

MG Chemicals UK Limited

Version No: A-2.00

Safety data sheet according to REACH Regulation (EC) No 1907/2006, as amended by UK REACH Regulations SI 2019/758

Issue Date: 28/01/2022 Revision Date: 28/01/2022 L.REACH.GB.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

1.1. Product Identifier

Product name	841WB			
Synonyms	ynonyms SDS Code: 841WB-Liquid; 841WB-15ML, 841WB-150ML, 841WB-850ML, 841WB-3.78L UFI:EJK0-60QW-D00Y-9VAC			
Other means of identification	Super Shield Water Based Nickel Conductive Paint / Water Based Nickel Conductive Paint			

1.2. Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Nickel filled, electrically conductive coating	
Uses advised against	FOR INDUSTRIAL USE ONLY	

1.3. Details of the supplier of the safety data sheet

Registered company name	MG Chemicals UK Limited	MG Chemicals (Head office)	MG Chemicals (Manufacturing)		
Address	Heame House, 23 Bilston Street, Sedgely Dudley DY3 1JA United Kingdom	9347 - 193 Street Surrey V4N 4E7 British Columbia Canada	1210 Corporate Drive ON L7L 5R6 Canada		
Telephone	+(44) 1663 362888	+(1) 800-201-8822	+(1) 800-340-0772		
Fax	+(1) 905-331-2682	+(1) 905-331-2682	+(1) 905-331-2682		
Website	Not Available	www.mgchemicals.com	Not Available		
Email	sales@mgchemicals.com	Info@mgchemicals.com	sds@mgchemicals.com		

1.4. Emergency telephone number

Association / Organisation	Verisk 3E (Access code: 335388)	CANUTEC
Emergency telephone numbers	+(44) 20 35147487	+(1) 613-996-6666
Other emergency telephone numbers	+(0) 800 680 0425	Not Available

SECTION 2 Hazards identification

2.1. Classification of the substance or mixture

Classified according to	
GB-CLP Regulation, UK SI	
2019/720 and UK SI 2020/1567	
[41	

H360 - Reproductive Toxicity Category 1A, H317 - Sensitisation (Skin) Category 1, H372 - Specific Target Organ Toxicity - Repeated Exposure Category 1, H351 - Carcinogenicity Category 2, H412 - Hazardous to the Aquatic Environment Long-Term Hazard Category 3

Legend:

1. Classified by Chemwatch; 2. Classification drawn from GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567

2.2. Label elements

Hazard pictogram(s)

Signal word

Danger

Hazard statement(s)

H360	May damage fertility or the unborn child.		
H317	y cause an allergic skin reaction.		
H372	Causes damage to organs through prolonged or repeated exposure.		
H351	Suspected of causing cancer.		
H412	Harmful to aquatic life with long lasting effects.		

Supplementary statement(s)

Not Applicable

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.
P260	Do not breathe mist/vapours/spray.
P280	Wear protective gloves and protective clothing.
P270	Do not eat, drink or smoke when using this product.
P273	Avoid release to the environment.
P264	Wash all exposed external body areas thoroughly after handling.
P272	Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

P308+P313	IF exposed or concerned: Get medical advice/ attention.		
P302+P352	P302+P352 IF ON SKIN: Wash with plenty of water.		
P314	t medical advice/attention if you feel unwell.		
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.		
P362+P364	Take off contaminated clothing and wash it before reuse.		

Precautionary statement(s) Storage

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

2.3. Other hazards

Inhalation, skin contact and/or ingestion may produce health damage*.

Cumulative effects may result following exposure*.

nickel Listed in the Europe Regulation (EC) No 1907/2006 - Annex XVII (Restrictions may apply)

SECTION 3 Composition / information on ingredients

3.1.Substances

See 'Composition on ingredients' in Section 3.2

3.2.Mixtures

1.CAS No 2.EC No 3.Index No 4.REACH No	%[weight]	Name	Classified according to GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567	SCL / M-Factor	Nanoform Particle Characteristics
1.7440-02-0 2.231-111-4 445-070-7 3.028-002-00-7 028-002-01-4 4.Not Available	48	nickel	Sensitisation (Skin) Category 1, Carcinogenicity Category 2, Specific Target Organ Toxicity - Repeated Exposure Category 1; H317, H351, H372 [2]	Not Available	Not Available
1.14807-96-6 2.238-877-9 3.Not Available 4.Not Available	2	talc	Acute Toxicity (Inhalation) Category 4, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3; H332, H335 [1]	Not Available	Not Available
1.126-33-0 2.204-783-1 3.016-031-00-8 4.Not Available	1	sulfolane	Acute Toxicity (Oral) Category 4; H302 [2]	Not Available	Not Available
Legend:	I	,	ch; 2. Classification drawn from GB-CLP Regulation, UK SI 2019/720 and U vailable; [e] Substance identified as having endocrine disrupting properties	IK SI 2020/1567;	3. Classification drawn

