Rev. 1 — 20 February 2024

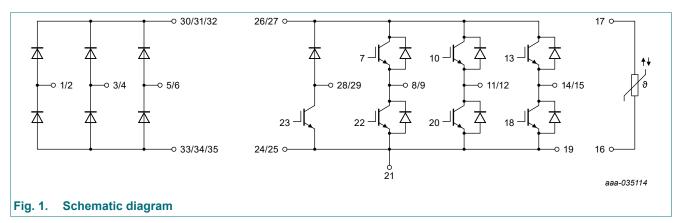
Product data sheet

1. General description

IGBT power module provides ultra-low conduction loss as well as short circuit ruggedness. They are designed for applications such as inverters for motor drivers and servo drivers.

2. Features and benefits

- Low switching losses and low saturation voltage V_{CE(sat)}
- 10 µs short circuit capability
- V_{CE(sat)} with positive temperature coefficient
- Maximum junction temperature 175 °C
- · Low stray inductance package
- · Fast and soft reverse recovery anti-parallel free-wheeling diode
- RoHS compliant product
- · Integrated NTC thermistor temperature sensor


3. Applications

- · Inverter for motor drivers and servo drivers
- · AC/DC servo drive amplifier

4. Ordering information

Table 1. Ordering information

Type number	Package		
	Name	Description	Version
NP100T12P2T3	NP2-35P	plastic house; through hole solderable pin with copper baseplate; 35 pins; 62.5 mm × 122.5 mm × 17 mm body	SOT8053-1

5. Limiting values

Table 2. IGBT

					_
Symbol	Parameter	Conditions	Min	Max	Unit
Inverter					
V _{CES}	collector-emitter voltage	T _j = 25 °C	-	1200	V
I _C	DC collector current	T _{case} = 100 °C; T _{jmax} = 175 °C	-	100	Α
I _{CRM}	repetitive peak collector current	t _p = 1 ms	-	200	Α
V_{GES}	gate to emitter voltage		-	±20	V
Brake-ch	opper				
V _{CES}	collector-emitter voltage	T _j = 25 °C	-	1200	V
I _C	DC collector current	T _{case} = 100 °C; T _{jmax} = 175 °C	-	50	Α
I _{CRM}	repetitive peak collector current	t _p = 1 ms	-	100	Α
V _{GES}	gate to emitter voltage		-	±20	V

Table 3. Diode

Symbol	Parameter	Conditions	Min	Max	Unit
Inverter					
V_{RRM}	repetitive peak reverse voltage	T _j = 25 °C	-	1200	V
I _F	continuous DC forward current	T _{case} = 100 °C; T _{jmax} = 175 °C	-	100	Α
I _{FRM}	repetitive peak forward current	t _p = 1 ms	-	200	Α
l ² t	l ² t-value	$V_R = 0 \text{ V}; t_p = 10 \text{ ms}; T_j = 125 ^{\circ}\text{C}$	-	1795	A ² s
		$V_R = 0 \text{ V}; t_p = 10 \text{ ms}; T_j = 150 \text{ °C}$	- 1200 - 100 - 200 - 1795 - 1488 - 1600 - 100 - 100 - 1272 - 983 - 8099 - 4840 - 1200	A ² s	
Rectifier			'		
V_{RRM}	repetitive peak reverse voltage	T _j = 25 °C	-	1600	V
I _{FRMSM}	maximum RMS forward current per chip	T _{case} = 100 °C	-	100	Α
I _{RMSM}	maximum RMS forward current at rectifier output	T _{case} = 100 °C	-	100	Α
I _{FSM}	surge forward current	t _p = 10 ms; T _j = 25 °C	-	1272	Α
		t _p = 10 ms; T _j = 150 °C	-	983	Α
l ² t	l ² t-value	t _p = 10 ms; T _j = 25 °C	-	8099	A ² s
		t _p = 10 ms; T _j = 150 °C	-	4840	A ² s
Brake-ch	opper		•	•	
V_{RRM}	repetitive peak reverse voltage	T _j = 25 °C	-	1200	V
I _F	continuous DC forward current	T _{case} = 100 °C; T _{jmax} = 175 °C	-	50	Α
I _{FRM}	repetitive peak forward current	t _p = 1 ms	-	100	Α
l ² t	l ² t-value	$V_R = 0 \text{ V}; t_p = 10 \text{ ms}; T_j = 125 \text{ °C}$	-	360	A ² s
		$V_R = 0 \text{ V}; t_p = 10 \text{ ms}; T_i = 150 \text{ °C}$	-	336	A ² s

