

XENSIV™ magnetic position sensors

Features

- Two discrete linearized TMR bridges
- Differential sine and cosine output
- Ratiometric output signals
- · High precision length measurement with multipole stripe magnet
- Wide temperature range from -40°C to 125°C
- Extreme small 6-ball wafer level package, 1.27 * 0.93 * 0.4mm (see Chapter 6)

Potential applications

- Linear and angular incremental position sensing in industrial and consumer applications with highest accuracy requirements
- · Lens positioning for zoom and focus adjusting in cameras

Product validation

Qualified for industrial applications according to JEDEC JESD47K.

Description

The TLI5590 is a two channel ratiometric gradiometer for high precise length measurement.

Table 1

Product Name	Marking	Ordering Code	Package
TLI5590-A6W	90A0	SP005631773	SG-WFWLB-6-3

Datasheet

Table of contents

	Table of contents
1	Block diagram
2	Pin configuration
3	General product characteristics
3.1	Absolute maximum ratings
3.2	Functional range
4	Product features
4.1	Functional description
4.2	Electrical characteristics
4.3	Residual measurement errors
4.3.1	Typical performance
5	Application information
5.1	Magnet
5.2	Sensitive area
5.3	Application circuit
6	Package
6.1	Package information
6.2	Packing13
6.3	Additional package information
7	Revision history
	Disclaimer

1 Block diagram

1 Block diagram

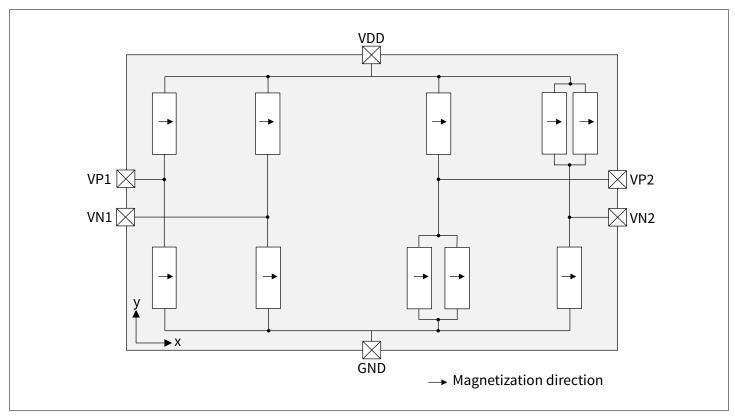


Figure 1 Block diagram

The TLI5590 consists of two TMR -Wheatstone bridges. The TMR resistance depends on the direction and strength of the external magnetic field. In combination with a multipole magnet each bridge provides a differential output signal, i.e. sine and cosine signals. These signals can further be processed for relative position measurement.

2 Pin configuration

2 Pin configuration

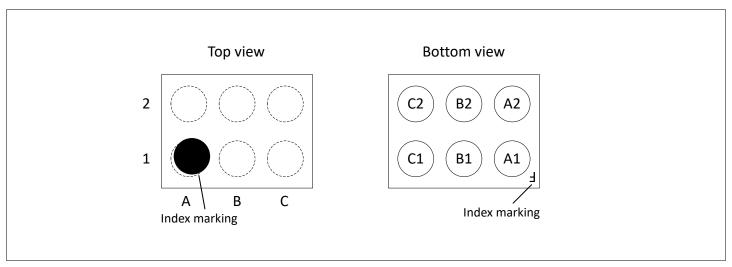


Figure 2 TLI5590 - A6W pinout

Table 2 SG-WFWLB-6-3 pin description and configuraiton

Pin no.	Name	Description
A1	VP2	Positive out of bridge #2
A2	VN2	Negative out of bridge #2
B1	GND	Ground
B2	VDD	Supply voltage
C1	VP1	Positive out of bridge #1
C2	VN1	Negative out of bridge #1

3 General product characteristics

3 General product characteristics

3.1 Absolute maximum ratings

All specifications are valid over the full temperature range and over lifetime.

Stresses above the maximum values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the device.