SECTION 4 First aid measures

4.1. Description of first aid measures					
Eye Contact	If this product comes in contact with eyes: • Wash out immediately with water. • If irritation continues, seek medical attention. • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.				
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.				

Inhalation	lation If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary.	
Ingestion	 Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor. 	

4.2 Most important symptoms and effects, both acute and delayed

4.3. Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

SECTION 5 Firefighting measures

5.1. Extinguishing media

Metal dust fires need to be smothered with sand, inert dry powders.

DO NOT USE WATER, CO2 or FOAM

- ▶ Use DRY sand, graphite powder, dry sodium chloride based extinguishers, G-1 or Met L-X to smother fire.
- Confining or smothering material is preferable to applying water as chemical reaction may produce flammable and explosive hydrogen gas.
- ▶ Chemical reaction with CO2 may produce flammable and explosive methane.
- If impossible to extinguish, withdraw, protect surroundings and allow fire to burn itself out.
- DO NOT use halogenated fire extinguishing agents.

Fire Incompatibility	▶ Reacts with acids producing flammable / explosive hydrogen (H2) gas
dvice for firefighters	
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting procedures suitable for surrounding area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use.
Fire/Explosion Hazard	 DO NOT disturb burning dust. Explosion may result if dust is stirred into a cloud, by providing oxygen to a large surface of hot metal. DO NOT use water or foam as generation of explosive hydrogen may result. With the exception of the metals that burn in contact with air or water (for example, sodium), masses of combustible metals do not represen unusual fire risks because they have the ability to conduct heat away from hot spots so efficiently that the heat of combustion cannot be maintained - this means that it will require a lot of heat to ignite a mass of combustible metal. Generally, metal fire risks exist when sawdust, machine shavings and other metal 'fines' are present. Metal powders, while generally regarded as non-combustible: May burn when metal is finely divided and energy input is high. May react explosively with water. May ReIGNITE after fire is extinguished. Will burn with intense heat. Note: Metal dust fires are slow moving but intense and difficult to extinguish. Containers may explode on heating. Dusts or fumes may form explosive mixtures with air. Gases generated in fire may be poisonous, corrosive or irritating.

- Hot or burning metals may react violently upon contact with other materials, such as oxidising agents and extinguishing agents used on fires involving ordinary combustibles or flammable liquids.
- F Temperatures produced by burning metals can be higher than temperatures generated by burning flammable liquids
- ▶ Some metals can continue to burn in carbon dioxide, nitrogen, water, or steam atmospheres in which ordinary combustibles or flammable liquids would be incapable of burning.

May emit poisonous fumes.

May emit corrosive fumes

SECTION 6 Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

See section 8

6.2. Environmental precautions

See section 12

6.3. Methods and material for containment and cleaning up

Minor Spills

- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite.
- Wipe up.
- Place in a suitable, labelled container for waste disposal.

Moderate hazard

- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.

Stop leak if safe to do so. **Major Spills**

- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labelled containers for recycling.
- Neutralise/decontaminate residue (see Section 13 for specific agent).
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.

6.4. Reference to other sections

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

7.1. Precautions for safe handling

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area
- Avoid contact with moisture.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke
- Keep containers securely sealed when not in use. Safe handling
 - Avoid physical damage to containers.
 - Always wash hands with soap and water after handling.
 - ▶ Work clothes should be laundered separately. Launder contaminated clothing before re-use.
 - Use good occupational work practice.
 - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
 - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
 - ▶ DO NOT allow clothing wet with material to stay in contact with skin

Fire and explosion protection

See section 5

Other information

7.2. Conditions for safe storage, including any incompatibilities

Suitable container

- Polyethylene or polypropylene container.
- Packing as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