6. Thermal characteristics

Table 4. Thermal characteristics

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
R _{th(j-c)}	thermal resistance	per IGBT	inverter	-	-	0.26	K/W
	from junction to case		brake-chopper	-	-	0.48	K/W
		per diode	inverter	-	-	0.45	K/W
			rectifier	-	-	0.36	K/W
			brake-chopper	-	-	1.2	K/W

7. Electrical characteristics

Table 5. IGBT

 T_i = 25 °C unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Inverter							
BV _{CES}	collector-emitter breakdown voltage	V _{GE} = 0 V; I _C = 1 mA		1200	-	-	V
I _{CES}	collector-emitter cutoff current	$V_{GE} = 0 \text{ V}; V_{CE} = V_{CES}$		-	-	1	mA
I _{GES}	gate leakage current	V _{CE} = 0 V; V _{GE} = V _{GES}		-	-	±500	nA
$V_{GE(th)}$	gate emitter threshold voltage	V _{CE} = 10 V; I _C = 3.8 mA		5	6.0	6.8	V
R _G	internal gate resistor	f = 1 MHz		-	9.1	-	Ω
V _{CE(sat)}	collector-emitter	I _C = 100 A; V _{GE} = 15 V	T _j = 25°C	-	1.65	1.95	V
	saturation voltage		T _j = 125°C	-	1.8	-	V
			T _j = 150°C	-	1.85	-	V
C _{ies}	input capacitance			-	8.2	-	nF
C _{oes}	output capacitance	$V_{GE} = 0 \text{ V}; V_{CE} = 25 \text{ V};$		-	1.51	-	nF
C _{res}	reverse transfer capacitance	= 100 kHz		-	0.29	-	nF
Qg	total gate charge	V _{CC} = 960 V; I _C = 100 A; V _{GE} = ±15 V		-	0.57	-	μC
t _{d(on)}	turn-on delay time		T _j = 25°C	-	122	-	ns
			T _j = 125°C	-	129	-	ns
			T _j = 150°C	-	136	-	ns
t _r	rise time		T _j = 25°C	-	23	-	ns
			T _j = 125°C	-	25	-	ns
		$V_{CC} = 600 \text{ V}; I_C = 100 \text{ A};$	T _j = 150°C	-	26	-	ns
t _{d(off)}	turn-off delay time	V_{GE} = ±15 V; R_{Gon} = 1.5 Ω; R_{Goff} = 1.5 Ω; L_{S} = 50 nH	T _j = 25°C	-	231	-	ns
		3311	T _j = 125°C	-	288	-	ns
			T _j = 150°C	-	304	-	ns
t _f	fall time		T _j = 25°C	-	134	-	ns
			T _j = 125°C	-	215	-	ns
			T _i = 150°C	-	216	-	ns

