

Sauls Wharf House Crittens Road Great Yarmouth Norfolk NR31 0AG Telephone +44 (0)1493 602602 Email:sales@midasdisplays.com Email:tech@midasdisplays.com www.midasdisplays.com

MDT0430A8OS-PAR		480 x 272	Parallel Interface	TFT Module			
(MCT043LCA0W480272LML) Specification							
Version:	Version: 1 Date: 11/04/2019						
			Revision				
•	1 10	/04/2019	First issue				

Display F	eatures		
Display Size	4.3"		
Resolution	480 x 272		
Orientation	Landscape		
Appearance	RGB		1
Logic Voltage	3.1V		oHS ompliant
Interface	Parallel	IVR	$(0) \square \supset$
Brightness	400 cd/m ²	/ A 23	mpliant
Touchscreen		, ,	mpnant
Module Size	106.70 x 69.60 x 6.95mm		
Operating Temperature	-20°C ~ +70°C		
Pinout	36 way connector	Box Quantity	Weight / Display
Pitch			

* - For full design functionality, please use this specification in conjunction with the SSD1963 specification.(Provided Separately)

Disp	lay Accessories
Part Number	Description
MDIB-RPI	The MDIB-RPI is a Raspberry Pi interface board designed to provide connectivity and compatibility to a range of MIDAS TFT displays.
MCFFC36WA50-1963 MCFFC36WA100-1963	36 way 50mm FFC with 0.5mm pitch

Optional Variants								
Appearances	Voltage							

Summary

TFT 4.3" is a TN transmissive type color active matrix TFT liquid crystal display that use amorphous silicon TFT as switching devices. This module is a composed of a TFT_LCD module, It is usually designed for industrial application and this module follows RoHs,

General Specifications

■ Size: 4.3 inch

■ Dot Matrix: 480 x RGBx272(TFT) dots

■ Module dimension: 106.7 x 69.6 x 6.95 mm

Active area: 95.04 x 53.856 mm

■ Dot pitch: 0.066 x 0.198 mm

■ LCD type: TFT, Normally White, Transmissive

■ View Direction: 12 o'clock

Gray Scale Inversion Direction: 6 o'clock

■ Aspect Ratio: 16:9

■ Backlight Type: LED, Normally White SUPPLY

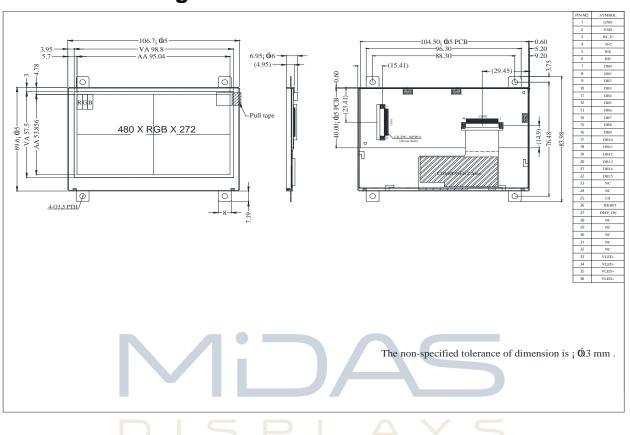
■ Controller IC: SSD1963

■ Interface: Digital 8080 family MPU 8bit/16bit

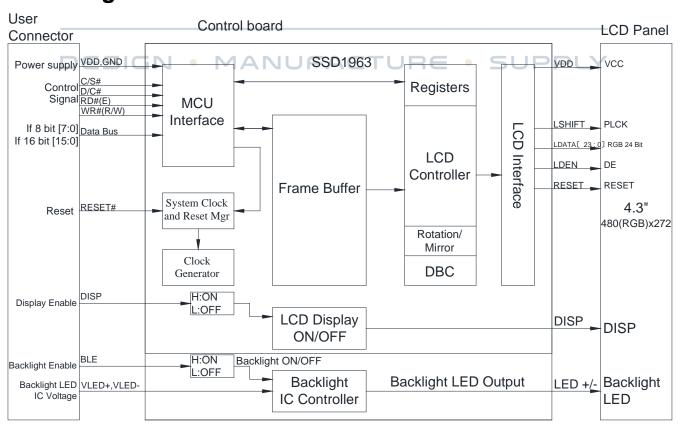
■ With /Without TP: Without TP

Surface: Glare

*Color tone slight changed by temperature and driving voltage.