- ▶ is a strong reducing agent
- h may be pyrophoric when dry (dependent on particle size); powders or dusts may ignite spontaneously in air
- reacts with acids, evolving flammable hydrogen gas
- reacts violently with ammonia, ammonium nitrate, fluorine, hydrazine, hydrazoic acid, strong oxidisers, nitric acid, peroxyformic acid, potassium, potassium perchlorate, selenium, sulfur (evolves heat, incandescence), titanium and other materials
- is incompatible with organic solvents, sulfur compounds
- in reducing atmosphere furnace can react with carbon monoxide forming highly toxic nickel carbonyl gas; under fire conditions may also react in similar manner
- ▶ Raney alloys , containing aluminium, may react with moisture
- WARNING: Avoid or control reaction with peroxides. All transition metal peroxides should be considered as potentially explosive. For example transition metal complexes of alkyl hydroperoxides may decompose explosively.
- The pi-complexes formed between chromium(0), vanadium(0) and other transition metals (haloarene-metal complexes) and mono-or poly-fluorobenzene show extreme sensitivity to heat and are explosive.
- Avoid reaction with borohydrides or cyanoborohydrides
- Many metals may incandesce, react violently, ignite or react explosively upon addition of concentrated nitric acid.

Metals exhibit varying degrees of activity. Reaction is reduced in the massive form (sheet, rod, or drop), compared with finely divided forms. The less active metals will not burn in air but:

- Storage incompatibility ▶ can react exothermically with oxidising acids to form noxious gases
 - ▶ catalyse polymerisation and other reactions, particularly when finely divided
 - react with halogenated hydrocarbons (for example, copper dissolves when heated in carbon tetrachloride), sometimes forming explosive compounds.
 - Finely divided metal powders develop pyrophoricity when a critical specific surface area is exceeded; this is ascribed to high heat of oxide formation on exposure to air
 - ▶ Safe handling is possible in relatively low concentrations of oxygen in an inert gas.
 - ▶ Several pyrophoric metals, stored in glass bottles have ignited when the container is broken on impact. Storage of these materials moist and in metal containers is recommended.
 - The reaction residues from various metal syntheses (involving vacuum evaporation and co-deposition with a ligand) are often pyrophoric. Factors influencing the pyrophoricity of metals are particle size, presence of moisture, nature of the surface of the particle, heat of formation of the oxide, or nitride, mass, hydrogen content, stress, purity and presence of oxide, among others.
 - Many metals in elemental form react exothermically with compounds having active hydrogen atoms (such as acids and water) to form flammable hydrogen gas and caustic products.
 - ▶ Elemental metals may react with azo/diazo compounds to form explosive products.
 - Some elemental metals form explosive products with halogenated hydrocarbons

7.3. Specific end use(s)

See section 1.2

SECTION 8 Exposure controls / personal protection

8.1. Control parameters

Ingredient	DNELs Exposure Pattern Worker	PNECs Compartment
nickel	Inhalation 0.05 mg/m³ (Systemic, Chronic) Dermal 0.035 mg/cm² (Local, Chronic) Inhalation 0.05 mg/m³ (Local, Chronic) Inhalation 11.9 mg/m³ (Local, Acute) Inhalation 60 ng/m³ (Systemic, Chronic) * Oral 0.011 mg/kg bw/day (Systemic, Chronic) * Dermal 0.035 mg/cm² (Local, Chronic) * Inhalation 60 ng/m³ (Local, Chronic) * Oral 0.37 mg/kg bw/day (Systemic, Acute) * Inhalation 0.8 mg/m³ (Local, Acute) *	7.1 µg/L (Water (Fresh)) 8.6 µg/L (Water - Intermittent release) 0 µg/L (Water (Marine)) 109 mg/kg sediment dw (Sediment (Fresh Water)) 109 mg/kg sediment dw (Sediment (Marine)) 29.9 mg/kg soil dw (Soil) 0.33 mg/L (STP) 0.12 mg/kg food (Oral)
talc	Dermal 43.2 mg/kg bw/day (Systemic, Chronic) Inhalation 2.16 mg/m³ (Systemic, Chronic) Dermal 4.54 mg/cm² (Local, Chronic) Inhalation 3.6 mg/m³ (Local, Chronic) Inhalation 2.16 mg/m³ (Systemic, Acute) Inhalation 3.6 mg/m³ (Local, Acute) Dermal 2.16 mg/kg bw/day (Systemic, Chronic) * Inhalation 1.08 mg/m³ (Systemic, Chronic) * Oral 160 mg/kg bw/day (Systemic, Chronic) * Dermal 2.27 mg/cm² (Local, Chronic) * Inhalation 1.8 mg/m³ (Local, Chronic) * Inhalation 1.08 mg/m³ (Systemic, Acute) * Oral 160 mg/kg bw/day (Systemic, Acute) * Inhalation 1.8 mg/m³ (Local, Acute) *	597.97 mg/L (Water (Fresh)) 141.26 mg/L (Water - Intermittent release) 597.97 mg/L (Water (Marine)) 31.33 mg/kg sediment dw (Sediment (Fresh Water)) 3.13 mg/kg sediment dw (Sediment (Marine))
sulfolane	Dermal 0.04 mg/kg bw/day (Systemic, Chronic) Inhalation 2.16 mg/m³ (Systemic, Chronic) Inhalation 0.03 mg/m³ (Systemic, Chronic) * Oral 0.015 mg/kg bw/day (Systemic, Chronic) *	0.1 mg/L (Water (Fresh)) 0.01 mg/L (Water - Intermittent release) 1 mg/L (Water (Marine)) 0.39 mg/kg sediment dw (Sediment (Fresh Water)) 0.039 mg/kg sediment dw (Sediment (Marine)) 0.02 mg/kg soil dw (Soil) 100 mg/L (STP)

