

EiceDRIVER™ gate driver 1EDI3035AS, 1EDI3038AS evaluation board

Preface

Scope and Purpose

This document describes the EiceDRIVER[™] gate driver 1EDI3035AS, 1EDI3038AS evaluation **board PCB revision 1.1.** Please also refer to the corresponding datasheet.

Intended Audience

This document is intended for engineers who develop applications.

Table of contents

Prefa	ace1
Scop	e and Purpose1
Inten	nded Audience
Table	e of contents
1	Safety Instructions
2	Introduction4
2.1	General Description4
2.2	EiceDRIVER [™] Gate driver overview5
2.3	Operating Modes6
2.4	Block diagram7
2.4.1	1EDI3035AS7
2.4.2	1EDI3038AS8
3	Getting Started9
4	Evaluation Board
4.1	PCB Overview10
4.2	Connectors11
4.3	LED Indicators12
4.4	Operating conditions13
4.5	Jumper configuration14
4.5.1	SI1 and SI2 PULLUP
4.5.2	ASCP_ON Mode15
4.5.3	SI1 and SI2 Remote Reset16
4.5.4	Connect DESAT and OCP to GND17
4.5.5	AIP _B and SASC _B 18
4.6	Difference between high side and low side18
5	Schematic and Layout
5.1	Schematic
5.2	Layout23
6	Bill of materials
7	Restrictions
Revis	sion history
Discl	aimer

1 Safety Instructions

1

Safety Instructions

ELECTRIC SHOCK HAZARD.

Contact can cause an electric shock.

If a voltage above 60 V is applied to the evaluation board, then only persons trained in working with voltages above 60 V are allowed to handle the evaluation board. In addition, ensure that hazardous live parts are not accessible and that accessible live parts are not hazardous.

2 Introduction

2.1 General Description

The EiceDRIVER[™] gate driver 1EDI3035AS, 1EDI3038AS evaluation board is a versatile evaluation platform. It features a half bridge configuration. There is the option to mount either the **FF06MR12A04MA2** HybridPACK[™] DSC or a discrete PG-TO247-3 power device, such as the **AIMW120R045M1** CoolSiC[™] MOSFET. There is also a place holder making the board compatible with PG-TO247-4 packages.

Table 1 EiceDRIVER[™] gate driver 1EDI3035AS/1EDI3038AS evaluation board assembly options

Evaluation Board Variant	High Side Driver	Low Side Driver
SiC for main inverter	1EDI3035AS	1EDI3035AS
SiC for DC/DC	1EDI3038AS	1EDI3038AS

0

2.2 EiceDRIVER[™] Gate driver overview

There is a total of five different devices in this product family: 1EDI3035AS, 1EDI3038AS, 1EDI3025AS, 1EDI3026AS and 1EDI3028AS. Each family member implements a slightly different feature-set and is optimized to target different power switch technologies, whereas the power stage and safety concept is shared between all members.

Table 2 shows the key product features per variant in order to ease the slection process. The user can distinguish the following feature sets:

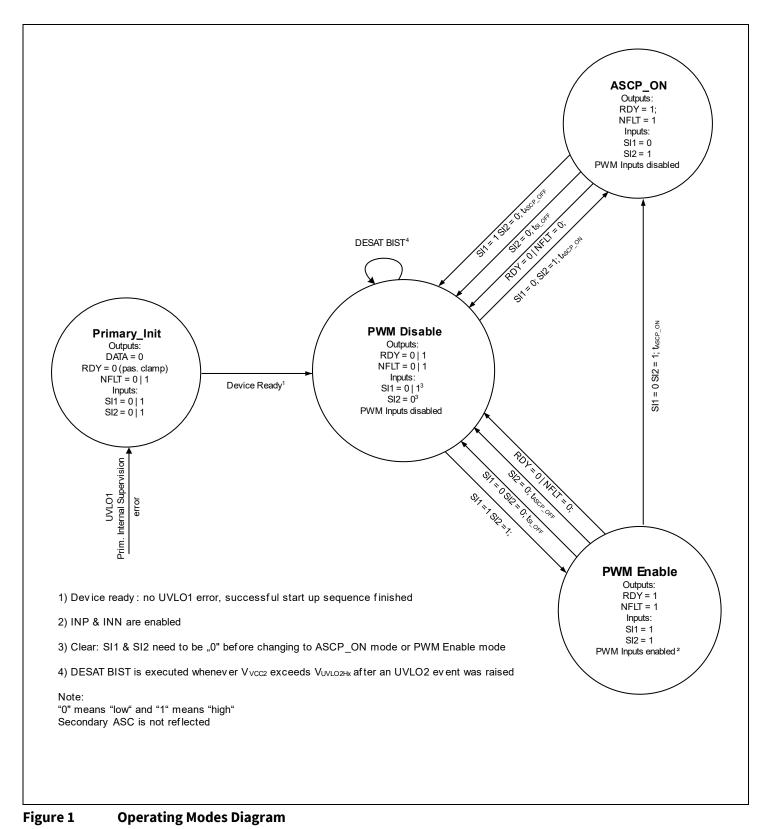
- External active Miller clamp AMCLP
- External softoff pin SOFTOFF
- Overcurrent protection OCP
- Desaturation protection DESAT
- VEE2 OVLO monitoring OVLO3

Table 2Overview of product variants

Туре	AMCLP	SOFTOFF	ОСР	DESAT	OVLO3	ADC	Output stage rated current	Power switch target
1EDI3025AS		х		х	х		15.4	IGBT
1EDI3026AS		х	х		х	15 A	15 A	IGBT
1EDI3028AS		х		х		х	10 A	IGBT
1EDI3035AS		х		х	х		15 A	SiC
1EDI3038AS		х		х			10 A	SiC