Interface

LCM PIN Definition (CON3)


Pin	Symbol	Function	Remark
1	GND	System round pin of the IC.	
		Connect to system ground.	
2	VDD	Power Supply: +3.3V	
3	BL_E	Backlight control signal , H: On \ L: Off	
4	D/C	Data/Command select	
5	WR	Write strobe signal	
6	RD	Read strobe signal	
7	DB0	Data bus	
8	DB1	Data bus	
9	DB2	Data bus	
10	DB3	Data bus	
11	DB4	Data bus	
12	DB5	Data bus	
13	DB6	Data bus	
14	DB7	Data bus	
15	DB8	Data bus (When select 8bits mode, this pin is NC)	Note1
16	DB9	Data bus (When select 8bits mode, this pin is NC)	Note1
17	DB10	Data bus (When select 8bits mode, this pin is NC)	Note1
18	DB11	Data bus (When select 8bits mode, this pin is NC)	Note1
19	DB12	Data bus (When select 8bits mode, this pin is NC)	Note1
20	DB13	Data bus (When select 8bits mode, this pin is NC)	Note1
21	DB14	Data bus (When select 8bits mode, this pin is NC)	Note1
22	DB15	Data bus (When select 8bits mode, this pin is NC)	Note1
23	NC	No connection	
24	NC	No connection	
25	CS	Chip select	
26	RESET	Hardware reset	
27	DIP ON	Display control H: On \ L:Off	
28	NC	No connection	
29	NC	No connection	
30	NC	No connection	
31	NC SIC	No connection ANUFACTURE • SUP	PLY
32	NC	No connection	
33	VLED-	VLED- for B/L LED inverter (GND)	
34	VLED-	VLED- for B/L LED inverter (GND)	
35	VLED+	VLED+ for B/L LED inverter (+3.3V)	
36	VLED+	VLED+ for B/L LED inverter (+3.3V)	

Note1: When select 8bit mode, DB0~DB7 be used, DB8~DB15 no connect When select 16bit mode, DB0~DB15 be used

Contour Drawing

Block Diagram

Absolute Maximum Ratings

Item	Symbol	Min	Тур	Max	Unit
Operating Temperature	TOP	-20	_	+70	°C
Storage Temperature	TST	-30	_	+80	°C

Note: Device is subject to be damaged permanently if stresses beyond those absolute maximum ratings listed above

1. Temp. ≦60°C, 90% RH MAX. Temp. >60°C, Absolute humidity shall be less than 90% RH at 60°C

Electrical Characteristics

Operating conditions: (CON3.Pin1=GND, Pin2=VDD)

Item	Symbol	Condition	Min	Тур	Max	Unit	Remark
Supply Voltage For LCM	VDD	_	3.0	3.1	3.3	V	-
Supply Current For LCM	IDD			200	300	mA	Note1

Note 1: This value is test for VDD =3.3V, Ta=25°C only

Backlight driving conditions (CON3.Pin33,34=VLED-, Pin35,36=VLED+)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
Operation Current For LED Driver	VLED+=3.3V	270	_	405	mΑ	Note 1,2
Power Consumption	VLED+=3.3V	891	-	1337	mW	Note 1,2
Supply Voltage For LED Driver	VLED+	3.3	-	5	V	Note 1,2
LED Life Time		-	50,000	-	Hr	Note 2,3,4