^{*} Values for General Population

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Europe ECHA Occupational exposure limits - Activity list	nickel	Not Available	Not Available	Not Available	Not Available	Not Available
UK Workplace Exposure Limits (WELs)	nickel	Nickel and its inorganic compounds (except nickel tetracarbonyl): nickel and water-insoluble nickel compounds (as Ni)	0.5 mg/m3	Not Available	Not Available	Sk, Carc (nickel oxides and sulphides) Sen (nickel sulphate)
UK Workplace Exposure Limits (WELs)	talc	Talc, respirable dust	1 mg/m3	Not Available	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
nickel	4.5 mg/m3	50 mg/m3	99 mg/m3
sulfolane	4.1 mg/m3	45 mg/m3	400 mg/m3

Ingredient	Original IDLH	Revised IDLH
nickel	10 mg/m3	Not Available
talc	1,000 mg/m3	Not Available
sulfolane	Not Available	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit	
sulfolane	E	≤ 0.1 ppm	
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.		

MATERIAL DATA

For talc (a form of magnesium silicate):

Most health problems associated with occupational exposure to talcs appear to evolve mostly from the nonplatiform content of the talc being mined or milled (being the asbestos-like amphiboles, serpentines (asbestiformes) and other minerals in the form of acicular, prismatic and fibrous crystals including, possibly, asbestos).

Because of severe health effects associated with exposures to asbestos, regulatory agencies tend to regard all elongate mineral crystal particles, whether prismatic, acicular, fibrous, as asbestos - the only provision is the particles have an aspect ratio (length to diameter) of 3:1 or greater.

Consideration is also given to their respirability, their width being less than or equal to 3 um. Only limited data, however, exists on the health effects of elongate mineral particles having prismatic, acicular or fibrous (non-asbestos) forms. Experimental evidence indicates that the carcinogen potential of mineral fibres is related to the size class with diameter of 8

um with shorter, thicker particles having little biological activity.

Dust of nonfibrous talc, consisting entirely of platiform talc crystals and containing no asbestos poses a relatively small respiratory hazard.

Difficulties exist, however, in the determination of asbestos as cleavage fragments of prismatic or acicular crystals, nonasbestos fibres and asbestos fibres are very similar. Subject to an accurate determination of asbestos and crystalline silica, exposure at or below the recommended TLV-TWA, is thought to protect workers from the significant risk of nonmalignant respiratory effects associated with talc dusts.

These exposure guidelines have been derived from a screening level of risk assessment and should not be construed as unequivocally safe limits. ORGS represent an 8-hour time-weighted average unless specified otherwise.

CR = Cancer Risk/10000; UF = Uncertainty factor:

TLV believed to be adequate to protect reproductive health:

LOD: Limit of detection

Toxic endpoints have also been identified as:

D = Developmental; R = Reproductive; TC = Transplacental carcinogen

Jankovic J., Drake F.: A Screening Method for Occupational Reproductive

American Industrial Hygiene Association Journal 57: 641-649 (1996)

8.2. Exposure controls

Metal dusts must be collected at the source of generation as they are potentially explosive.

