Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KeeLoQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rPIC and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active Thermistor, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rLAB, rPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2006, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona, Gresham, Oregon and Mountain View, California. The Company’s quality system processes and procedures are for its PICmicro® 8-bit MCUs, KesLoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
Table of Contents

Preface ... 1
 - Introduction ... 1
 - Document Layout .. 1
 - Conventions Used in this Guide .. 2
 - Recommended Reading .. 2
 - The Microchip Web Site .. 3
 - Customer Support ... 3
 - Document Revision History ... 3

Chapter 1. Product Overview ... 5
 1.1 Introduction ... 5
 1.2 What is the MCP355X Tiny Application Sensor Demo Board? 5
 1.3 What the MCP355X Tiny Application Sensor Demo Board Kit Includes 5

Chapter 2. Installation and Operation ... 7
 2.1 Introduction ... 7
 2.2 Features ... 7
 2.3 Functional Block Descriptions .. 8

Appendix A. Schematic and Layouts .. 11
 A.1 Introduction .. 11
 A.2 Schematics and PCB Layout ... 11
 A.3 Board - Schematic .. 12
 A.4 Board Layout - Top Layer .. 13
 A.5 Board Layout - Bottom Layer ... 14

Appendix B. Bill Of Materials (BOM) ... 15

Worldwide Sales and Service .. 16
NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and documentation are constantly evolving to meet customer needs, so some actual dialogs and/or tool descriptions may differ from those in this document. Please refer to our web site (www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each page, in front of the page number. The numbering convention for the DS number is “DSXXXXXA”, where “XXXXX” is the document number and “A” is the revision level of the document.

INTRODUCTION

This chapter contains general information that will be useful to know before using the MCP355X Tiny Application Sensor Demo Board. Items discussed in this chapter include:

• Document Layout
• Conventions Used in this Guide
• Recommended Reading
• The Microchip Web Site
• Customer Support
• Document Revision History

DOCUMENT LAYOUT

This document describes how to use the MCP355X Tiny Application Sensor Demo Board as a development tool to emulate and debug firmware on a target board. The manual layout is as follows:

• Chapter 1. “Product Overview” – This is an introduction to the MCP355X Tiny Application Sensor Demo Board. It covers the kit contents, associated tools and how they work together.
• Chapter 2. “Installation and Operation” – Covers the initial set-up of the MCP355X Tiny Application Sensor Demo Board. It lists the required tools, shows how to connect this board and demonstrates how to verify the set-up.
• Appendix A. “Schematic and Layouts” – Gives detailed information on the MCP355X Tiny Application Sensor Demo Board. Includes detailed circuit explanation, schematic, board layouts and Bill of Materials (BOM).
• Appendix B. “Bill Of Materials (BOM)” – Gives detailed information on the MCP355X Tiny Application Sensor Demo Board’s firmware.
CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS

<table>
<thead>
<tr>
<th>Description</th>
<th>Represents</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arial font:</td>
<td>Referenced books</td>
<td>MPLAB® IDE User's Guide</td>
</tr>
<tr>
<td>Initial caps</td>
<td>A window</td>
<td>the Output window</td>
</tr>
<tr>
<td></td>
<td>A dialog</td>
<td>the Settings dialog</td>
</tr>
<tr>
<td></td>
<td>A menu selection</td>
<td>select Enable Programmer</td>
</tr>
<tr>
<td>Quotes</td>
<td>A field name in a window or dialog</td>
<td>“Save project before build”</td>
</tr>
<tr>
<td>Underlined, italic text with right angle bracket</td>
<td>A menu path</td>
<td>*File>*Save</td>
</tr>
<tr>
<td>Bold characters</td>
<td>A dialog button</td>
<td>Click OK</td>
</tr>
<tr>
<td></td>
<td>A tab</td>
<td>Click the Power tab</td>
</tr>
<tr>
<td>N'Rnnnn</td>
<td>A number in verilog format, where N is the total number of digits, R is the radix and n is a digit.</td>
<td>4'b0010, 2'hF1</td>
</tr>
<tr>
<td>Text in angle brackets < ></td>
<td>A key on the keyboard</td>
<td>Press <Enter>, <F1></td>
</tr>
</tbody>
</table>

Courier New font:

