alteration. Write access could only be enabled by authorized user with specific tool and correct password.

FLEXXON ROM microSD Card plays an important role in various applications where ensuring data authenticity is extremely important. For example, in medical and healthcare facilities, financial institutes, business organizations, the cybersecurity industry, etc. will be beneficial by utilizing Read-Only Mode memory card.


The read only mode is an additional feature, which will not affect the standard product specification.

1.2 Product Overview

•	Flash MLC	•	Support SD System Specification 3.0
•	Capacity 4GB to 128GB	•	Support SD SPI Mode
٠	Support Data Encryption	•	Support Auto Read Refreshment
•	Read disturbance management	•	Adaptive wear leveling
•	Support management of sudden power fails	٠	SMART function support
•	Temperature Range Operation (Gold): -25°C ~ 85°C Operation (Diamond): -40°C ~ 85°C Storage: -40°C ~ 85°C		

2. PRODUCT SPECIFICATIONS

2.1 Performance

Capacity	Sequ	Sequential						
	Read (MB/s)	Write (MB/s)						
4GB	90	25						
8GB	90	25						
16GB	90	50						
32GB	90	75						
64GB	90	80						
128GB	90	80						

Table 2-1 Performance of ROM microSD

NOTES:

- 1. The performance is obtained from TestMetrix
- 2. Performance may vary from flash configuration and platform.

2.2 Power

Capacity	Read (mA)	Write (mA)	Standby (uA)
4GB	180	90	220
8GB	180	90	220
16GB	190	120	250
32GB	190	140	280
64GB	190	170	320
128GB	195	170	500

Table 2-2 Typical Power Consumption of ROM microSD

2.3 MTBF

MTBF, an acronym for Mean Time Between Failures, is a measure of a device's reliability. Its value represents the average time between a repair and the next failure. The higher the MTBF value, the higher the reliability of the device. The predicted result of ROM microSD Card is more than 3,000,000 hours.

3. ENVIRONMENTAL SPECIFICATIONS

Test Items	Test Conditions				
Storage Temperature	-40°C ~ 85°C				
Operating Temperature	Gold: -25°C ~ 85°C Diamond: -40°C ~ 85°C				
Storage Humidity	40°C, 93% RH				
Operating Humidity	25°C, 95% RH				
Shock	1500G, Half Sin Pulse Duration 0.5ms				
Vibration	80Hz ~ 2000Hz/20G, 20Hz ~ 80Hz/1.52mm, 3 axis/30min				
Drop	150cm free fall, 6 face of each unit				
Bending	≥ 10N, Hold 1 min/5 times				
Torque	0.1N-m or +/-2.5 deg, Hold 30 seconds/5 times				
ESD	Contact: +/- 4KV each item 25 times Air: +/- 8KV 10 times				

Table 3-1 Environmental Specification

4. ELECTRICAL SPECIFICATIONS

4.1 DC Characteristics

4.1.1 Bus Operation Conditions for 3.3V Signaling

Parameter	Symbol	Min.	Max	Unit	Condition
Supply Voltage	V_{DD}	2.7	3.6	V	
Output High Voltage	V _{OH}	0.75*V _{DD}		V	I _{OH} =-2mA V _{DD} Min
Output Low Voltage	V _{OL}		0.125*V _{DD}	V	I_{OL} =2mA V_{DD} Min
Input High Voltage	VIH	0.625*V _{DD}	V _{DD} +0.3	V	
Input Low Voltage	VIL	V _{SS} -0.3	0.25*V _{DD}	V	
Power Up Time			250	ms	From OV to V_{DD} min

Table 4-1 Threshold Level for High Voltage Range

Parameter	Symbol	Min.	Max	Unit	Condition		
Supply Voltage	V_{DD}	2.7	3.6	V			
Regulator Voltage	V _{DDIO}	1.7	1.95	V	Generated by V_{DD}		
Output High Voltage	V _{OH}	1.4	-	V	I _{OH} =-2mA		
Output Low Voltage	Vol	-	0.45	V	I _{OL} =2mA		
Input High Voltage	ViH	1.27	2.00	V			
Input Low Voltage	V _{IL}	V _{ss} -0.3	0.58	V			

Table 4-2 Threshold Level for 1.8V Signaling

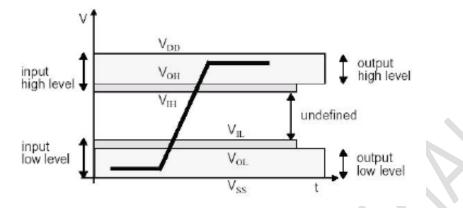
Parameter	Symbol	Min	Max.	Unit	Remarks
Input Leakage Current		-2	2	uA	DAT3 pull-up is disconnected.