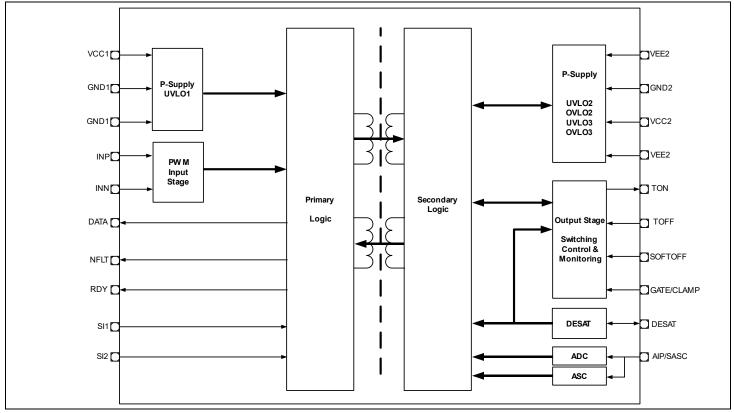
Note: 1EDI3028AS has the current source on the ADC disabled

The 1EDI3028AS variant is optimized for EESM application, with a disabled ADC current source for NTC measurement optimization, no OVLO3 and a lower output stage current.


The 1EDI3038AS variant is prepared for OBC and DC/DC applications, with no ADC or OVLO3 and lower output stage current.

0

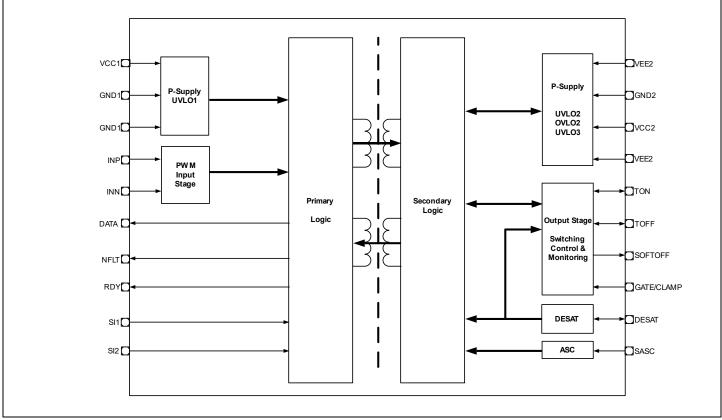
2.3 Operating Modes


The EiceDRIVER[™] gate driver 1EDI3035AS and 1EDI3038AS offer different operating modes, see Figure 1. They provide diagnostic features and the ability to enter safe state in case of system failure. For more details, please refer to the datasheet.

0

2.4 Block diagram

2.4.1 1EDI3035AS



2.4.2 1EDI3038AS

0

3 Getting Started

3 Getting Started

It is recommended to use the evaluation board with the **FF06MR12A04MA2** HybridPACK[™] DSC or the **AIMW120R045M1** CoolSiC[™] MOSFET mounted.

It can also be used in capacitive load emulation or with any other footprint compatible device [1206(3216)]. For load emulation place capacitors C22 and C7, see Figure 4, which are not placed by default.

With capacitive load emulation the DESAT protection triggers on every switch-on event, so the device enters **PWM Disable**, see Operating Modes. In order to suppress such unwanted triggering of DESAT protection, connect DESAT_T to GND2_T and DESAT_B to GND2_B, respectively. This can be done by setting Jumper X1 and X2, similar as can be seen in the figure below.

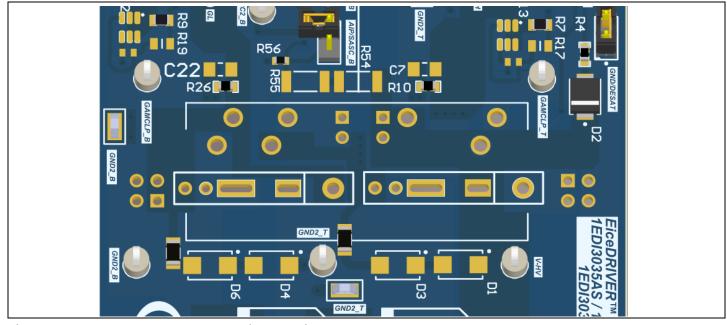


Figure 4 C22 and C7 PCB mounting location

To toggle the gate driver output, perform the following steps:

- 1. Set Jumper X17 and X20 in position 2-3 (Pullup)
- 2. In case only one gate driver shall be driven set jumper X29 to disable either the high side or low-side PWM channel by clamping it to GND
- 3. Provide the primary supply voltage V_{supply} according to operating conditions (+15 V recommended)
- 4. Press the RESET button to perform a transition of the drivers from **PWM Disable** to **PWM Enable**, see Operating Modes
- 5. Verify that the device is in **PWM Enable**: RDY LEDs on, NFLT LEDs off
- 6. Apply a PWM signal to either INP_T or INN_T according to Operating conditions to start toggling the high side or low side switch, respectively
- 7. If the device enters **PWM Disable** and switches off the output stage due to a triggered protection feature, then press the RESET button to perform a transition to **PWM Enable**

The high side driver and the low side driver interlock each other by crossing the INP and INN signals, see the Schematic. So, when one of the drivers is triggered to switch on, the other driver is automatically kept off, regardless of the respective input signal. This feature prevents shoot-through in case both input signals trigger a switch-on of both drivers at the same time by accident.

4 Evaluation Board

4 Evaluation Board

4.1 PCB Overview

Figure 5 shows an overview of the EiceDRIVER[™] gate driver 1EDI3035AS/1EDI3038AS evaluation board. A vertical line on the PCB marks the split between primary side and secondary side.

The transformer TR1 provides the supply voltages for the secondary side of the gate drivers.

Power switches, such as the **FF06MR12A04MA2** HybridPACK[™] DSC or the **AIMW120R045M1** CoolSiC[™] MOSFET are not included and can be ordered separately. As an alternative, a PG-TO247-3 or PG-TO247-4 compatible power switch can be mounted. Figure 6 illustrates how to use the combied footprint for a PG-TO247-4 package.

