61

Fixed Wirewound High Power Vitreous Resistors Electrical Traction Model

- 95 W to 800 W at 25 °C
- NF C 93-214
- RB 25 x 168, RB 30 x 250
- Rugged construction for use in severe environmental conditions

STAINLESS STEEL 304 L COLLARS "CS" TYPE 2

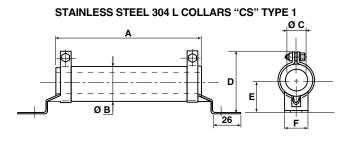
58

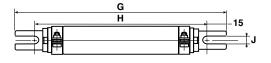
Α

G н

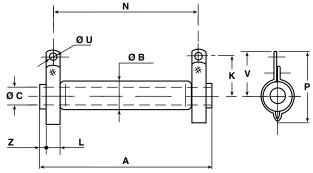
øв

Compliant to RoHS directive 2002/95/EC

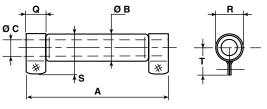

The RWST vitreous wirewound high power resistors are known for their excellent reliability which has developed out of the VISHAY SFERNICE experience over several decades in the field of high current applications.

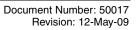

Extremely severe conditions of use are encountered in electrical traction including repeated overloads. To withstand such conditions the new RWST model is extremely rugged and is manufactured to a very carefully monitored process using the best materials.

NF F 16101, 10/1988 and 16102, 04/1992: Not applicable (our parts are made of metallic and refractory materials). NF C 93-214. Performances according to NF C 93-214.


DIMENSIONS in millimeters

"CS" Type 1 Collars





WELDED STAINLESS STEEL 304 L COLLARS "AN"

WELDED STAINLESS STEEL 304 L BAND "B"

D

Ê

'ISHA'

Vishay Sfernice

Fixed Wirewound High Power Vitreous Resistors Electrical Traction Model

RWST

RWST STYLE	25 x 138	25 x 168	30 x 250	40 x 370	50 x 373
Connections	AN-B CS type 1	AN-B CS type 1	AN-B CS type 1	AN CS type 2	AN CS type 2
A ± 2	138	168	250	370	373
Ø B max.	28	28	33	45	53
Ø C min.	12	12	17	22	27.1
D	50 ± 1.5	50 ± 1.5	60 ± 1.5	69 max.	80 max.
E	27 ± 1	27 ± 1	30 ± 1	45 ± 1.5	51 ± 1.5
F ± 0.5	24	24	25	30	30
G - 4/+ 0	199	229	317	432	432
H - 4/+ 0	169	199	287	405	405
J ± 0.5	6.5	6.5	9	9	9
К	28.5 ± 1	28.5 ± 1	31 ± 1	45 ± 1.5	51 ± 1.5
L - 0/+ 0.5	9	9	13	18	18
Ν	117 ± 2	147 ± 2	227 ± 2	332 ± 3	332 ± 3
Р	51 ± 1.5	51 ± 1.5	55 ± 1.5	81.5 max.	92.5 max.
Q - 0/+ 0.5	15	15	18	-	-
R - 0.3/+ 0.9	26	26	31	-	-
S max.	38.5	38.5	43.5	-	-
T±1	23.5	23.5	26	-	-
ØU	5.7	5.7	5.7	9.2	9.2
V	33.5 ± 1	33.5 ± 1	36 ± 1	57 ± 1.5	63 ± 1.5
Z	6	6	5	10	11.5
Average unit weight in g (CS collars)	225	250	445	1400	2200

MECHANICAL SPECIFICATIONS

Mechanical Protection Resistive Element Connections AN Collar or B Average Unit Weight Vitreous enamel Ni-Cr wire CS supporting collars on Request 225 g to 2200 g

ENVIRONMENTAL SPECIFICATIONS

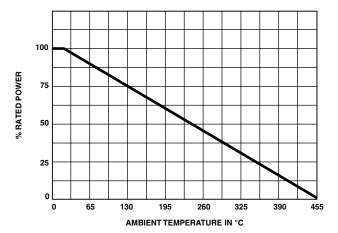
ELECTRICAL SPECIFICATIONS

o 430 kΩ
ed series values)
5 %
0 W at 25 °C
C (typical)
ar (typical)