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
E _{on}	turn-on switching loss	V _{CC} = 600 V; I _C = 100 A;	T _j = 25°C	-	5.3	-	mJ
		$V_{GE} = \pm 15 \text{ V}; R_{Gon} = 1.5 \Omega;$	T _j = 125°C	-	8.7	-	mJ
		$L_S = 50 \text{ nH}; \text{ dI/dt} = 4500 \text{ A/}\mu\text{s}$	T _j = 150°C	-	10	-	mJ
E _{off}	turn-off switching loss	V _{CC} = 600 V; I _C = 100 A;	T _j = 25°C	-	5.1	-	mJ
		$V_{GE} = \pm 15 \text{ V}; R_{Goff} = 1.5 \Omega;$	T _j = 125°C	-	7.7	-	mJ
		$L_S = 50 \text{ nH}; \text{ du/dt} = 5790 \text{ V/}\mu\text{s}$	T _j = 150°C	-	8.8	-	mJ
I _{sc}	short circuit data	V_{GE} = 15 V; V_{CC} = 800 V; T_j = 150 °C; $t_p \le$ 10 µs	T _j = 150°C	-	397	-	А
R _{th(j-c)}	thermal resistance, junction to case	per IGBT		-	-	0.26	K/W
T _{jop}	operating junction temperature			-40	-	150	°C
Brake-cl	hopper		'				'
BV _{CES}	collector-emitter breakdown voltage	V _{GE} = 0 V; I _C = 1 mA		1200	-	-	V
I _{CES}	collector-emitter cutoff current	V _{GE} = 0 V; V _{CE} = V _{CES}		-	-	1	mA
I _{GES}	gate leakage current	V _{CE} = 0 V; V _{GE} = V _{GES}		-	-	±500	nA
$V_{GE(th)}$	gate emitter threshold voltage	V _{CE} = 10 V; I _C = 1.7 mA		5	6.0	6.8	V
R _G	internal gate resistor	f = 1 MHz		-	7.1		Ω
V _{CE(sat)}	collector-emitter	I _C = 50 A; V _{GE} = 15 V	T _j = 25°C	-	1.65	1.95	V
	saturation voltage		T _j = 125°C	-	1.8	-	V
			T _j = 150°C	-	1.85	-	V
C _{ies}	input capacitance			-	3.65	-	nF
C _{oes}	output capacitance	V _{GE} = 0 V; V _{CE} =25 V;		-	0.72	-	nF
C _{res}	reverse transfer capacitance	f = 100 kHz		-	0.12	-	nF
Q _g	total gate charge	V _{CC} = 960 V; I _C = 50 A; V _{GE} = ±15 V		-	0.26	-	μC
t _{d(on)}	turn-on delay time		T _j = 25°C	-	64	-	ns
			T _j = 125°C	-	65	-	ns
			T _j = 150°C	-	67	-	ns
t _r	rise time		T _j = 25°C	-	31	-	ns
			T _j = 125°C	-	66	-	ns
		$V_{CC} = 600 \text{ V}; I_C = 50 \text{ A};$	T _j = 150°C	-	68	-	ns
t _{d(off)}	turn-off delay time	V_{GE} = ±15 V; R _{Gon} = 15 Ω; R _{Goff} = 15 Ω; L _S = 50 nH	T _j = 25°C		147		ns
			T _j = 125°C	-	178	-	ns
			T _j = 150°C	-	187	-	ns
t _f	fall time		T _j = 25°C	-	144	-	ns
			T _j = 125°C	-	196	-	ns
			T _i = 150°C	-	213	-	ns

1200 V, 100 A, Power Integrated Module

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
E _{on}	turn-on switching loss	V _{CC} = 600 V; I _C = 50 A;	T _j = 25°C	-	5.1	-	mJ
		$V_{GE} = \pm 15 \text{ V}; R_{Gon} = 15 \Omega;$	T _j = 125°C	-	7.2	-	mJ
		$L_S = 50 \text{ nH}; \text{ dI/dt} = 1590 \text{ A/}\mu\text{s}$	T _j = 150°C	-	8.2	- II	mJ
E _{off}	turn-off switching loss	V _{CC} = 600 V; I _C = 50 A;	T _j = 25°C	-	1.93	-	mJ
		$V_{GE} = \pm 15 \text{ V}; R_{Goff} = 15 \Omega;$	T _j = 125°C	-	2.59	-	mJ
		$L_S = 50 \text{ nH}; dV/dt = 6040 V/\mu s$	T _j = 150°C	-	2.81	- - - - - - - 0.48	mJ
I _{sc}	short circuit data	V_{GE} = 15 V; V_{CC} = 800 V; T_j = 150 °C; $t_p \le$ 10 µs		-	167	-	Α
R _{th(j-c)}	thermal resistance, junction to case	per IGBT		-	-	0.48	K/W
T _{jop}	operating junction temperature			-40	-	150	°C