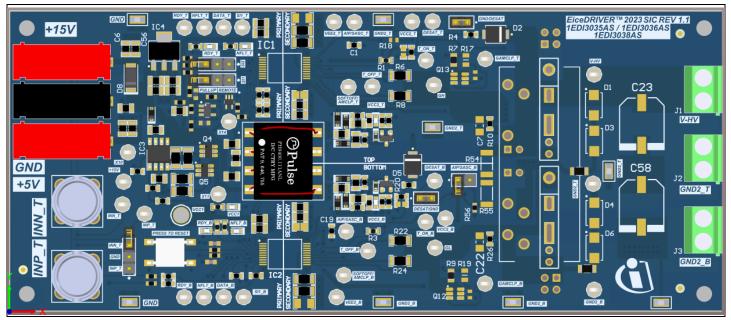
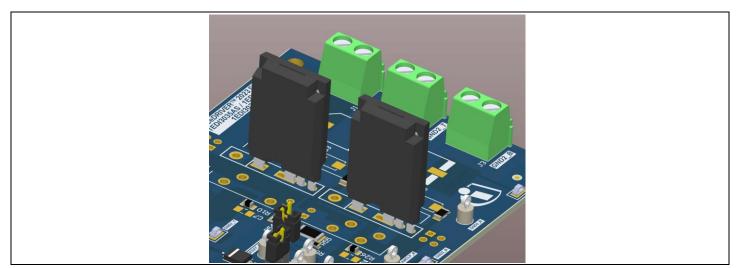



Figure 5 PCB Overview

TO247-4 CoolSiC™ MOSFET mounted

4 Evaluation Board

4.2 Connectors

There are connectors on the primary side and on the secondary side of the EiceDRIVER[™] gate driver 1EDI3035AS, 1EDI3038AS evaluation board. The board requires a supply voltage of +15 V at the banana sockets on the primary side. For the remote reset functionality an additional banana socket is mounted, which needs to be supplied with +5 V if this feature is used. Else leave it open. The BNC connectors INN_T and INP_T accept the PWM signal for the input of each driver, see Figure 7.

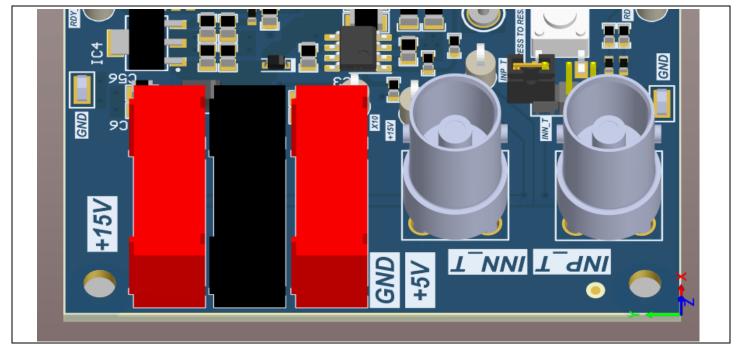
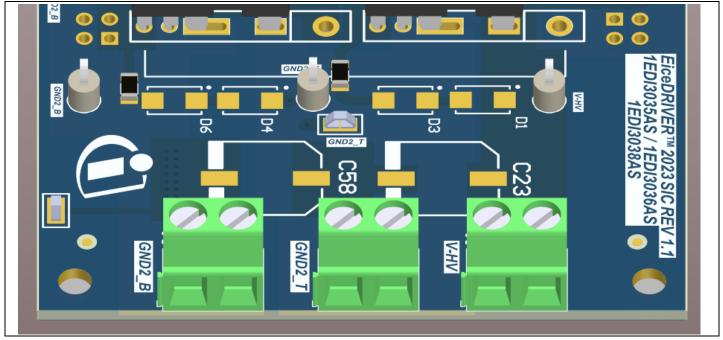



Figure 7 Primary Side Connectors

Figure 8 shows the secondary side screw terminals for the secondary supply voltage and the center tap of the half bridge.

4 Evaluation Board

4.3 LED Indicators

LEDs on the EiceDRIVER[™] gate driver 1EDI3035AS/1EDI3038AS evaluation board indicate board health and driver status, see Figure 9:

- 1. Dedicated NFLT_x and RDY_x indicator for each driver
- 2. Primary side supply indicator on VCC₁
- 3. Secondary side VCC2 indicator for each driver

If the driver pulls the NFLT_x signal to "low", then the NFLT_x LED is on to indicate a fault.

If the driver does not pull the RDY_x signal to "low", then the RDY_x LED is on to indicate that the device is ready.

The status indicated by the NFLT_x and RDY_x LEDs can be used to determine the current operating mode, see Operating Modes.

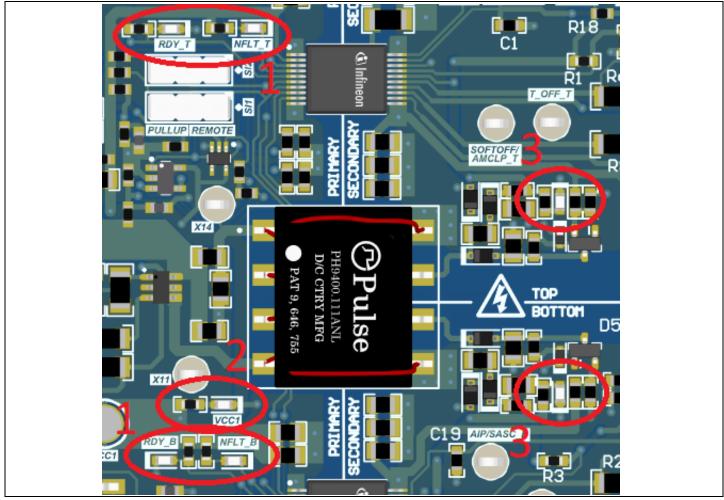


Figure 9 LED Indicators

4 Evaluation Board

4.4 **Operating conditions**

When using the 1EDI3035AS, 1EDI3038AS evaluation board the operating conditions of the board shall be valued. Note that the high voltage capability of the board is derived from the theoretical limit of the components on the board but not guaranteed or tested. Use at your own risk.