Table 4-3 Input Leakage Current for 1.8V Signaling

Parameter	Symbol	Min	Max.	Unit	Remarks			
Peak voltage on all lines		-0.3	V _{DD} +0.3	V				
	All Inputs							
Input Leakage Current		-10	10	uA				
All Outputs								
Output Leakage Current		-10	10	uA				

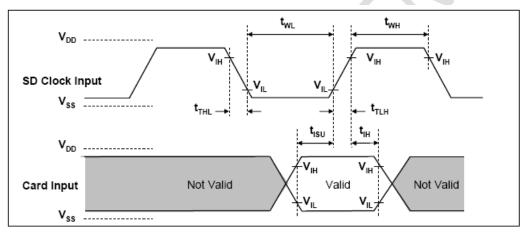
Table 4-4 Peak Voltage and Leakage Current

4.1.2 Bus Signal Line Load

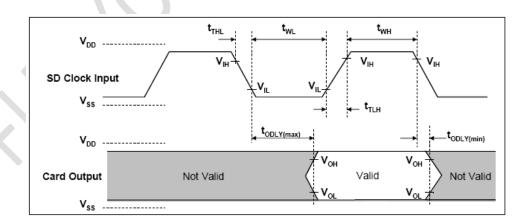

Bus Operation Conditions – Signal Line's Load

Total Bus Capacitance = C_{HOST} + C_{BUS} + N C_{CARD}

Parameter	symbol	Min	Max	Unit	Remark
Pull-up resistance	R _{CMD}	10	100	kΩ	to prevent bus floating
	R _{DAT}				
Total bus capacitance for each	CL		40	рF	1 card
signal line					С _{ноsт} +С _{виs} shall
					not exceed 30 pF
Card Capacitance for each signal	CCARD		10 ¹	рF	
pin					
Maximum signal line inductance			16	nH	
Pull-up resistance inside card	R _{DAT3}	10	90	kΩ	May be used for card
(pin1)					detection
Capacity Connected to Power	Cc		5	uF	To prevent inrush current
Line					


Table 4-5 Peak Voltage and Leakage Current

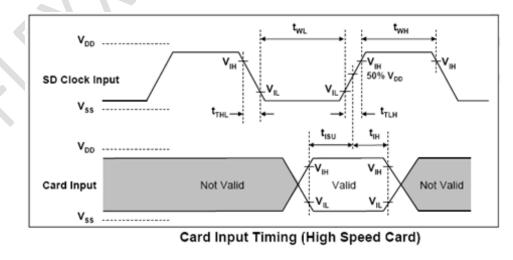
4.2 AC Characteristic

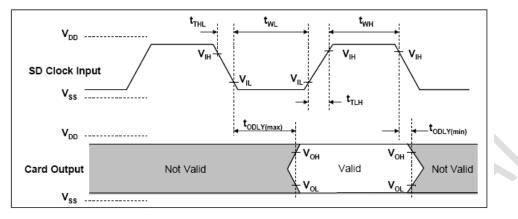


...