Table 6. Diode

 T_i = 25 °C unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Inverter					'		
V _F	forward voltage	I _F = 100 A	T _j = 25°C	-	1.7	2.1	V
			T _j = 125°C	-	1.7	-	V
			T _j = 150°C	-	1.7	-	V
I _{rr}	peak reverse recovery	I _F = 100 A; V _R = 600 V;	T _j = 25°C	-	126	-	Α
	current	-dI _F /dt = 2630 A/us; V _{GE} = -15 V	T _j = 125°C	-	130	-	Α
		VGE13 V	T _j = 150°C	-	132	-	Α
Q _{rr}	reverse recovery charge	I _F = 100 A; V _R = 600 V ;	T _j = 25°C	-	6.48	-	μC
		-dI _F /dt = 2630 A/us; V _{GE} = -15 V	T _j = 125°C	-	12.8	-	μC
		VGE - 10 V	T _j = 150°C	-	15.4	-	μC
t _{rr}	reverse recovery time	I _F = 100 A; V _R = 600 V;	T _j = 25°C	-	344	-	ns
		-dl _F /dt = 2630 A/us; V _{GE} = -15 V	T _j = 125°C	-	515	-	ns
		VGE - 10 V	T _j = 150°C	-	538	-	ns
E _{rec}	reverse recovery energy	I _F = 100 A; V _R = 600 V;	T _j = 25°C	-	1.75	-	mJ
		-dI _F /dt = 2630 A/us; V _{GE} = -15 V	T _j = 125°C	-	4.3	-	mJ
		VGE13 V	T _j = 150°C	-	5.2	-	mJ
R _{th(j-c)}	thermal resistance, junction to case	per diode		-	-	0.45	K/W
T _{jop}	operating junction temperature			-40	-	150	°C
Rectifier							
V _F	forward voltage	I _F = 100 A	T _j = 150°C	-	0.99	-	V
I _R	reverse current	V _R = 1600 V	T _j = 150°C	-	1.5	-	Α
R _{th(j-c)}	Thermal resistance, junction to case	per diode		-	-	0.36	K/W
T _{jop}	operating junction temperature			-40	-	150	°C

1200 V, 100 A, Power Integrated Module

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Brake-ch	nopper						
V _F	forward voltage	I _F = 50 A	T _j = 25°C	-	1.74	2.1	V
			T _j = 125°C	-	1.88	-	V
			T _j = 150°C	-	1.86	-	V
I _{rr}	peak reverse recovery	I _F = 50 A; V _R = 600 V ;	T _j = 25°C	-	17	-	Α
	current	-dl _F /dt = 1510 A/us; V _{GE} = -15 V	T _j = 125°C	-	20	-	Α
		VGE13 V	T _j = 150°C	-	20	-	Α
Q _{rr}	reverse recovery charge	I _F = 50 A; V _R = 600 V ;	T _j = 25°C	-	3.04	-	μC
		-dI _F /dt = 1510 A/us; V _{GE} = -15 V	T _j = 125°C	-	5.52	-	μC
		VGE13 V	T _j = 150°C	-	6.29	29 -	μC
t _{rr}	reverse recovery time	I _F = 50 A; V _R = 600 V ;	T _j = 25°C	-	363	-	ns
		-dI _F /dt = 1510 A/us; V _{GF} = -15 V	T _j = 125°C	-	536	-	ns
		VGE13 V	T _j = 150°C	-	616	-	ns
E _{rec}	reverse recovery energy	I _F = 50 A; V _R = 600 V ;	T _j = 25°C	-	0.747	-	mJ
		-dl _F /dt = 1510 A/us; V _{GE} = -15 V	T _j = 125°C	-	1.65	-	mJ
		V GE13 V	T _j = 150°C	-	1.94	-	mJ
R _{th(j-c)}	thermal resistance, junction to case	per diode		-	-	1.2	K/W
T _{jop}	operating junction temperature			-40	-	150	°C