Table 3 Operating conditions

Parameter	Pin	Min.	Max.		Note
V _{Supply}	Banana Socket	13	21	V	Limited by secondary side UVLO, OVLO, Remote Reset Circuitry, and maximum rating of power switch gate.
V _{Supply,2}	Banana Socket	0	5.5	V	Limited by comparator operating range.
V_{HV} to GND_{2_B}	Screw Terminal	0	1200	V	Theoretical HV DC limit; not tested. Breakdown voltage given by DESAT diodes D2, D5, Diodes D1, D3, D4, D6, and Capacitors C23, C58. Replace when higher voltages are required.
V _{BNC}	BNC Connectors	-0.3	5	V	Limited by VCC1 voltage.

4 Evaluation Board

4.5 Jumper configuration

The EiceDRIVER[™] gate driver 1EDI3035AS/1EDI3038AS evaluation board provides the following configuration options:

- Pullup or remote configuration of SI₁/SI₂
- Disable DESAT-/OCP-protection on high- or low-side
- DC-link measurement with ADC- or SASC-event on low-side

The reset button R pulls SI_1/SI_2 logic low and thus clears errors

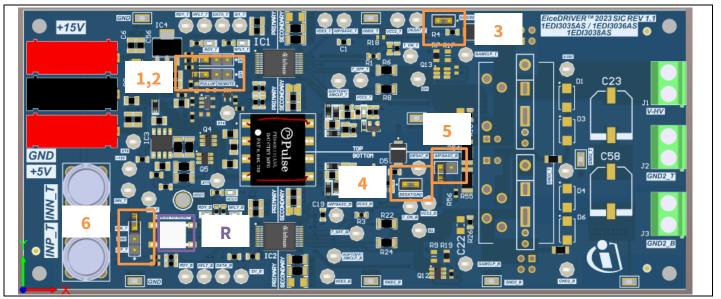


Figure 10 EiceDRIVER[™] gate driver 1EDI3025AS/1EDI3026AS evaluation board configuration overview

Jumper ID	Default state	Signal Name	Effect when placed
1	2-3	SI ₂	Pulled HIGH
2	2-3	SI1	Pulled HIGH
3	Placed	DESAT _T /OCP _T	Grounded
4	Placed	DESAT _B /OCP _B	Grounded
5	Not placed	AIP _B /SASC _B	DC-Link Measurement
6	Not placed	INP_T / INN_T	INP_T or INN_T grounded

Table 4Jumper default configuration options

4 Evaluation Board

4.5.1 SI1 and SI2 PULLUP

For test-setups without HV-connections and without a second input voltage, set Jumper 1 and Jumper 2 in Position 2-3 to reset the driver by pressing the reset button. To change to PWM Enable state, press the reset button once after setting the jumpers.

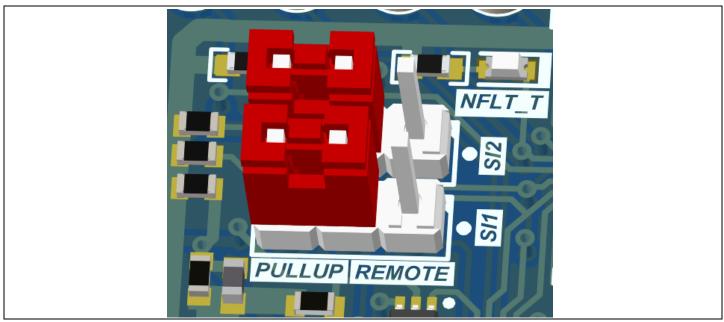


Figure 11 SI1, SI2 PULLUP

4.5.2 ASCP_ON Mode

For testing the ASCP_ON mode, where PWM Inputs are disabled, but the ADC is enabled, place Jumper 1 on position 2-3 and Jumper 2 on position 1-2 to generate the signal SI1=0, SI2=1. **Do not connect +5V** on the second banana socket. Press the reset button once to get the device ready.

Figure 12 SI1, SI2 ASCP_ON

4 Evaluation Board

4.5.3 SI1 and SI2 Remote Reset

For high voltage testing it is not advised to use the button S1 to reset and transition the device from **PWM Disable** to **PWM Enable** mode. The clear function and mode transitioning can be automated by using two adjustable power supplies on the +15V and +5V input jacks.

Important note: On boards with revision "REV 1.0" the switch S1 and capacitors C8 and C9 need to removed for using the remote reset functionality. The revision of the board is printed in the top right corner of the PCB, next to the product type. Use Figure 13 to quickly identify S1, C8 and C9.

Figure 13 Components to be removed for remote reset on REV 1.0 PCBs

Place the jumpers as depicted in Figure 14. The relationship between the signals SI1_T and SI1_B is shown in Table 5, along with the resulting gate driver states. For detailed mapping of these signals to the gate driver see the Driver schematic.

Voltage +15V jack [V]	Voltage +5V jack [V]	SI1_T (SI2_B)	SI1_B (SI2_T)	Operating mode Top driver	Operating mode Bottom driver
≤ 13.5	0	0	0	PWM Disable	PWM Disable
≥ 14.5	5	1	1	PWM Enable	PWM Enable
≤ 13.5	5	0	0	PWM Disable	PWM Disable
≥ 14.5	0	1	0	PWM Disable	ASCP_ON

Table 5	Configuration table for SI1 and SI2 remote reset
---------	--

In order to bring both gate drivers into **PWM Enable** mode on power-up, proceed as follows:

Set the voltage on the +5V jack to +5V initially, then ramp-up the voltage on the +15V jack above 14.5V. The circuit on the board will perform an operation where both signals SI1 and SI2 simultaneously switch to high. This operation transitions both gate drivers from **PWM Disable** to **PWM Enable** mode simultaneously. The gate drivers are then ready to receive a PWM signal on the primary side and switch the output accordingly.