<table>
<thead>
<tr>
<th>Description</th>
<th>Represents</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain Courier New</td>
<td>Sample source code</td>
<td>#define START</td>
</tr>
<tr>
<td></td>
<td>Filenames</td>
<td>autoexec.bat</td>
</tr>
<tr>
<td></td>
<td>File paths</td>
<td>c:\mcc18\h</td>
</tr>
<tr>
<td></td>
<td>Keywords</td>
<td>_asm, _endasm, static</td>
</tr>
<tr>
<td></td>
<td>Command-line options</td>
<td>-Opa+, -Opa-</td>
</tr>
<tr>
<td></td>
<td>Bit values</td>
<td>0, 1</td>
</tr>
<tr>
<td></td>
<td>Constants</td>
<td>0xFF, ‘A’</td>
</tr>
<tr>
<td>Italic Courier New</td>
<td>A variable argument</td>
<td>file.o, where file can be any valid filename</td>
</tr>
<tr>
<td>Square brackets []</td>
<td>Optional arguments</td>
<td>mcc18 [options] file [options]</td>
</tr>
<tr>
<td>Curly brackets and pipe character: {</td>
<td>Choice of mutually exclusive arguments; an OR selection</td>
<td>errorlevel {0</td>
</tr>
<tr>
<td>Ellipses...</td>
<td>Replaces repeated text</td>
<td>var_name [, var_name...]</td>
</tr>
<tr>
<td></td>
<td>Represents code supplied by user</td>
<td>void main (void) { ... }</td>
</tr>
</tbody>
</table>

RECOMMENDED READING

This user’s guide describes how to use the MCP355X Tiny Application Sensor Demo Board. Other useful documents are listed below. The following Microchip documents are available and recommended as supplemental reference resources.

MCP3550/1/3 Data Sheet, “Low-Power Single Channel 22-Bit Delta-Sigma ADCs” (DS21950)

This data sheet provides detailed information regarding the MCP355X product family.
THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite internet browser, the web site contains the following information:

• **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software

• **General Technical Support** – Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing

• **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support
• Development Systems Information Line

Customers should contact their distributor, representative or field application engineer for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

DOCUMENT REVISION HISTORY

Revision A (April 2006)

• Initial Release of this Document.
Chapter 1. Product Overview

1.1 INTRODUCTION

This chapter provides an overview of the MCP355X Tiny Application Sensor Demo Board and covers the following topics:

• What is the MCP355X Tiny Application Sensor Demo Board?
• What the MCP355X Tiny Application Sensor Demo Board kit includes

1.2 WHAT IS THE MCP355X TINY APPLICATION SENSOR DEMO BOARD?

The MCP3550/1/3 devices are 2.7V to 5.5V low-power, 22-bit Delta-Sigma Analog-to-Digital Converters (ADCs). The MCP355X Tiny Application Sensor Demo Board is used to demonstrate the most basic application of the devices using a ratiometric connection with \(V_{DD} \) as \(V_{REF} \). The MCP355X Tiny Application Sensor Demo Board includes all the necessary PCB circuits and PCB layout tips required to obtain the performance demonstrated on the PC.

1.3 WHAT THE MCP355X TINY APPLICATION SENSOR DEMO BOARD KIT INCLUDES

This MCP355X Tiny Application Sensor Demo Board Kit includes:

• The MCP355X Tiny Application Sensor Demo Board (with MCP3551 installed)
• MCP355X Tiny Application Sensor Demo Board User’s Guide
• MCP3550/1/3 Data Sheet, “Low-Power Single Channel 22-Bit Delta-Sigma ADCs”, (DS21950)
• AN1007 Application Note “Designing with the MCP3551 Delta-Sigma ADC”, (DS01007)
• Mini-USB Cable
Chapter 2. Installation and Operation

2.1 INTRODUCTION

The MCP355X Tiny Application Sensor Demo Board is designed to demonstrate the performance of the MCP3550/1/3 devices in a simple low-cost application. The circuit uses a ratiometric sensor configuration and uses the system power supply as the voltage reference. The extreme common mode rejection capability of the MCP3551 device, along with its excellent normal mode power supply rejection at 50 and 60 Hz, allows for this system performance. The functional circuit block diagram is shown in Figure 2-1.

![Circuit Diagram](image)

FIGURE 2-1: Ratiometric Sensor Configuration.

2.2 FEATURES

The MCP355X Tiny Application Sensor Demo Board has the following features:

- Better than 16-bit system performance from a direct connected PC USB connection using ratiometric
- Simple USB connection to DataView on the PC showing system performance
- Low-cost design for analog-to-digital conversion
2.3 FUNCTIONAL BLOCK DESCRIPTIONS

2.3.1 SM5420

The SM5420 device is an absolute pressure sensor in a surface mount SOIC package. The device is a piezo resistive silicon device available from Silicon Microstructure. With a constant excitation voltage, the output changes linearly with pressure. The zero scale error of the device is rated at ±10 mV/V and the full scale output is rated at 60 mV/V ±20 mV. These large errors require an overall system calibration, as well as temperature compensation for a working absolute pressure sensor design. This board demonstrates the overall system resolution and noise performance of the ADC and sensor with no voltage reference.