Table 3 Absolute maximum ratings

Parameter	Symbol		Values			Note or condition
		Min.	Тур.	Max.		
Supply voltage	V_{DD}	-3.6	-	6.5	V	limited to 40 h over lifetime
Maximum ambient temperature	T _{A max}	-40	-	125	°C	Temperature cycle 850x -40°C to 125°C acc. JEDEC JESD47K
Storage temperature	T _{storage}	-40	_	150	°C	1000h HTSL at 150°C acc. JEDEC JESD47K
Magnetic field	B _{max}	-350	-	350	mT	max. 5 min. at 125°C

Table 4 ESD voltage

Parameter	Symbol	Values		Unit	Note or condition	
		Min.	Тур.	Max.		
ESD HBM	V_{HBM}	-2	_	2	kV	HBM contact discharge for all pins, according to ANSI/ESDA/JEDEC JS-001-2010
ESD CDM	V _{CDM(all)}	-0.5	_	0.5	kV	valid for all pins, according to JS-002-2018
ESD CDM	V _{CDM(corner)}	-0.75	_	0.75	kV	valid for corner pins, according to JS-002-2018

3.2 Functional range

Table 5 Functional range

Parameter	Symbol	Values			Unit	Note or condition
		Min.	Тур.	Max.		
Supply voltage	V_{DD}	1	3.3	5.5	V	
Supply current	I _{CC}	-	1	_	mA	This corresponds to a typical voltage of V _{Br} =3.3V and a resistance of R _{Br} =6.6kOhm
Operating ambient temperature	T _A	-40	-	125	°C	1000h HTOL at 125°C, temperature budget acc. JEDEC JESD47K

Datasheet

3 General product characteristics

Table 6 Magnetic parameters

Parameter Syn	Symbol	Symbol Values				Note or condition
		Min.	Тур.	Max.		
Magnetic field range	В	-5	_	5	mT	
Bandwidth	f_{BW}	_	5	-	kHz	Assumption: 6.6kOhm TMR resistance and max. 5nF capacitance C _{out} , f _{characteristic} =4.8kHz

4 Product features

4.1 Functional description

The measurement principle of the sensor is based on the TMR (tunneling magneto-resistance) effect. The sensor measures the strength of the magnetic field parallel to the package surface. The sensor provides two differential analog output signals for external calculation. The provided output signal is ratiometric to the supply voltage.

A magnetic flux B parallel to the package plane influences the TMR cells of the sensor. The strength of the flux controls the resistance of the sensor.

For correct operation the pole length l_{pole} of the magnet needs to fit the TMR bridge distance. Please see Table 9 for details.

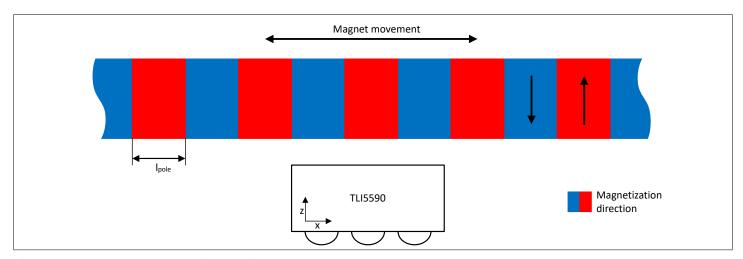


Figure 3 TLI5590 with multipol magnet system setup

Due to the special architecture of the Wheatstone bridges the output signals of the sensor have different amplitudes (see Figure 1 and Table 7). Regarding normalized out signals, the differential signal of bridge 2 has half the amplitude of the out signal from bridge 1 (see Figure 4). For position calculation it is necessary to multiply the output 2 with the factor of two.