The bottom gate driver can be transitioned to **ASCP_ON** mode by pulling the voltage on the +5V jack to 0V. It is only allowed to transition into this mode when both gate drivers where in **PWM Disable** mode before. The same principle needs to be applied when transitioning into **PWM Enable** mode.

4 Evaluation Board

For a defined power-down of both gate drivers, ramp-down the voltage on the +15V jack below 13.5V and thus put them into **PWM Disable** mode.

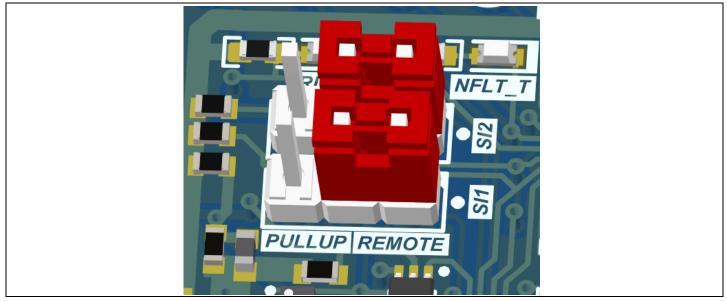
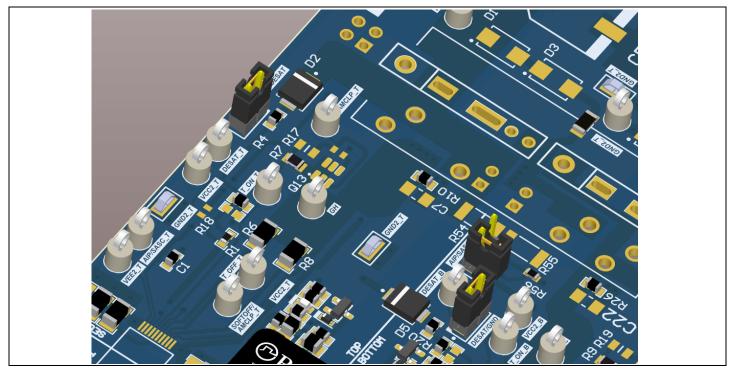



Figure 14 SI1, SI2 Remote

4.5.4 Connect DESAT and OCP to GND

Place Jumper 3 and Jumper 4 to connect the high side DESAT- and low side DESAT-signal to GND.

This avoids transitioning to **PWM Disable** when toggling the output in capacitive load emulation, as DESAT is then disabled.

4 Evaluation Board

4.5.5 AIP_B and SASC_B

There is the option to measure the DC-Link voltage via the ADC of the low-side driver or to test the Secondary Active Short Circuit (SASC) functionality.

Do not place Jumper 5 to measure DC-Link.

Place Jumper 5 to test SASC.

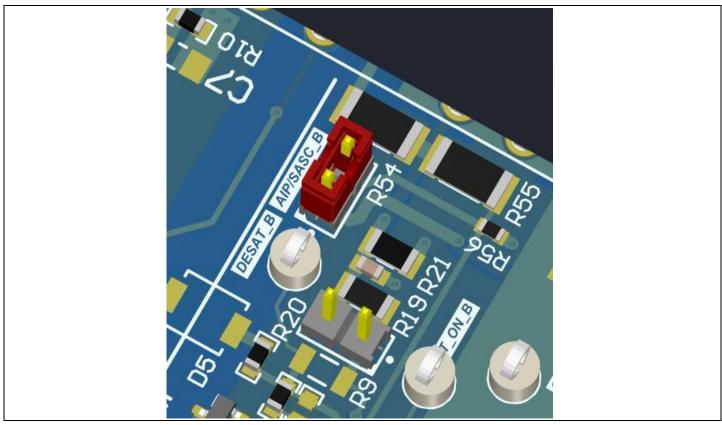


Figure 16 AIP_B and SASC_B Test

4.6 Difference between high side and low side

There is the possibility to conduct different measurements on the high- and low-side.

On the high side it is possible to measure the temperature inside the DSC module, because the diode inside the power module is directly connected to the ADC of the high side driver.

On the low side it is possible to measure the DC-Link voltage via the resistor ladder (R54, R55, R56) and ADC. It also possible to test an SASC event, when setting Jumper 5.

5 Schematic and Layout

5 Schematic and Layout

5.1 Schematic

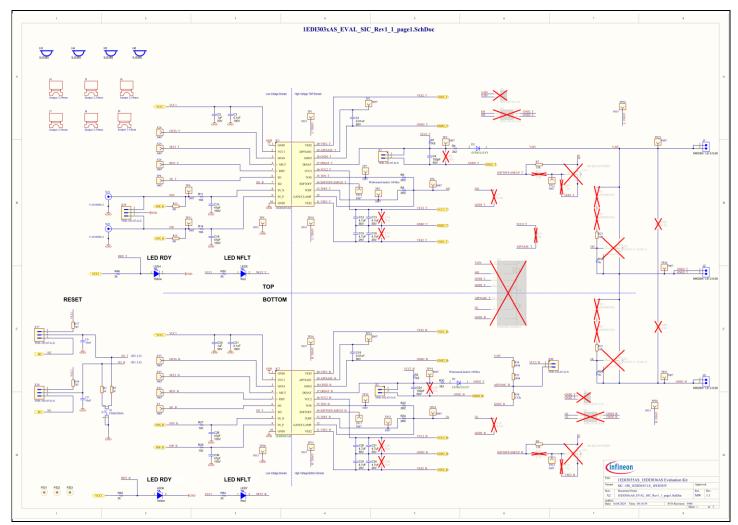


Figure 17 Driver schematic for board variant "SiC for main inverter" with 1EDI3035AS

