

Breakout board embedding the VL53L4ED Time-of-Flight high-accuracy proximity sensor with extended temperature capability

Features

- VL53L4ED Time-of-Flight high accuracy proximity sensor with extended temperature capability
- High-performance proximity ranging, independent of the target size and reflectance
- From 0 to 1300 mm with full field of view (FoW)
- Effective sensor temperature range of -40°C to 105°C
- Up to 400 mm ranging under 100 klux
- Short distance linearity down to 1 mm
- Divisible board that can be used as a mini-PCB breakout board, easy to integrate into the customer's device
- · Two breakout boards available in the package
- Compatible with X-NUCLEO-53L4A3

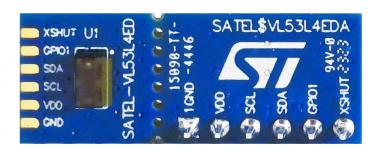
Description

The SATEL-VL53L4ED package includes two breakout boards, which can be easily integrated into the customer's devices.

The PCB section that embeds the VL53L4ED module is perforated. The developers can then break off the mini-PCB and use it in a 3.3 V supply application via flying wires.

This makes it easier to integrate the SATEL-VL53L4ED breakout boards into the development and evaluation devices thanks to their small size.

Note that the evaluation boards shall be tested exclusively under normal temperature conditions, the SATEL-VL53L4ED board is not rated for high temperature operation.


	Product summary		
em VL of- acc ser ext	eakout board abedding the 53L4ED Time- Flight high- curacy proximity asor with tended aperature pability	SATEL-VL53L4ED	
sei bo VL	ne-of-Flight high- curacy proximity nsor expansion ard based on the 53L4ED for M32 Nucleo	X-NUCLEO-53L4A3	
ac	ne-of-Flight high- curacy proximity nsor	VL53L4ED	
Ар	plications	Robotics and Industrial applications	

1 Breakout boards

You can break the breakout boards along the perforations to use the mini-PCB.

Figure 1. Breakout board

This setup is easier to integrate into a customer's device thanks to its small form factor.

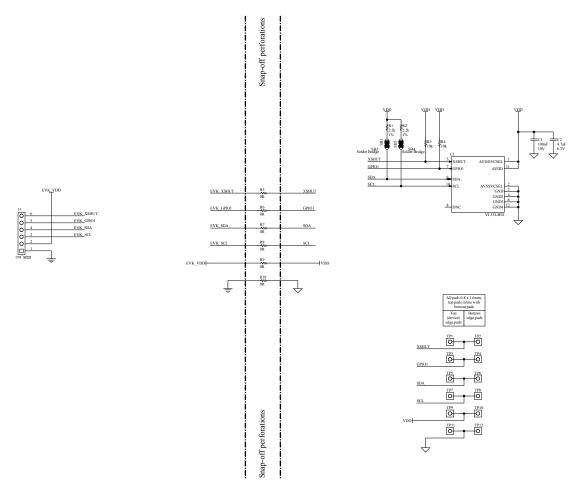
You can plug the VL53L4ED breakout boards directly onto the X-NUCLEO-53L4A3 expansion board through two six-pin connectors (see Figure 2), or connect them to the board through flying wires (see Figure 3).

Figure 2. SATEL-VL53L4ED breakout boards connected to the X-NUCLEO-53L4A3 expansion board

DB5080 - Rev 1 page 2/8

Figure 3. SATEL-VL53L4ED mini-PCB flying wire connection to the X-NUCLEO-53L4A3 expansion board

DB5080 - Rev 1 page 3/8


2 Simplified schematic

SATEL-VL53L4ED Header EVK_XSHUT SDA EVK_GPIO1 XSHUT U1 SCL EVK_SDA 3.3V GPIO1 VL53L4ED EVK_SCL GND EVK_VDD GND

Figure 4. SATEL-VL53L4ED simplified schematic

DB5080 - Rev 1 page 4/8

Figure 5. SATEL-VL53L4ED circuit schematic

4 Board versions

Table 1. SATEL-VL53L4ED versions

Finished good	Schematic diagrams	Bill of materials
SATEL\$VL53L4EDA (1)	SATEL\$VL53L4EDA schematic diagrams	SATEL\$VL53L4EDA bill of materials

^{1.} This code identifies the SATEL-VL53L4ED expansion board first version.

DB5080 - Rev 1 page 6/8

Revision history

Table 2. Document revision history

Date	Revision	Changes
12-Sep-2023	1	Initial release.

DB5080 - Rev 1 page 7/8

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics – All rights reserved

DB5080 - Rev 1 page 8/8