7.1. Waveforms and output characteristics



Fig. 3.

IGBT inverter collector current as a function of

collector-emitter saturation voltage

1200 V, 100 A, Power Integrated Module

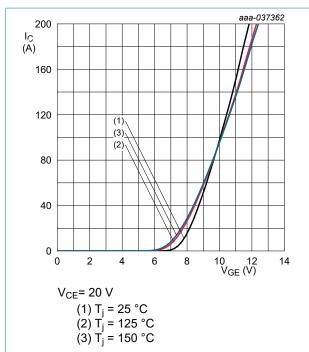
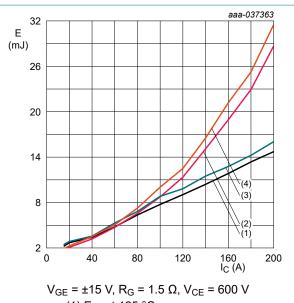
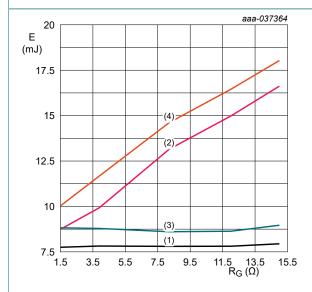



Fig. 4. IGBT inverter collector current as a function of gate-emitter voltage


(1) E_{off} at 125 °C

(2) E_{on} at 125 °C

(3) E_{off} at 150 °C

(4) E_{on} at 150 °C

Fig. 5. IGBT inverter switching losses as a function of collector current

 V_{GE} = ±15 V, I_C = 100 A, V_{CE} = 600 V

(1) E_{off} at 125 °C

(2) E_{on} at 125 °C

(3) E_{off} at 150 °C (4) E_{on} at 150 °C

Fig. 6. IGBT inverter switching losses as a function of gate resistance

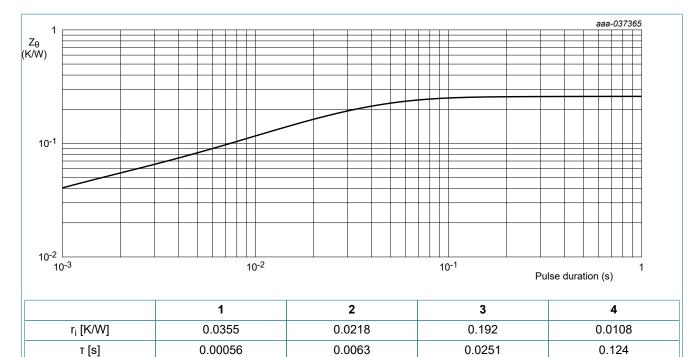


Fig. 7. Transient thermal impedance of IGBT inverter as a function of pulse duration