2.3.2 MCP3551

The MCP3551 is a 22-bit Delta-Sigma A/D converter. The device includes a third-order modulator, fourth-order digital SINC filter, internal oscillator for oversampling clock and digital logic for a simple SPI interface.

Digital SINC Filter

The MCP3551 device includes a digital decimation filter, which is a fourth-order modified SINC filter. This filter averages the incoming bitstream from the modulator and outputs a 22-bit conversion word in binary two's complement. When all bits have been processed by the filter, the output code is ready for SPI communication, the RDY flag is set on the SDO/RDY pin and all the internal registers are reset in order to process the next conversion. This filter achieves greater than -80 dB of rejection at both 50 and 60 Hz. For improved performance, the MCP3550 device is available which gives greater than -120 dB of rejection at either 50 or 60 Hz.
2.3.3 PIC18F4550

The high speed USB PICmicro® microcontroller is used to connect to the PC and quickly evaluate system performance. An In-Circuit Serial Programming™ (ICSP™) connector is also included.

2.3.4 Filtering

Power supply filtering using passive components is included to improve the noise performance of the MCP3551 device. The following circuit comprises the filtering on the power supply, separating the analog and digital sections of the board:

2.3.5 DataView Noise Analysis

The system noise from the MCP355X Tiny Application Sensor Demo Board will be an aperiodic signal not having any wave or shape. This randomness is best dealt with in statistical properties, hence the RMS measurement of the Gaussian or normal distribution. When designing a system and attempting to measure the performance, the RMS noise is much more repeatable than the peak-to-peak noise. Figure 2-4 shows two different distributions with different RMS and PEAK values, representing two different ADC output distributions.
FIGURE 2-4: Two Normal or Gaussian Output Distributions.

The DataView software tool is a visualization tool, showing real-time histograms using the MCP3551. The software also calculates the RMS noise of the current distribution. The number of samples in the distribution is also scalable, allowing post averaging experiments.

FIGURE 2-5: DataView showing system performance in a histogram format.

The software can also be used for time-based system analysis using the scope plot window. Any system drift or other time-based errors can be analyzed using this visual analysis tool.

FIGURE 2-6: DataView Scope Plot View.
Appendix A. Schematic and Layouts

A.1 INTRODUCTION

This appendix contains the following schematics and layouts for the MCP355X Tiny Application Sensor Demo Board User’s Guide:

- Board Schematic
- Board - Top Layer
- Board - Bottom Layer

A.2 SCHEMATICS AND PCB LAYOUT

Figure A.3 “Board - Schematic” shows the MCP355X Tiny Application Sensor Demo Board schematic, while Figure A.4 “Board Layout - Top Layer” and Figure A.5 “Board Layout - Bottom Layer” show the layout for the two different layers. The layer order is shown in Figure A-1.

FIGURE A-1: LAYER ORDER

```
Top Layer

Bottom Layer
```
A.3 BOARD - SCHEMATIC
Appendix B. Bill Of Materials (BOM)

TABLE B-1: BILL OF MATERIALS (BOM)