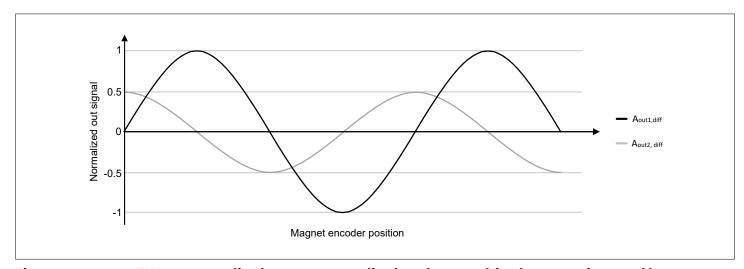


Figure 4 TLI5590 normalized sensor out amplitudes when a multi pole magnet is passed by

Datasheet

4 Product features

4.2 Electrical characteristics

The indicated parameters apply to the full operating range, unless otherwise specified. Typical values correspond to a supply voltage $V_{DD} = 3.3 \text{ V}$ and $T_A = 25^{\circ}\text{C}$, unless individually specified. All specifications are valid over the full temperature range and over lifetime.

Table 7 Electrical characteristics

Parameter	Symbol	Values			Unit	Note or condition	
		Min.	Тур.	Max.			
Bridge resistance	R _{bridge}	4.62	6.6	8.58	kOhm	for T _A = 25°C, B=0mT, ¹⁾	
Temperature coefficient of bridge resistance	TC _{bridge}	-0.1	-0.07	-0.03	%/K		
Differential output voltage amplitude (bridge 1)	A _{out1, diff}	12	18.5	25	mV/V/mT	A _{out1, diff} = VP1 - VN1	
Differential output voltage amplitude (bridge 2)	A _{out2, diff}	6	9	12.5	mV/V/mT	A _{out2, diff} = VP2 - VN2	
Temperature coefficient of differential output voltage amplitude	TC _{Amp}	-0.1	-0.01	0.05	%/K		
Differential offset voltage	V _{off, diff}	-10	_	10	mV/V		
Temperature coefficient of offset voltage (differential ended)	TC _{off, diff}	-10	0	10	μV/V/K		

¹⁾ Resistance of each single Wheatstone bridge

4 Product features

4.3 Residual measurement errors

Table 8 Residual measurement errors

Parameter	Symbol	Values			Unit	Note or condition
		Min.	Тур.	Max.		
Residual angle error, B ≤ 1.5mT	A _{err, res,}	-	±0.8	±2.5	0	B \leq 1.5mT; with ideal compensation of offset and amplitude synchronicity, ¹⁾
Residual angle error	A _{err, res}	-	±2.0	±4.1	0	1.5 < B \leq 5mT; with ideal compensation of offset and amplitude synchronicity, , $^{1)}$
Amplitude synchronism	Amp _{sync}	95	100	105	%	

¹⁾ Angle error if 360° corresponds to a travel of 1000µm (= dipole length).

4.3.1 Typical performance

Figure 5 shows the typical angle error with ideal compensation of offset and amplitude synchronicity.

Figure 5 Typical residual angle error

5 Application information

5 Application information

5.1 Magnet

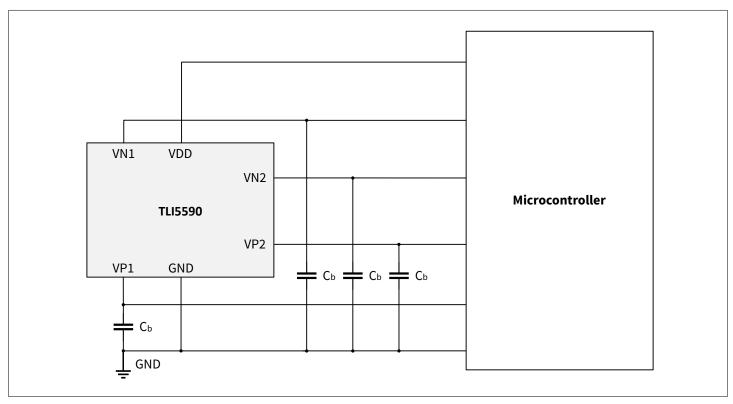
The parameters in this datasheet were specified for a multipole magnet strip fitting perfectly to the sensor ((see Figure 3), where pole length match the distances between TMR elements inside the sensor.