4.2.1 microSD Interface timing (Default)

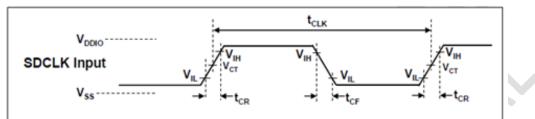
Card Input Timing (Default Speed Card)


Card Output Timing (Default Speed Mode)


Parameter	Symbol	Min	Max	Unit	Remark			
Clock CLK (Al			to min(V _{IH}) a					
Clock frequency Data	f _{PP}	0	25	MHz	C _{card} ≤ 10 pF			
Transfer Mode					(1 card)			
Clock frequency	f _{OD}	0(1)/100	400	KHz	C _{card} ≤ 10 pF			
Identification Mode					(1 card)			
Clock low time	t_{WL}	10		ns	C _{card} ≤ 10 pF			
					(1 card)			
Clock high time	t _{wн}	10		ns	C _{card} ≤ 10 pF			
					(1 card)			
Clock rise time	t _{TLH}		10	ns	C _{card} ≤ 10 pF			
					(1 card)			
Clock fall time	t_{THL}		10	ns	C _{card} ≤ 10 pF			
					(1 card)			
Inj	puts CMD, I	DAT (refer	enced to CL	к)				
Input set-up time	t _{ISU}	5		ns	$C_{card} \le 10 \text{ pF}$			
					(1 card)			
Input hold time	t _{IH}	5		ns	C _{card} ≤ 10 pF			
					(1 card)			
Out	Outputs CMD, DAT (referenced to CLK)							
Output Delay time during	todly	0	14	ns	C _L ≤ 40 pF			
Data Transfer Mode					(1 card)			
Output Delay time during	todly	0	50	ns	C∟≤ 40 pF			
Identification Mode					(1 card)			

(1) OHz means to stop the clock. The given minimum frequency range is for cases where continues clock is required.

4.2.2 microSD Interface Timing (High-Speed Mode)

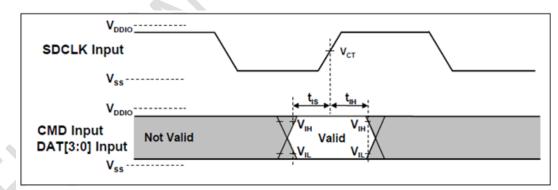

Card Output	Timina	(Default	Speed	Mode)
eara eacpac		(Doladic	epoou	moucy

Parameter	Symbol	Min	Max	Unit	Remark
Clock CLK (All va	-				Kemark
Clock frequency Data Transfer	f _{PP}	0	50	MHz	C _{card} ≤ 10 pF
Mode	144	U	50	101112	(1 card)
Clock low time	t _{WL}	7	-	ns	C _{card} ≤ 10 pF
clock low time	CVVL			115	(1 card)
Clock high time	twн	7		ns	$C_{card} \le 10 \text{ pF}$
Clock high time	ιwh	/		115	(1 card)
Clock rise time	t _{TLH}		3	ns	$C_{card} \le 10 \text{ pF}$
CIOCK HSe time	UTLH		5	115	-
Clock fall time	+		3	nc	(1 card)
CIOCK TAIL LITTLE	t _{THL}		5	ns	$C_{card} \le 10 \text{ pF}$
	CAAD DAT	1			(1 card)
	SCMD, DAT	-	ed to CLK)		
Input set-up time	tisu	6		ns	$C_{card} \le 10 \text{ pF}$
					(1 card)
Input hold time	t _{IH}	2		ns	$C_{card} \le 10 \text{ pF}$
					(1 card)
Output	ts CMD, DA	Г (referenc	ed to CLK)		
Output Delay time during Data	t _{ODLY}		14	ns	C _L ≤ 40 pF
Transfer Mode					(1 card)
Output Hold time	Т _{он}	2.5		ns	C _L ≤ 15 pF
					(1 card)
Total System capacitance of	CL		40	рF	CL ≤ 15 pF
each line ¹				-	(1 card)

(1) In order to satisfy severe timing, the host shall drive only one card.

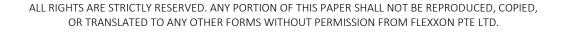
4.2.3 microSD Interface timing (SDR12, SDR25, SDR50 and SDR104 Modes)

Input:

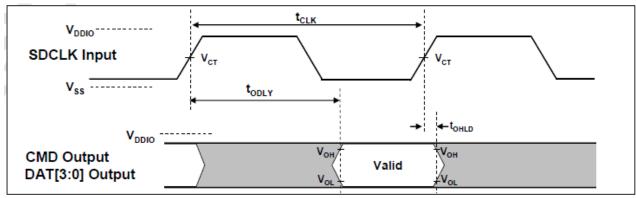


Clock Signal Timing

Symbol	Min	Max	Unit	Remark
tсıк	4.80	-	ns	208MHz (Max.), Between rising edge, V _{CT} = 0.975V
t _{CR} , t _{CF}	-	0.2* t _{CLK}	ns	t _{CR} , t _{CF} < 0.96ns (max.) at 208MHz, C _{CARD} =10pF t _{CR} , t _{CF} < 2.00ns (max.) at 100MHz, C _{CARD} =10pF The absolute maximum value of t _{CR} , t _{CF} is 10ns regardless of clock frequency
Clock Duty	30	70	%	

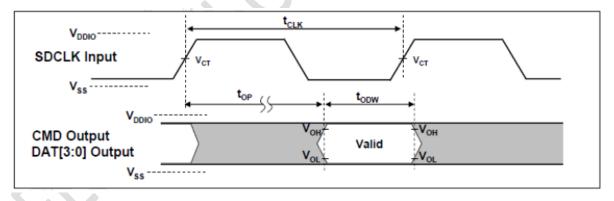

Clock Signal Timing

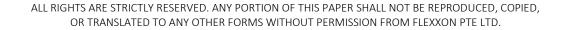
SDR50 and SDR104 Input Timing:



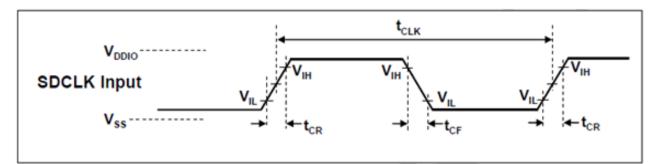
Card Input Timing

Symbol	Min	Max	Unit	SDR104 Mode
tıs	1.40	-	ns	C _{CARD} =10pF, V _{CT} = 0.975V
t _{ін}	0.8	-	ns	C _{CARD} = 5pF, V _{CT} = 0.975V
Symbol	Min	Max	Unit	SDR50 Mode
tıs	3.00	-	ns	C _{CARD} =10pF, V _{CT} = 0.975V
t _{IH}	0.8	-	ns	C _{CARD} = 5pF, V _{CT} = 0.975V

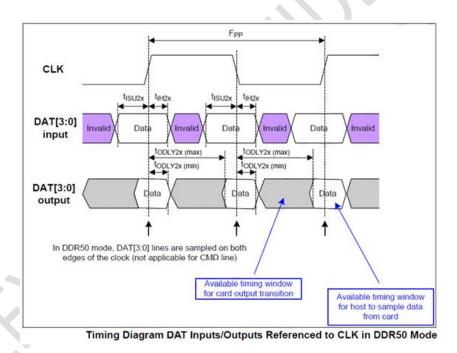

Output (SDR12, SDR25, SDR50):


Output Timing of Fixed Data Window

Min	Max	Unit	Remark
-	7.5	ns	t _{CLK} >=10.0ns, C _L =30pF, using driver Type B, for SDR50
-	14	ns	t_{CLK} >=20.0ns, C _L =40pF, using driver Type B, for SDR25
			and SDR12,
1.5	-	ns	Hold time at the t _{ODLY} (min.), C _L =15pF
	-	- 7.5 - 14	- 7.5 ns - 14 ns


Output (SDR104 Mode):

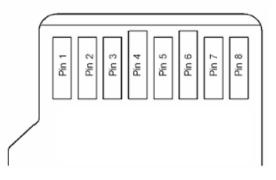
Symbol	Min	Max	Unit	Remark
t _{op}	0	2	UI	Card Output Phase
$\triangle t_{OP}$	-350	+1550	ps	Delay variable due to temperature change after tuning
t _{odw}	0.60	-	UI	t _{ODW} = 2.88ns at 208MHz



4.2.4 microSD Interface timing (DDR50 Modes)

Clock Signal Timing

Symbol	Min	Max	Unit	Remark
t _{ськ}	20	-	ns	50MHz (Max.), Between rising edge
t _{CR} , t _{CF}	-	0.2* t _{CLK}	ns	t_{CR} , t_{CF} < 4.00ns (max.) at 50MHz, C_{CARD} =10pF
Clock Duty	45	55	%	