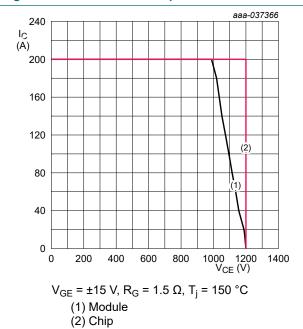


Fig. 8. Collector current as a function of collectoremitter voltage

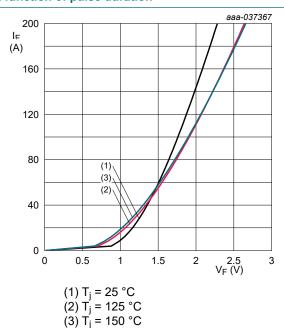


Fig. 9. Diode inverter forward current as a function of forward voltage

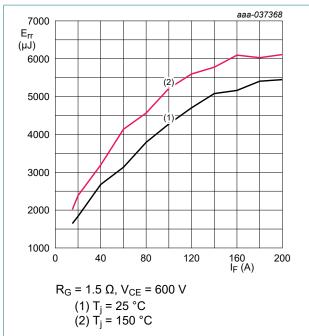


Fig. 10. Diode inverter reverse recovery energy as a function of forward current

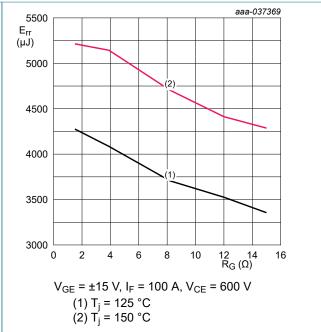
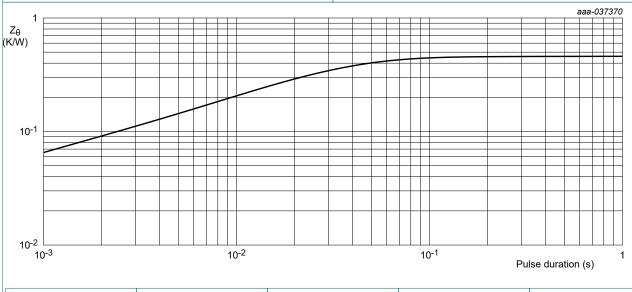



Fig. 11. Diode inverter reverse recovery energy as a function of gate resistance

	1	2	3	4
r _i [K/W]	0.0506	0.0411	0.0345	0.0227
T [S]	0.00055	0.00466	0.024	0.109

Fig. 12. Transient thermal impedance of diode inverter as a function of pulse duration

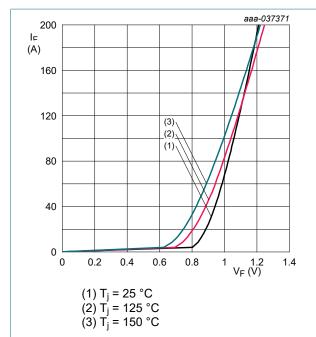


Fig. 13. Diode rectifier forward current as a function of forward voltage

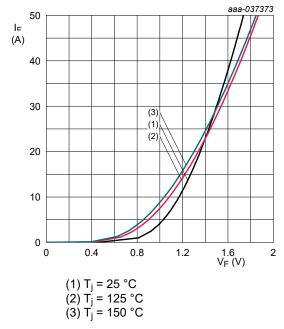


Fig. 15. Diode brake forward current as a function of forward voltage

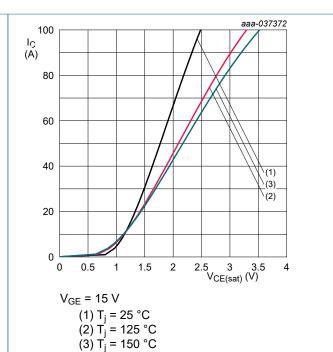


Fig. 14. IGBT brake collector current as a function of collector-emitter saturation voltage