However, different pole length between 500µm to 1mm can be used with this product. In case the pole length deviates from 500µm the accuracy can degrade from the values specified.

Table 9

Parameter	Symbol		Values		Unit	Note or condition
		Min.	Тур.	Max.		
Magnet pole pitch	$l_{ m pole}$	_	500	-	μm	Both ends of the magnet must have the same polarity. Both end poles must be a half pole (half pitch length)

5.2 Sensitive area


Figure 6 Placement of senstive area in the package

5 Application information

5.3 Application circuit

Figure 7 shows the application circuit which is proposed for TLI5590. The value for the buffer capacitor C_b has to be adjusted according to the speed of the magnetic input signal. In combination with the TMR resistor it represents a low-pass-filter. This filter limits the bandwidth of the circuit but also improves the noise performance. Without any buffer capacitor C_b , the bandwidth of the device is determined by the TMR resistor and the input capacitor of the used ADC. This has to be considered and the ADC sample and hold time adjusted accordingly.

11

Figure 7 Application circuit

6 Package

6 Package

6.1 Package information

The package of the device is a wafer level package SG-WFWLB-6-3.

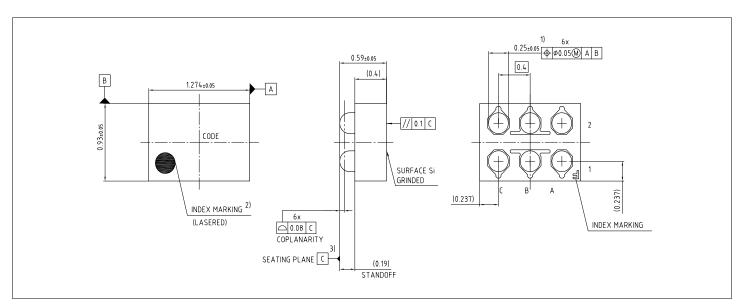


Figure 8 Package dimensions

- 1) Dimension is measured at the maximum solder ball diameter, parallel to primary datum C.
- 2) Ball A1 corner identified by marking.
- 3) Primary datum C and seating plane are defined by the domed crowns of the balls.

The SG-WFWLB-6-3 package fulfills the MSL level 1 according to IPC/JEDEC J-STD-033B.1.

6 Package

6.2 Packing

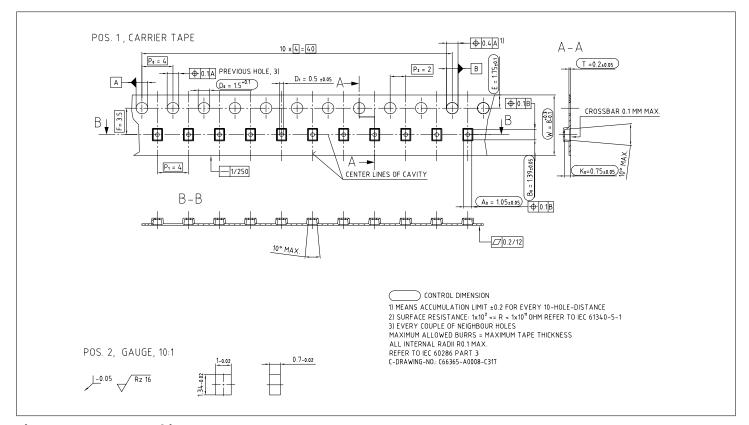


Figure 9 Packing

6.3 Additional package information

Further information about the package and processing can be found here:

https://www.infineon.com/cms/en/product/packages/SG-WFWLB/

Datasheet

7 Revision history

7 Revision history

Table 10 Revision History

Document version	Date of release	Description of changes
01.00	2022-12-09	Initial release
01.10 2024-01-25	Added CDM value to ESD-Table; Magnet description updated; Formatting changes	

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2024-01-25 Published by Infineon Technologies AG 81726 Munich, Germany

© 2024 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

Email: erratum@infineon.com

Document reference IFX-gyh1657019754886

Important notice

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.