Note 1: Base on VLED= 3.3V for the back light driver IC specification

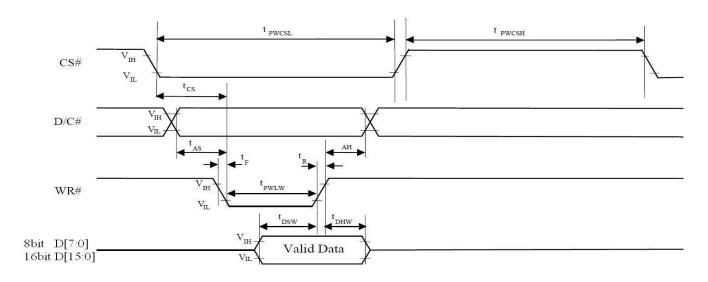
Note 2 : Ta = 25 °C

Note 3 : Brightness to be decreased to 50% of the initial value RE SUPPLY

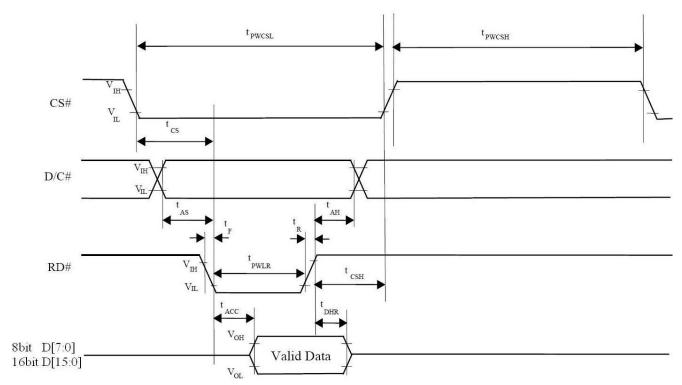
Note 4: The single LED lamp case

DC CHARATERISTICS

Parameter	Symbol		Rating	Unit	Condition		
i arameter	Symbol	Min	Тур	Max	Oilit	Condition	
Low level input voltage	VıL	0	-	0.3VDD	V		
High level input voltage	Vıн	0.7VDD	-	VDD	V		


Interface timing 8080 Mode 8bit/16bit

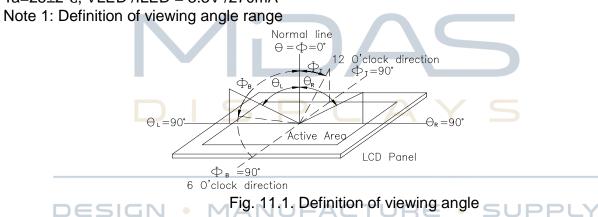
The 8080 mode MCU interface consist of CS#, D/C#, RD#, WR#, Data Bus signals. This interface use WR# to define a write cycle and RD# for read cycle. If the WR# goes low when the CS# signal is low, the data or command will be latched into the system at the rising edge of WR#. Similarly, the read cycle will start when RD# goes low and end at the rising edge of RD#.


8080 Mode Write Cycle

Symbol	Parameter	Min	Тур	Max	Unit
fMCLK	System Clock Frequency	1	-	110	MHz
tMCLK	System Clock Period	1/ fMCLK	ı	ı	ns
tPWCSH	Control Pulse High Width Write Read	13 30	1.5* t MCLK 3.5* t MCLK	ı	ns
tPWCSL	Control Pulse Low Width Write (next write cycle) Write (next read cycle) Read	13 80 80	1.5* tMCLK 9* tMCLK 9* tMCLK	ı	ns
tAS	Address Setup Time	1	-	-	ns
tAH	Address Hold Time	2	-	-	ns
tDSW	Write Data Setup Time	4			ns
tDHW	Write Data Hold Time	1	-	ı	ns
tPWLW	Write Low Time	12			ns
tDHR	Read Data Hold Time	1	ı	ı	ns
tACC	Access Time	32			ns
tPWLR	Read Low Time	36	7-5	-	ns
tR	Rise Time	-		0.5	ns
tF	Fall Time	-	-	0.5	ns
tCS	Chip select setup time	2		-	ns
tCSH	Chip select hold time to read signal	3	-	-	ns

Parallel 8080-series Interface Timing Diagram(Write Cycle)