5 Schematic and Layout

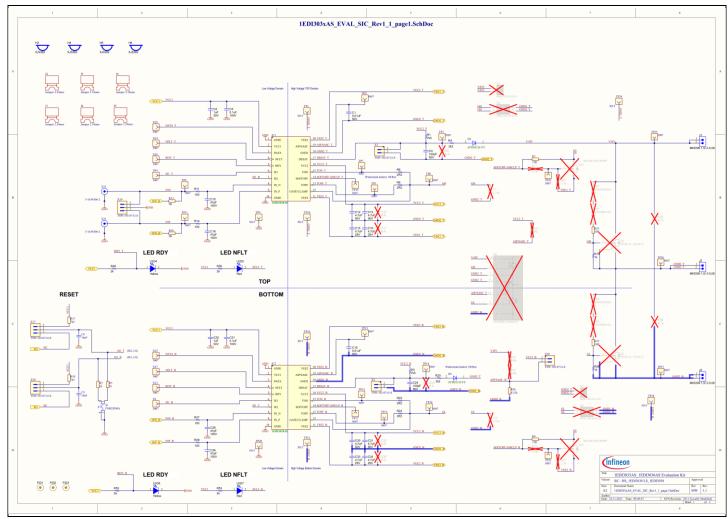


Figure 18 Driver schematic for board variant "SiC for DC/DC" with 2 x 1EDI3038AS

5 Schematic and Layout

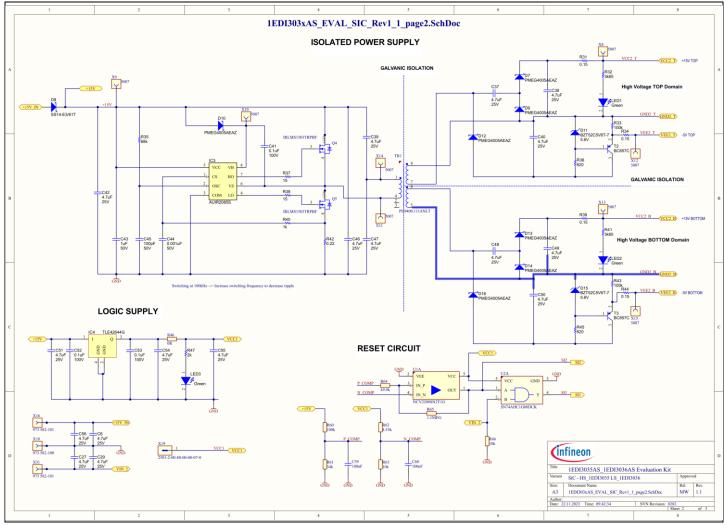


Figure 19 Primary and secondary supply schematic

5 Schematic and Layout

5.2 Layout

The EiceDRIVER[™] gate driver 1EDI3035AS, 1EDI3038AS evaluation board PCB consists of two layers: top and bottom. For ease of use there are no components placed on the bottom side.

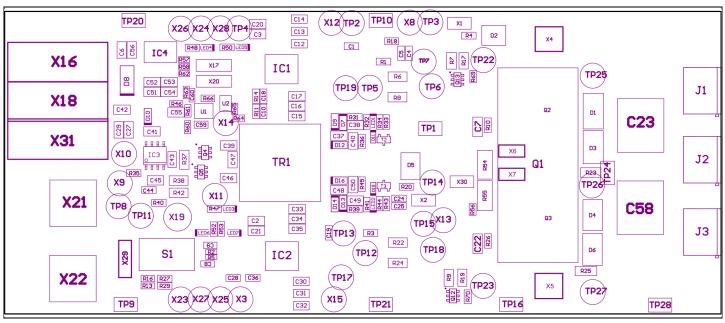


Figure 20 Assembly top view

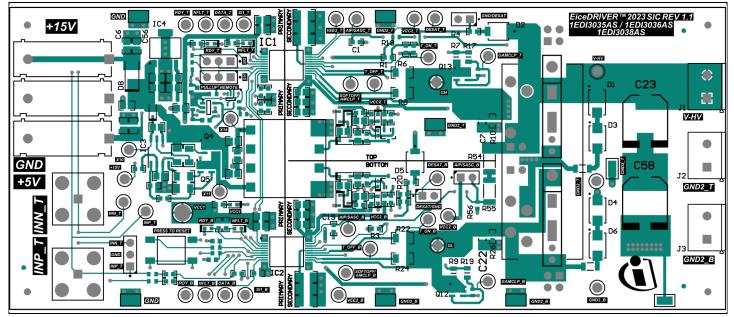


Figure 21 Top layer

5 Schematic and Layout

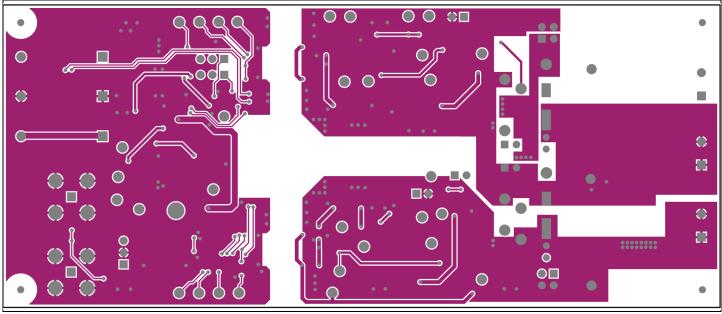


Figure 22 Bo

Bottom layer

6 Bill of materials

Bill of materials 6

Table 6 and Table 7 show the bill of materials for all EiceDRIVER[™] gate driver 1EDI3035AS, 1EDI3038AS evaluation board variants as depicted in Table 1. The driver ICs mounted depends on the variant. The power switches are not included.