Parameter	Symbol	Min	Max	Unit	Remark			
In	Input CMD (referenced to CLK rising edge)							
Input set-up time	tisu	3	-	ns	C _{card} ≤ 10 pF			
					(1 card)			
Input hold time	t _{IH}	0.8	-	ns	C _{card} ≤ 10 pF			
					(1 card)			
Ou	tput CMD (ref	erenced	d to CLK risir	ng edge)				
Output Delay time	t _{odly}		13.7	ns	C _L ≤ 30 pF			
during Data Transfer					(1 card)			
Mode								
Output Hold time	Т _{он}	1.5	-	ns	C∟≥ 15 pF			
					(1 card)			
Inputs D	DAT (reference	d to CLI	K rising and	falling edge	s)			
Input set-up time	t _{ISU2x}	3	-	ns	C _{card} ≤ 10 pF			
					(1 card)			
Input hold time	t _{IH2x}	0.8	-	ns	C _{card} ≤ 10 pF			
					(1 card)			
Outputs DAT (referenced to CLK rising and falling edges)								
Output Delay time	todly2x	-	7.0	ns	C∟≤ 25 pF			
during Data Transfer					(1 card)			
Mode								
Output Hold time	T _{OH2x}	1.5	-	ns	C∟≥ 15 pF			
					(1 card)			

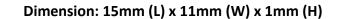
Table 4-6 Bus Timings – Parameters Values (DDR50 Mode)

5. PAD ASSIGNMENT

		SD M	ode		SPI N	Лode
Pin #	Name	Type ¹	Description	Name	Туре	Description
1	DAT2	I/O/PP	Data Line[bit2]	RSV		
2	CD/DAT3 ²	I/O/PP ³	Card Detect/ Data Line[bit3]	CS	³	Chip Select (neg true)
3	CMD	PP	Command/Response	DI	Ι	Data In
4	V_{DD}	S	Supply voltage	V _{DD}	S	Supply voltage
5	CLK	I	Clock	SCLK	I	Clock
6	V _{SS}	S	Supply voltage ground	V _{SS}	S	Supply voltage ground
7	DAT0	I/O/PP	Data Line[bit0]	DO	O/PP	Data Out
8	DAT1	I/O/PP	Data Line[bit1]	RSV		

Table 5-1 microSD Pad Assignment

NOTE:


- (1) S: power supply, I: input; O: output using push-pull drivers; PP: I/O using push-pull drivers
- (2) The extended DAT lines (DAT1-DAT3) are input on power up. They start to operate as DAT lines after SET_BUS_WIDTH command. The Host shall keep its own DAT1-DAT3 lines in input mode, as well, while they are not used. It is defined so, in order to keep compatibility to MultiMedia Cards.
- (3) At power up this line has a 50KOhm pull up enabled in the card. This resistor serves two functions: Card detection and Mode Selection. For Mode Selection, the host can drive the line high or let it be pulled high to select SD mode. If the host wants to select SPI mode it should drive the line low. For Card detection, the host detects that the line is pulled high. This pull-up should be disconnected by the user during regular data transfer period, with SET_CLR_CARD_DETECT (ACMD42) command.