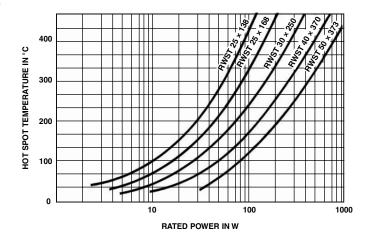
PERFORMANCE				
TESTS	CONDITIONS	REQUIREMENTS	TYPICAL VALUES AND DRIFTS	
Short Time Overload	Time Overload10 Pr during 5 s Voltage limited at < 5000 V2 % or 0.05Ω		0.5 %	
Climatic Sequence	matic Sequence $-55 \degree C + 200 \degree C$ $2\% \text{ or } 0.05 \Omega$ Insulation resistance $100 \text{ M}\Omega$		0.5 %	
Humidity (Steady State)	56 days 95 % relative humidity	3 % or 0.05 Ω Insulation resistance 100 $M\Omega$	0.5 %	
Thermal Shock	Load at 100 % Pr followed by cold temperature exposure at - 55 °C/15' 2 % or 0.05 Ω		0.5 %	
Shock	Severity 50 A 9 shocks/each side	1 % or 0.05 Ω	0.25 %	
Vibration	Severity 55B	1 % or 0.05 Ω	0.25 %	
Terminal Strength AN B	Traction 40 Ncm Torque 60 Ncm	1 % or 0.05 Ω	0.5 %	
Load Life	90'/30' cycle	5 %	1000 h 1 %	
LUau LIIE	1000 h at Pr 25 °C	5 %	5000 h 2 %	

Vishay Sfernice

Fixed Wirewound High Power Vitreous Resistors Electrical Traction Model


SPECIAL FEATURES										
RWST STYLE	25 x	c 138	25 :	x 168	30 :	x 250	40 :	40 x 370 50 x 3		x 373
Designation NF C 93-214		-	RB 2	5 x 168	RB 3	0 x 250		-	-	
Power Rating at 25 °C	95	5 W	16	60 W	28	80 W	500 W 700		0 W	
Maximum Power Rating at 25 °C P max.	11	0 W	18	80 W	32	20 W	600 W		800 W	
Ohmic Range (E12, E24 series)	2.7 Ω	82 kΩ	2.7 Ω	100 kΩ	4.7 Ω	220 kΩ	8.2 Ω	360 kΩ	12 Ω	430 kΩ
Limiting Element Voltage	140	V 00	19	00 V	30	00 V	45	00 V	5000 V	
Critical Resistance	18	kΩ	20) kΩ	30) kΩ	36	δkΩ	30 kΩ	

NON INDUCTIVE WINDING


For high frequencies, low self induction resistors are available with special windings. RWSTNI designation.

MODEL AND	RWSTNI	RWSTNI	RWSTNI	RWSTNI	RWSTNI
STYLE	25 x 138	25 x 168	30 x 250	40 x 370	50 x 373
OHMIC RANGE	22 Ω	22 Ω	120 Ω	120 Ω	150 Ω
(E12 SERIES)	2.5 kΩ	4 kΩ	6.8 kΩ	8.2 kΩ	8.2 kΩ

POWER RATING CHART

TEMPERATURE RISE

Fixed Wirewound High Power Vitreous Resistors Electrical Traction Model

Vishay Sfernice

PACKAGING

Box: Fixed quantity depending on size and connections.

MARKING

SFERNICE	trademark,	model,	style,	nominal	resistance
(in Ω), tolera	nce (in %), r	nanufac	turing o	date.	

ORDERING INFORMATION											
RWST	25 × 138			в	56U	±5%	B06	е			
MODEL	STYLE	NON-INDUCTIVE WINDING	SPECIAL DESIGN	CONNECTIONS	OHMIC VALUE	TOLERANCE	PACKAGING	LEAD (Pb)-FREE			
		Optional	Optional		Custom items are subject to extra-charge and min. order. Please see price list.						

GLOBAL P	GLOBAL PART NUMBER INFORMATION											
R W S T 2 5 1 6 8 C 4 7 0 0 J B 0 4												
GLOBAL MODEL	SIZE	LEADS	OPTION		TOLERANCE	PACKAGING	SPECIAL					
RWST	25138 25168 30250 40370 50373	A = AN B = B C = CS F = Faston	N = Non inductive winding	The first three digits are significant figures and the last digit specifies the number of zeros to follow. R designates decimal point. 4700 = 470 Ω 48R8 = 48.7 Ω R010 = 0.01 Ω R470 = 0.47 Ω	J = 5.0 % K = 10 %	Box: BO1 BO2 BO2NA BO4 BO4NA BO6 BO6NA	As applicable. Example: BA7					

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.