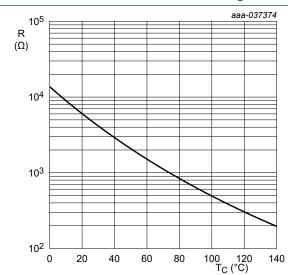
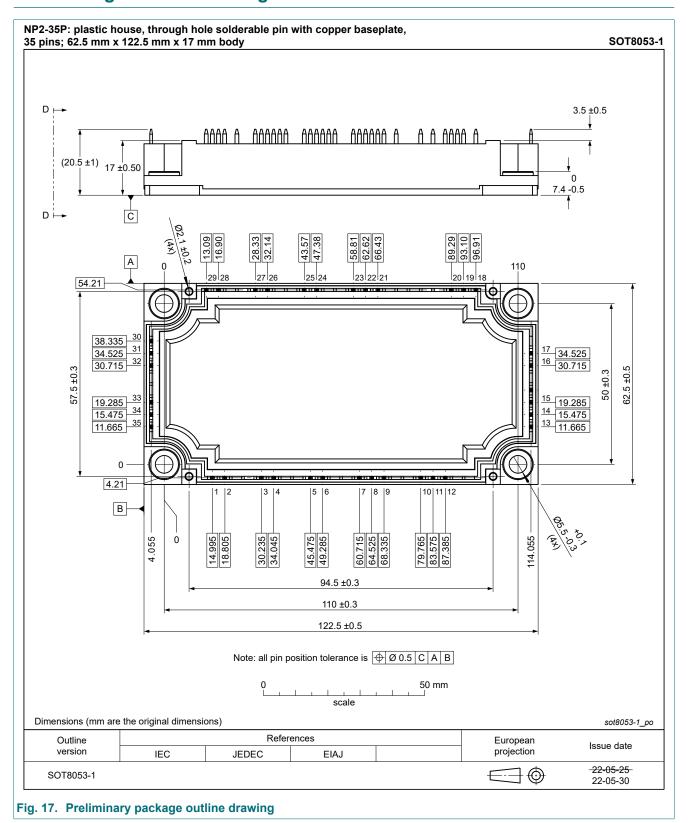


Fig. 16. NTC thermistor resistance as a fucntion of temperature

1200 V, 100 A, Power Integrated Module

8. NTC thermistor

Table 8. NTC thermistor


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R ₂₅	rated resistance	T _{TNTC} = 25 °C	-	5	-	kΩ
ΔR/R	deviation of R100	T _{TNTC} = 100 °C; R ₁₀₀ = 493 Ω	-10	-	10	%
P ₂₅	power dissipation	T _{TNTC} = 25 °C	-	-	20	mW
B _{25/50}	B-value		-	3375	-	K
B _{25/80}	B-value		-	3414	-	K
B _{25/100}	V-value		-	3436	-	K

9. Module characteristics

Table 9. Module characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{ISOL}	isolation test voltage	RMS; f = 50 Hz, t = 1 min	2.5	-	-	kV
	creepage distance	terminal to heat sink	-	10	-	mm
		terminal to terminal				mm
	clearance	terminal to heat sink	-	7.5	-	mm
		terminal to terminal				mm
CTI	comparative tracking index		-	>200	-	
L _{sCE}	stray inductance		-	35	-	nΗ
R _{CC'+ EE'}	module lead resistance, terminal-chip	T _C = 25 °C per switch	-	1.2	-	mΩ
М	mounting torque for module mounting		-	-	-	Nm
G	weight		-	307	-	g
T _{stg}	storage temperature		-40	-	125	°C

10. Package outline drawing

1200 V, 100 A, Power Integrated Module

11. Revision history

Table 10. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
NP100T12P2T3 v. 1	20240220	Product data sheet	-	-

1200 V, 100 A, Power Integrated Module

12. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal

injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Contents

1.	General description	1
2.	Features and benefits	1
3.	Applications	1
4.	Ordering information	1
5.	Limiting values	2
6.	Thermal characteristics	3
7.	Electrical characteristics	3
7.1	. Waveforms and output characteristics	6
8.	NTC thermistor	11
9.	Module characteristics	11
10	. Package outline drawing	12
11.	Revision history	13
12	. Legal information	14

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 20 February 2024

[©] Nexperia B.V. 2024. All rights reserved