Designator	Manufacturer Order Number	Manufacturer	Quantity
C1, C19	C0603C103K5RECAUTO	Kemet	2
C2, C20	GCM21BR71H105KA03L	MuRata	2
C3, C21, C41, C52, C53	GCM21BR72A104KA37K	MuRata	5
C4, C24	C0603C101K5RACAUTO	Kemet	2
C6, C15, C16, C27, C29, C33, C34, C37, C38, C39, C40, C42, C46, C47, C48, C49, C50, C51, C54, C55, C56	GCM21BC71E475KE36L	MuRata	21
C8, C9	GRM188R71E103MA01	MuRata	21
C10, C18, C28, C36	C0603C470K1GACAUTO	Kemet	4
C12, C13, C30, C31	GCM31CC71H475KA03L	MuRata	4
C43	C1206C105K5RACAUTO	Kemet	1
C43	C0603C102K5RACAUTO	Kemet	1
C45	C0805C101K5GACAUTO	Kemet	1
C59, C60	C0603C104J3RAC	Kemet	2
D2, D5	STTH112UFY	STMicroelectronics	2
D7, D9, D10, D12, D13, D14, D16	PMEG4005AEAZ	Nexperia	7
D8	SS14-E3/61T	Vishay Semiconductor	1
D11, D15	BZT52C5V6T-7	Diodes Inc.	2
FID1, FID2, FID3	N/A	N/A	3
H3, H4, H5, H6	SJ-5382 (CLEAR)	3M	4
IC1	1EDI3035AS	Infineon Technologies	1
IC2	1EDI3035AS	Infineon Technologies	1
IC3	AUIR2085S	International Rectifier	1
IC4	TLE42644G	Infineon Technologies	1
J1, J2, J3	MKDSN 1,5/ 2-5,08	Phoenix Contact	3
J4, J5, J6, J7, J8, J9	M7581-05	Harwin Inc.	6
LED1, LED2, LED3	LTST-C190GKT	Lite-On	3
LED4, LED6	LTST-C190YKT	Lite-On	2
LED5, LED7	LTST-C190CKT	Lite-On	2
Q4, Q5, Q12	IRLMS1503TRPBF	Infineon Technologies	4
R1, R3	CRCW06037K50FKEA	Vishay-Dale	2
R2, R5	RC0603FR-071KL	Yageo	2
R4, R20	CRCW06032K20FKEA	Vishay-Dale	2
R6, R8, R22, R24	CRCW12062R20JNEAHP	Vishay-Dale	4
R7	CRCW080515R0FKEA	Vishay	1
R10, R26, R40	CRCW06031K00FKEA	Vishay-Dale	3
R11, R14, R27, R29	CRCW0603100RFKEA	Vishay-Dale	4

. . . . _ . ----.

6 Bill of materials

R13, R16, R46	RC0603JR-070RL	Yageo	3
R19	CRCW08054R70FKEA	Vishay	1
R23, R25	RC1206FR-0710RL	Yageo	2
R31, R34, R39, R44	RCWE0603R150FKEA	Vishay-Dale	4
R32, R41	CRCW06033K65FKEA	Vishay-Dale	2
R33, R43	CRCW0603100KFKEA	Vishay-Dale	2
R35	CRCW060368K0FKEA	Vishay-Dale	1
R36, R45	CRCW0603820RFKEA	Vishay-Dale	2
R37, R38	CRCW120615R0FKEA	Vishay-Dale	2
R42	RCWE1206R220FKEA	Vishay-Dale	1
R47, R48, R50, R52, R53	CRCW06032K00FKEA	Vishay-Dale	5
R54, R55	CRCW2010649KFKEF	Vishay	2
R56	CRCW06034K32FKEA	Vishay	1
R57, R58, R70	CRCW06037K50FKTA	Vishay	3
R60	RC0603FR-07100KL	Yageo	1
R61	CRCW060334K0FKEA	Vishay	1
R62	CRCW06034K53FKEA	Vishay	1
R63, R66	RC0603FR-0710KL	Yageo	2
R64	CRCW060349K9FKEA	Vishay	1
R65	CRCW06031M10FKEA	Vishay	1
S1	FSM2JSMA	Tyco Electronics	1
T2, T3	BC857C	ON Semiconductor	2
TP1, TP9, TP10, TP16, TP20,			
TP21, TP24, TP28	5015	Keystone Electronics Corp.	8
TP2, TP3, TP4, TP5, TP6, TP7,			
TP8, TP11, TP12, TP13, TP14,			
TP15, TP17, TP18, TP19, TP22,			
TP23, TP25, TP26, TP27, X3,			
(8, X9, X10, X11, X12, X13, X14,			
X15, X23, X24, X25, X26, X27, X28	5007	Keystone Electronics Corp.	35
TR1	PH9400.111ANLT	Pulse Electronics	
U1	NCV2200SN2T1G	ON Semiconductor	1 1
	SN74AHC1G08DCK	Texas Instruments	
U2			1
X1, X2, X30	TSW-102-07-G-S	Samtec Hirschmann Test &	3
X16, X31	973 582-101	Measurement	2
X17, X20, X29	TSW-103-07-G-S	Samtec	3
	1311 103-01-0-3	Hirschmann Test &	J
X18	973 582-100	Measurement	1
X19	2501-2-00-80-00-00-07-0	Mill-Max	1
X21, X22	5-1634506-2	TE Connectivity	2