Parallel 8080-series Interface Timing Diagram(Read Cycle)


Pixel Data Format

Interface	Cycle	D[15]	D[14]	D[13]	D[12]	D[11]	D[10]	D[9]	D[8]	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0
16 bits (565 format)	1 st	R5	R4	R3	R2	R1	G5	G4	G3	G2	G1	G0	B5	B4	B3	B2	B
	15!	R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G
16 bits	2 nd	B7	B6	B5	B4	В3	B2	B1	В0	R7	R6	R5	R4	R3	R2	R1	R
	3 rd	G7	G6	G5	G4	G3	G2	G1	GO	B7	B6	B5	B4	ВЗ	B2	B1	В
	1 st				-					R7	R6	R5	R4	R3	R2	R1	R
8 bits	2 nd									G7	G6	G5	G4	G3	G2	G1	G
	3 rd									B7	B6	B5	B4	В3	B2	B1	В

Optical Characteristics

Item		Symbol	Condition.	Min	Тур.	Max.	Unit	Remark
Response time		Tr+ Tf	θ=0°、Ф=0°	-	25	30	.ms	Note 3
Contrast ratio		CR	At optimized viewing angle	300	500	-	-	Note 4
Color Chromoticity	White	Wx	0-0°	0.26	0.31	0.36		Note 2.6.7
Color Chromaticity	vviile	Wy	θ=0°、Ф=0	0.28	0.33	0.38		Note 2,6,7
	Han	ΘR		-	75	-		
Viewing angle (Gray Scale	Hor.	ΘL	05>10	-	75	-	Dog	Note 4
Inversion Direction)	\	ΦТ	CR≧10	-	75	-	Deg.	Note 1
Birodiony	Ver.	ФВ		-	75	-		
Brightness	•	-	-	300	400	-	cd/m²	Center of display
Uniformity	(U)		-	75	-	-	%	Note5

 $Ta=25\pm2^{\circ}C$, VLED /ILED = 3.3V /270mA

Note 2: Test equipment setup:

After stabilizing and leaving the panel alone at a driven temperature for 10 minutes, the measurement should be executed. Measurement should be executed in a stable, windless, and dark room. Optical specifications are measured by Topcon BM-7 or BM-5 luminance meter 1.0° field of view at a distance of 50cm and normal direction.

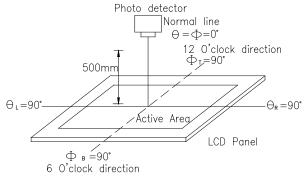
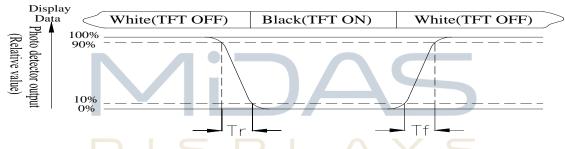



Fig. 11.2. Optical measurement system setup

Note 3: Definition of Response time:

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time, Tr, is the time between photo detector output intensity changed from 90%to 10%. And fall time, Tf, is the time between photo detector output intensity changed from 10%to 90%

Note 4: Definition of contrast ratio:

The contrast ratio is defined as the following expression.

Contrast ratio (CR) = Luminance measured when LCD on the "White" state

Luminance measured when LCD on the "Black" state

DESIGN • MANUFACTURE • SUPPLY

Note 5: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (reference the picture in below). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity (U) = Lmin/Lmax x100%

L = Active area length

W = Active area width

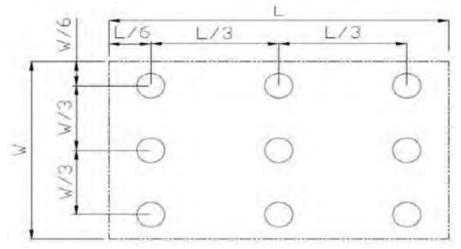


Fig11.3. Definition of uniformity

Note 6: Definition of color chromaticity (CIE 1931)
Color coordinates measured at the center point of LCD

Note 7: Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.