- Avoid ignition sources.
- ▶ Good housekeeping practices must be maintained.
- ▶ Dust accumulation on the floor, ledges and beams can present a risk of ignition, flame propagation and secondary explosions.
- ▶ Do not use compressed air to remove settled materials from floors, beams or equipment
- ▶ Vacuum cleaners, of flame-proof design, should be used to minimise dust accumulation.
- Use non-sparking handling equipment, tools and natural bristle brushes. Cover and reseal partially empty containers. Provide grounding and bonding where necessary to prevent accumulation of static charges during metal dust handling and transfer operations.
- Do not allow chips, fines or dusts to contact water, particularly in enclosed areas.
- Metal spraying and blasting should, where possible, be conducted in separate rooms. This minimises the risk of supplying oxygen, in the form of metal oxides, to potentially reactive finely divided metals such as aluminium, zinc, magnesium or titanium.
- Work-shops designed for metal spraying should possess smooth walls and a minimum of obstructions, such as ledges, on which dust accumulation is possible.
- Wet scrubbers are preferable to dry dust collectors.
- ▶ Bag or filter-type collectors should be sited outside the workrooms and be fitted with explosion relief doors.
- Cyclones should be protected against entry of moisture as reactive metal dusts are capable of spontaneous combustion in humid or partially wetted states.
- Local exhaust systems must be designed to provide a minimum capture velocity at the fume source, away from the worker, of 0.5 metre/sec.
- Local ventilation and vacuum systems must be designed to handle explosive dusts. Dry vacuum and electrostatic precipitators must not be used, unless specifically approved for use with flammable/ explosive dusts.

8.2.1. Appropriate engineering controls

Air contaminants generated in the workplace possess varying 'escape' velocities which, in turn, determine the 'capture velocities' of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
welding, brazing fumes (released at relatively low velocity into moderately still air)	0.5-1.0 m/s (100-200 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2.5 m/s (200-500 f/min.) for extraction of gases discharged 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

8.2.2. Personal protection

Eye and face protection

- Safety glasses with side shields.
- ▶ Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

- Wear chemical protective gloves, e.g. PVC.
- ▶ Wear safety footwear or safety gumboots, e.g. Rubber **NOTE:**

Hands/feet protection

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- · frequency and duration of contact,
- · chemical resistance of glove material,
- · glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374. AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- · Contaminated gloves should be replaced.
- As defined in ASTM F-739-96 in any application, gloves are rated as:
- · Excellent when breakthrough time > 480 min
- · Good when breakthrough time > 20 min
- · Fair when breakthrough time < 20 min
- · Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Body protection

See Other protection below

Other protection

- Overalls.
- P.V.C apron.
- Barrier cream.
- ► Skin cleansing cream
- ► Eye wash unit.

Respiratory protection

Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the 'Exposure Standard' (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	A-AUS	-	A-PAPR-AUS / Class 1
up to 50 x ES	-	A-AUS / Class 1	-
up to 100 x ES	-	A-2	A-PAPR-2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

8.2.3. Environmental exposure controls

See section 12

SECTION 9 Physical and chemical properties

9.1. Information on basic physical and chemical properties

Appearance	Dark grey		
Physical state	Liquid	Relative density (Water = 1)	1.81
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	100	Molecular weight (g/mol)	Not Available

Flash point (°C)	Not Available	Taste	Not Available
Evaporation rate	Not Available BuAC = 1	Explosive properties	Not Available
Flammability	Not Available	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	2.3	Gas group	Not Available
Solubility in water	Miscible	pH as a solution (Not Available%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available
Nanoform Solubility	Not Available	Nanoform Particle Characteristics	Not Available
Particle Size	Not Available		

9.2. Other information

Not Available

SECTION 10 Stability and reactivity

10.1.Reactivity	See section 7.2
10.2. Chemical stability	Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
10.3. Possibility of hazardous reactions	See section 7.2
10.4. Conditions to avoid	See section 7.2
10.5. Incompatible materials	See section 7.2
10.6. Hazardous decomposition products	See section 5.3

SECTION 11 Toxicological information

11.1. Information on toxicological effects

The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

Not normally a hazard due to non-volatile nature of product

Regular exposure to nickel fume, as the oxide, may result in 'metal fume fever' a sometimes debilitating upper respiratory tract condition resembling influenza.