6 Bill of materials

Table 7 Variant for SiC DC/DC with 2 x 1EDI3038AS

Designator	Manufacturer Order Number	Manufacturer	Quantity
C1, C19	C0603C103K5RECAUTO	Kemet	2
C2, C20	GCM21BR71H105KA03L	MuRata	2
C3, C21, C41, C52, C53	GCM21BR72A104KA37K	MuRata	5
C4, C24	C0603C101K5RACAUTO	Kemet	2
C6, C15, C16, C27, C29, C33,			
C34, C37, C38, C39, C40, C42,			
C46, C47, C48, C49, C50, C51,			
C54, C55, C56	GCM21BC71E475KE36L	MuRata	21
C8, C9	GRM188R71E103MA01	MuRata	2
C10, C18, C28, C36	C0603C470K1GACAUTO	Kemet	4
C12, C13, C30, C31	GCM31CC71H475KA03L	MuRata	4
C43	C1206C105K5RACAUTO	Kemet	1
C44	C0603C102K5RACAUTO	Kemet	1
C45	C0805C101K5GACAUTO	Kemet	1
C59, C60	C0603C104J3RAC	Kemet	2
D2, D5	STTH112UFY	STMicroelectronics	2
D7, D9, D10, D12, D13, D14,			
D16	PMEG4005AEAZ	Nexperia	7
D8	SS14-E3/61T	Vishay Semiconductor	1
D11, D15	BZT52C5V6T-7	Diodes Inc.	2
FID1, FID2, FID3	N/A	N/A	3
H3, H4, H5, H6	SJ-5382 (CLEAR)	3M	4
IC1, IC2	1EDI3038AS	Infineon Technologies	2
IC3	AUIR2085S	International Rectifier	1
IC4	TLE42644G	Infineon Technologies	1
J1, J2, J3	MKDSN 1,5/ 2-5,08	Phoenix Contact	3
J4, J5, J6, J7, J8, J9	M7581-05	Harwin Inc.	6
LED1, LED2, LED3	LTST-C190GKT	Lite-On	3
LED4, LED6	LTST-C190YKT	Lite-On	2
LED5, LED7	LTST-C190CKT	Lite-On	2
Q4, Q5	IRLMS1503TRPBF	Infineon Technologies	2
R1, R3	CRCW06037K50FKEA	Vishay-Dale	2
R2, R5	RC0603FR-071KL	Yageo	2
R4, R20	CRCW06032K20FKEA	Vishay-Dale	2
R6, R8, R22, R24	CRCW12062R20JNEAHP	Vishay-Dale	4
R7	CRCW080515R0FKEA	Vishay	1
R9	CRCW080515R0FK	Vishay	1
R10, R26, R40	CRCW080315R0FK CRCW06031K00FKEA	Vishay-Dale	3
R10, R26, R40 R11, R14, R27, R29	CRCW0603100RFKEA	Vishay-Dale	4
R13, R16, R46	RC0603JR-070RL	Yageo	3
R23, R25	RC1206FR-0710RL	Yageo	2
R31, R34, R39, R44	RCWE0603R150FKEA	Vishay-Dale	4
R32, R41	CRCW06033K65FKEA	Vishay-Dale	2
R33, R43	CRCW0603100KFKEA	Vishay-Dale	2
R35 ser Manual	CRCW060368K0FKEA 27	Vishay-Dale	1Rev 1

6 Bill of materials

R36, R45	CRCW0603820RFKEA	Vishay-Dale	2
R37, R38	CRCW120615R0FKEA	Vishay-Dale	2
R42	RCWE1206R220FKEA	Vishay-Dale	1
R47, R48, R50, R52, R53	CRCW06032K00FKEA	Vishay-Dale	5
R56	CRCW06034K32FKEA	Vishay	1
R57, R58	CRCW06037K50FKTA	Vishay	2
R60	RC0603FR-07100KL	Yageo	1
R61	CRCW060334K0FKEA	Vishay	1
R62	CRCW06034K53FKEA	Vishay	1
R63, R66	RC0603FR-0710KL	Yageo	2
R64	CRCW060349K9FKEA	Vishay	1
R65	CRCW06031M10FKEA	Vishay	1
S1	FSM2JSMA	Tyco Electronics	1
T2, T3	BC857C	ON Semiconductor	2
TP1, TP9, TP10, TP16, TP20,			
TP21, TP24, TP28	5015	Keystone Electronics Corp.	8
TP2, TP3, TP4, TP5, TP6, TP7,			
TP8, TP11, TP12, TP13, TP14,			
TP15, TP17, TP18, TP19, TP22,			
TP23, TP25, TP26, TP27, X3,			
X8, X9, X10, X11, X12, X13, X14,			
X15, X23, X24, X25, X26, X27,			
X28	5007	Keystone Electronics Corp.	35
TR1	PH9400.111ANLT	Pulse Electronics	1
U1	NCV2200SN2T1G	ON Semiconductor	1
U2	SN74AHC1G08DCK	Texas Instruments	1
X1, X2, X30	TSW-102-07-G-S	Samtec	3
		Hirschmann Test &	
X16, X31	973 582-101	Measurement	2
X17, X20, X29	TSW-103-07-G-S	Samtec	3
		Hirschmann Test &	
X18	973 582-100	Measurement	1
X19	2501-2-00-80-00-00-07-0	Mill-Max	1
X21, X22	5-1634506-2	TE Connectivity	2

7 Restrictions

7 **Restrictions**

This evaluation board offers limited features only for evaluation and testing of Infineon products. The evaluation board is neither an end product nor a finished appliance, nor is it intended or authorized by Infineon to be integrated into end products. The evaluation board may not be used in any production system.

For further information please visit www.infineon.com.

Revision history

Document revision	Date	Description of changes
0.9	2022-07-19	Created initial draft
1.0	2022-08-19	Updated schematics and layout, BOM Minor editorial changes
1.1	2022-08-25	Chapter 4.5.3 updated and expanded
1.2	2022-10-28	Chapter 2.1 , Chapter 2.2 description updated
1.3	2023-11-21	Board variant with 1EDI3038AS added to several chapters
1.4	2024-04-16	Variant 1EDI3036AS removed

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2024-04-16

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2024 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document? Email: erratum@infineon.com

Document reference Z8F80327778

Important notice

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Warnings

Due to technical requirements products may contair dangerous substances. For information on the types in question, please contact your nearest Infineor Technologies office.

Except as otherwise explicitly approved by Infineor Technologies in a written document signed by authorized representatives of Infineor Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof car reasonably be expected to result in personal injury.