DESIGN • MANUFACTURE • SUPPLY

Reliability

Content of Reliability Test (Wide temperature, -20°C~70°C)

Environmental Test			
Test Item	Content of Test	Test Condition	Note
High Temperature	Endurance test applying the high storage temperature	80°C	2
storage	for a long time.	200hrs	
Low Temperature	Endurance test applying the low storage temperature	-30°C	1,2
storage	for a long time.	200hrs	
High Temperature	Endurance test applying the electric stress (Voltage &	70°C	
Operation	Current) and the thermal stress to the element for a long time.	200hrs	
Low Temperature	Endurance test applying the electric stress under low	-20°C	1
Operation	temperature for a long time.	200hrs	
High Temperature/ Humidity Operation	The module should be allowed to stand at 60°C,90%RH max	60°C,90%RH 96hrs	1,2
Thermal shock	The sample should be allowed stand the following 10	-20°C/70°C	
resistance	cycles of	10 cycles	
	operation		
	-20°C 25°C 70°C		
	30min 5min 30min 1 cycle		
Vibration test	Endurance test applying the vibration during	Total fixed	3
	transportation and using.	amplitude: 1.5mm	
		Vibration Frequency:	
		10~55Hz	
	DISPLAY	One cycle 60	
		seconds to 3	
		directions of X,Y,Z for	
Ctatia ala atriaitu ta at	Endurance test applying the electric stress to the	Each 15 minutes	-
Static electricity test	Endurance test applying the electric stress to the	VS=±600V(contact)	
	terminal.	,±800v(air),	
DESIG	N • MANUFACTURE	RS=330Ω	
		CS=150pF	
		10 times	

Note1: No dew condensation to be observed.

Note2: The function test shall be conducted after 4 hours storage at the normal

Temperature and humidity after remove from the test chamber.

Note3: The packing have to including into the vibration testing.

```
Initial Code For Reference
void Initial code()
         Write Command(0x01);
         Delay_ms(10);
         Write_Command(0xe0);
         Write Parameter(0x01);
         Delay ms(50);
         Write_Command(0xe0);
         Write_Parameter(0x03);
         Delay_ms(5);
         Write Command(0xb0):
         Write_Parameter(0x20);
         Write_Parameter(0x00);
         Write Parameter(0x01);
         Write Parameter(0xdf);
         Write Parameter(0x01);
         Write Parameter(0x0f);
         Write_Parameter(0x00);
         Write_Command(0xf0);
         Write_Parameter(0x03); //0x03 is 16bit(565 format);0x00 is for 8-bit,pixel data
format
         //Set the MN of PLL
         Write Command(0xe2);
         Write Parameter(0x1d);
         Write Parameter(0x02):
      Write_Parameter(0x54); ANUFACTURE • SUPPLY
         Write Command(0xe6):
//SET PCLK freq=9MHz; Vsync=60Hz
         Write Parameter(0x01);
         Write Parameter(0x99);
         Write Parameter(0x9a);
         //Set front porch and back porch
         Write Command(0xb4):
         Write_Parameter(0x02);
         Write_Parameter(0x0d);
         Write Parameter(0x00):
         Write Parameter(0x14);
         Write Parameter(0x05);
         Write Parameter(0x00);
         Write Parameter(0x00);
         Write_Parameter(0x00);
```

```
Write_Command(0xb6);
Write_Parameter(0x01);
Write_Parameter(0x24);
Write_Parameter(0x00);
Write_Parameter(0x0a);
Write Parameter(0x05);
Write_Parameter(0x00);
Write_Parameter(0x00);
Write_Command(0x2a);
Write_Parameter(0x00);
Write_Parameter(0x00);
Write_Parameter(0x01);
Write_Parameter(0xdf);
Write_Command(0x2b);
Write Parameter(0x00);
Write_Parameter(0x00);
Write_Parameter(0x01);
Write_Parameter(0x0f);
Write_Command(0x29);
Write_Command(0x2c);
```

}

DESIGN • MANUFACTURE • SUPPLY