<table>
<thead>
<tr>
<th>Qty</th>
<th>Reference</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C1</td>
<td>CAP .47UF 16V CERAMIC X7R 0805</td>
<td>Panasonic® - ECG</td>
<td>ECJ-2YB1C474K</td>
</tr>
<tr>
<td>1</td>
<td>C2</td>
<td>CAP 1.0UF 10V CERAMIC X7R 0805</td>
<td>Kemet® Electronics</td>
<td>C0805C105K8RACTU</td>
</tr>
<tr>
<td>3</td>
<td>C3, C9, C10</td>
<td>CAP .1UF 25V CERAMIC X7R 0805</td>
<td>Panasonic - ECG</td>
<td>ECJ-2VB1E104K</td>
</tr>
<tr>
<td>2</td>
<td>C4, C6</td>
<td>CAP 22PF 50V CERM CHIP 0805 SMD</td>
<td>Panasonic - ECG</td>
<td>ECJ-2VC1H220J</td>
</tr>
<tr>
<td>1</td>
<td>C5</td>
<td>CAP .1UF 25V CERAMIC X7R 0805</td>
<td>Panasonic - ECG</td>
<td>ECJ-2VB1E104K</td>
</tr>
<tr>
<td>2</td>
<td>C7, C8</td>
<td>10uF/16V CAP-SMT-ELCTRO</td>
<td>Panasonic - ECG</td>
<td>EEE-1CA100SR</td>
</tr>
<tr>
<td>1</td>
<td>D1</td>
<td>LED RED CLEAR 0805 SMD</td>
<td>Lite-On Trading USA Inc</td>
<td>LTST-C170CKT</td>
</tr>
<tr>
<td>1</td>
<td>J1</td>
<td>CONN RECEPT MINI USB2.0 5POS</td>
<td>Hirose Electronic Co. Ltd</td>
<td>UX60-MB-5ST</td>
</tr>
<tr>
<td>1</td>
<td>J2</td>
<td>HEADER,.1"ST MALE,1RW,6PIN,(10) .025"PST,.23GOLDTAIL</td>
<td>Value-Pro</td>
<td>JS1109-6-R</td>
</tr>
<tr>
<td>1</td>
<td>JMP1</td>
<td>3PIN,.100" Straight Male Headers (Gold)</td>
<td>Value-Pro</td>
<td>7000-1X3SG-R</td>
</tr>
<tr>
<td>1</td>
<td>JMP1</td>
<td>SHUNT LP W/HANDLE 2 POS 30AU</td>
<td>AMP®/Tyco® Electronics</td>
<td>881545-2</td>
</tr>
<tr>
<td>2</td>
<td>JP1, JP2</td>
<td>NOT INSTALLED</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>L1, L2</td>
<td>FERRITE 500MA 600 OHM 0805 SMD</td>
<td>Steward® Inc.</td>
<td>HZ0805E601R-10</td>
</tr>
<tr>
<td>1</td>
<td>PCB</td>
<td>RoHS Compliant Bare PCB, MCP355X Tiny Application Sensor Demo Board.</td>
<td>-</td>
<td>104-00093</td>
</tr>
<tr>
<td>2</td>
<td>R1, R2</td>
<td>NOT INSTALLED</td>
<td>Open</td>
<td>RES0805</td>
</tr>
<tr>
<td>1</td>
<td>R3</td>
<td>RES 1.00K OHM 1/10W 1% 0805 SMD</td>
<td>Panasonic - ECG</td>
<td>ERJ-6ENF1001V</td>
</tr>
<tr>
<td>1</td>
<td>R4</td>
<td>RES 100 OHM 1/10W 1% 0805 SMD</td>
<td>Panasonic - ECG</td>
<td>ERJ-6ENF1000V</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>LM4140 IC VOLT REF PREC MICROPWR 8-SOIC</td>
<td>National Semiconductor®</td>
<td>LM4140CCM-4.1/NOPB</td>
</tr>
<tr>
<td>1</td>
<td>U2</td>
<td>PIC18F4550</td>
<td>Microchip Technology</td>
<td>PIC18F4550-I/PT</td>
</tr>
<tr>
<td>1</td>
<td>U3</td>
<td>SM5420 is an SO-8 packaged 15 PSI pressure sensor.</td>
<td>Silicon Microstructures, Inc.</td>
<td>SM5420-015-A-H-T</td>
</tr>
<tr>
<td>1</td>
<td>U4</td>
<td>MCP3551_MSOP</td>
<td>Microchip Technology</td>
<td>MCP3551-E/MS</td>
</tr>
<tr>
<td>1</td>
<td>Y1</td>
<td>CRYSTAL 20MHZ METAL CASE SMD</td>
<td>Connor-Winfield</td>
<td>XM-1-20.0000</td>
</tr>
<tr>
<td>2</td>
<td>Z1, Z2</td>
<td>RES 10.0K OHM 1/10W 1% 0805 SMD</td>
<td>Panasonic - ECG</td>
<td>ERJ-6ENF1002V</td>
</tr>
<tr>
<td>1</td>
<td>Z3</td>
<td>RES 0.0 OHM 1/8W 5% 0805 SMD</td>
<td>Panasonic - ECG</td>
<td>ERJ-6GEY0R00V</td>
</tr>
<tr>
<td>3</td>
<td>Z4, Z6, Z7</td>
<td>NOT INSTALLED</td>
<td>Open</td>
<td>RES0805_MCHIP</td>
</tr>
</tbody>
</table>
AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: http://support.microchip.com
Web Address: www.microchip.com

Atlanta
Alpharetta, GA
Tel: 770-640-0034
Fax: 770-640-0307

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-0034
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

San Jose
Mountain View, CA
Tel: 650-215-1444
Fax: 650-961-0286

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8676-6200
Fax: 86-28-8676-6599

China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7250
Fax: 86-29-8833-7256

India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422

India - New Delhi
Tel: 91-11-5160-8631
Fax: 91-11-5160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471-6166
Fax: 81-45-471-6122

Korea - Gumi
Tel: 82-54-473-4301
Fax: 82-54-473-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Penang
Tel: 60-4-646-8870
Fax: 60-4-646-5086

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820