6. REGISTERS

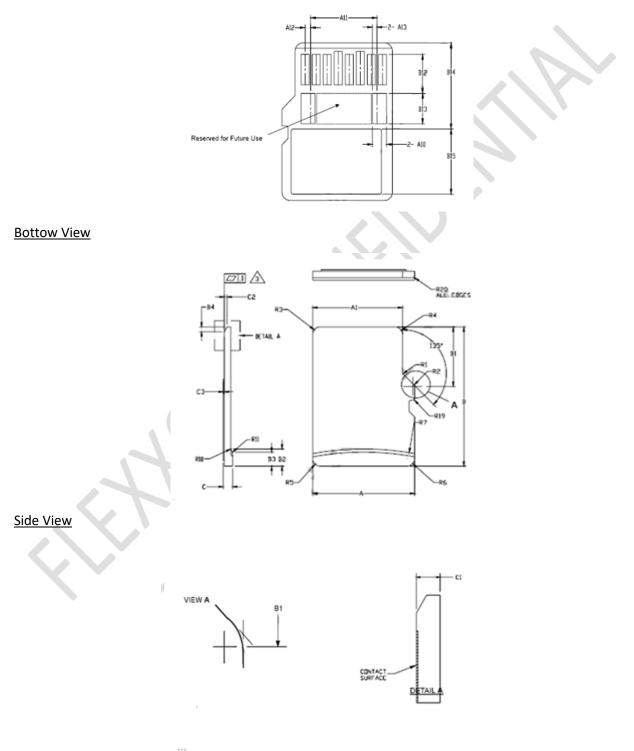

Name	Width	Description	
CID	128bit	Card identification number; card individual number for identification.	
RCA	16bit	Relative card address; local system address of a card, dynamically suggested by the card and approved by the host during initialization.	
DSR	16bit	Driver Stage Register; to configure the card's output drivers.	
CSD	128bit	Card Specific Data; Information about the card operation conditions.	
SCR	64bit	SD Configuration Register; Information about the SD Memory Card's Special Features capabilities	
OCR	32bit	Operation conditions register.	
SSR	512bit	SD Status; Information about the card proprietary features.	
OCR	32bit	Card Status; Information about the card status.	

Table 6-1 microSD Registers

7. PHYSICAL DIMENSION

Top View

	Com	mon Dimen	sions	
Symbol	Min	Nom	Max	Note
A	10.90	11.00	11.10	
A1	9.60	9.70	9.80	
A2	-	3.85	-	Basic
A3	7.60	7.70	7.80	
A4	-	1.10	-	Basic
A5	0.75	0.80	0.85	
A6	-	-	8.50	
A7	0.90	-	-	
A8	0.60	0.70	0.80	
A9	0.80	-	-	
A10	1.35	1.40	1.45	
A11	6.50	6.60	6.70	
A12	0.50	0.55	0.60	
A13	0.40	0.45	0.50	
B	14.90	15.00	15.10	
B1	6.30	6.40	6.50	
B2	1.64	1.84	2.04	
B3	1.30	1.50	1.70	
B3	0.42	0.52	0.62	
B5	2.80	2.90	3.00	
B6	5.50	2.50		
B7	0.20	0.30	0.40	
B8	1.00	1.10	1.20	
B9	1.00	-	9.00	
B10	7.60	7.90	8.00	
B10 B11	1.10	1.20	1.30	
B11 B12	3.60	3.70	3.80	
B12 B13	2.80	2.90	3.00	
B13 B14	8.20	2.90	5.00	
	6.20	-	6.20	
B15	0.90	- 1.00		
C		1.00	1.10	
C1 C2	0.60	0.70	0.80	
	0.20	0.30	0.40	
C3	-	-	0.15	
D1	1.00	-	-	
D2	1.00	-	-	
D3	1.00		-	
R1	0.20	0.40	0.60	
R2	0.20	0.40	0.60	
R3	0.70	0.80	0.90	
R4	0.70	0.80	0.90	
R5	0.60	0.80	0.90	
R6	0.60	0.80	0.90	
R7	29.50	30.00	30.50	
R10	-	0.20	-	
R11	-	0.20	-	
R17	0.10	0.20	0.30	
R18	0.20	0.40	0.60	
R19	0.05	-	0.20	
R20	0.02	-	0.15	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M-1994

2. Dimensions are in millimeters.

3. Coplanarity is additive to C1 Max. thickness

8. ORDERING INFORMATION

Capacity	MPN (Diamond Grade)	MPN (Gold Grade)
4GB	FDMM004GME-XR00	FDMM004GMG-XR00
8GB	FDMM008GME-XR00	FDMM008GMG-XR00
16GB	FDMM016GME-XR00	FDMM016GMG-XR00
32GB	FDMM032GME-XR00	FDMM032GMG-XR00
64GB	FDMM064GME-XR00	FDMM064GMG-XR00
128GB	FDMM128GME-XR00	FDMM128GMG-XR00

REVISION HISTORY

Revision	Date	History
1.0	2020/11	First Release
1.1	2021/01	Update Chapter 1 and Ordering Information