Inhaled

Symptoms include malaise, fever, weakness, nausea and may appear quickly if operations occur in closed or poorly ventilated areas. Pulmonary oedema, pulmonary fibrosis and asthma has been reported in welders using nickel alloys; level of exposure are generally not available and case reports are often confounded by mixed exposures to other agents.

Inhalation of freshly formed metal oxide particles sized below 1.5 microns and generally between 0.02 to 0.05 microns may result in 'metal fume fever'. Symptoms may be delayed for up to 12 hours and begin with the sudden onset of thirst, and a sweet, metallic or foul taste in the mouth. Other symptoms include upper respiratory tract irritation accompanied by coughing and a dryness of the mucous membranes, lassitude and a generalised feeling of malaise. Mild to severe headache, nausea, occasional vomiting, fever or chills, exaggerated mental activity, profuse sweating, diarrhoea, excessive urination and prostration may also occur. Tolerance to the fumes develops rapidly, but is quickly lost. All symptoms usually subside within 24-36 hours following removal from exposure.

Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual.

Ingestion

The material has NOT been classified by EC Directives or other classification systems as 'harmful by ingestion'. This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.

Nickel is poorly absorbed from the gastrointestinal tract. It is transported in the plasma bound to serum albumin and various small organic ligands. Excretion in the urine is substantially complete in 4-5 days. Serum nickel is influenced by environmental nickel or nickel concentrations in the air with faecal nickel about 100 times urinary nickel. Parenterally administered nickel is rapidly distributed to kidney, pituitary, lung, skin, adrenal and ovary and testis. In vivo binding with metallothionein has been demonstrated. A nickel binding protein has also been identified in plasma; it has been tentatively identified as an alpha-1-glycoprotein with a serum alpha-1-macroglobulin complex.

Accidental ingestion of the material may be damaging to the health of the individual.

Skin Contact

The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Skin contact with the material may damage the health of the individual; systemic effects may result following absorption.

Although the liquid is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may produce transient discomfort Eye characterised by tearing or conjunctival redness (as with windburn). On the basis, primarily, of animal experiments, concern has been expressed that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment. Practical evidence shows that inhalation of the material is capable of inducing a sensitisation reaction in a substantial number of individuals at a greater frequency than would be expected from the response of a normal population. Pulmonary sensitisation, resulting in hyperactive airway dysfunction and pulmonary allergy may be accompanied by fatigue, malaise and aching. Significant symptoms of exposure may persist for extended periods, even after exposure ceases. Symptoms can be activated by a variety of nonspecific environmental stimuli such as automobile exhaust, perfumes and passive smoking. Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals. Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyper-responsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance who are likely to Chronic become hyper-responsive. Substances than can cuase occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or respiratory sensitisers Wherever it is reasonably practicable, exposure to substances that can cuase occupational asthma should be prevented. Where this is not possible the primary aim is to apply adequate standards of control to prevent workers from becoming hyper-responsive. Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance. Toxic: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed. Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following sub-acute (28 day) or chronic (two-year) toxicity tests 841WB Super Shield Water TOXICITY IRRITATION **Based Nickel Conductive** Paint / Water Based Nickel Not Available Not Available Conductive Paint TOXICITY IRRITATION Oral (Rat) LD50; 5000 mg/kg^[2] Eye: no adverse effect observed (not irritating)[1]nickel Skin: no adverse effect observed (not irritating)[1] TOXICITY IRRITATION dermal (rat) LD50: >2000 mg/kg[1] Eye: no adverse effect observed (not irritating)^[1] talc Inhalation(Rat) LC50; >2.1 mg/l4h^[1] Skin (human): 0.3 mg/3d-I mild Oral (Rat) LD50; >5000 mg/kg[1] Skin: no adverse effect observed (not irritating)^[1] TOXICITY IRRITATION Eye (rabbit): 253 mg - mild dermal (rat) LD50: >2000 mg/kg^[1] sulfolane Inhalation(Rat) LC50; >12 mg/l4h[2] Eye: adverse effect observed (irritating)[1] Oral (Mouse) LD50; 1900 mg/kg^[2] Skin: no adverse effect observed (not irritating)^[1] Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances Allergic reactions which develop in the respiratory passages as bronchial asthma or rhinoconjunctivitis, are mostly the result of reactions of the allergen with specific antibodies of the IqE class and belong in their reaction rates to the manifestation of the immediate type. In addition to the allergen-specific potential for causing respiratory sensitisation, the amount of the allergen, the exposure period and the genetically determined disposition of the exposed person are likely to be decisive. Factors which increase the sensitivity of the mucosa may play a role in predisposing a 841WB Super Shield Water person to allergy. They may be genetically determined or acquired, for example, during infections or exposure to irritant substances **Based Nickel Conductive** Immunologically the low molecular weight substances become complete allergens in the organism either by binding to peptides or proteins Paint / Water Based Nickel (haptens) or after metabolism (prohaptens). **Conductive Paint** Particular attention is drawn to so-called atopic diathesis which is characterised by an increased susceptibility to allergic rhinitis, allergic bronchial asthma and atopic eczema (neurodermatitis) which is associated with increased IgE synthesis. Exogenous allergic alveolitis is induced essentially by allergen specific immune-complexes of the lgG type; cell-mediated reactions (T lymphocytes) may be involved. Such allergy is of the delayed type with onset up to four hours following exposure. Oral (rat) TDLo: 500 mg/kg/5D-I Inhalation (rat) TCLo: 0.1 mg/m3/24H/17W-C NICKEL WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans. Tenth Annual Report on Carcinogens: Substance anticipated to be Carcinogen [National Toxicology Program: U.S. Dep. of Health & Human Services 2002] Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic TALC condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating

compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt

onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

No significant acute toxicological data identified in literature search.

For talc (a form of magnesium silicate)

The overuse of talc in nursing infants has resulted in pulmonary oedema, pneumonia and death within hours of inhaling talcum powder. The powder dries the mucous membranes of the bronchioles, disrupts pulmonary clearance, clogs smaller airways. Victims display wheezing, rapid or difficult breathing, increased pulse, cyanosis, fever. Mild exposure may cause relatively minor inflammatory lung disease.

Long term exposure may show wheezing, weakness, productive cough, limited chest expansion, scattered rales, cyanosis.

The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

Convulsions, excitement mediation of inflammation recorded.

For sulfolane and sulfolene:

The considerable existing mammalian toxicity information for sulfolene and sulfolane demonstrates that these substances share a similar order of toxicity, regardless of the additional double bond in sulfolene. These two substances are expected to demonstrate similar mammalian toxicity. Metabolism studies in rats show that sulfolane is metabolized via ring hydroxylation into 3-hydroxytetrahydrothiophene-1:1-dioxide. Mammalian toxicity data demonstrates a low order. of toxicity via oral, dermal, and inhalation routes of exposure.

Repeat dose toxicity: A subchronic repeated dose study of sulfolene was performed on both rats and mice An NOAEL for mortality of 562 mg/kg/day for male rats and 178 mg/kg/day for female rats was reported. In addition, NOAELS for a mortality of 562 mg/kg/day in both male and female mice were reported. These results are similar to the repeated dose toxicity observed with sulfolane Sulfolane, which was tested in accordance with both the Japan Technical Guidance for 28-day repeated dose toxicity testing and OECD Technical Guideline 421.

Genetic toxicity: Genotoxicity data exist for both sulfolene and sulfolane, and indicate that genotoxicity is not expected. Repeated dose toxicity testing on both sulfolene and sulfolane showed similar results in both rats and mice.

Reproductive and developmental toxicity: Sulfolane was also tested in rats using the reproduction/development screening test pursuant to OECD Technical Guideline 421. The NOAEL for sulfolane in this study is of the same order of magnitude as the repeated dose study, with an NOAEL for reproductive performance of 700 mg/kg/day in male rats and 200 mg/kg/day in female rats. Also, sulfolane had an NOAEL of 60 mg/kg/day for production of pups. This study found that the toxic effects for female parents and pups were effects on reproductive parameters such as decrease of the number of oestrus cases and increase of dams losing all of their pups. With regard to the pups, toxicity presented as effects on developmental parameters, including the number of pups, viability index, stillbirth, and body weight. No significant effect was observed showing grossly visible abnormalities in the pups. Sulfolene has not been tested for reproductive and developmental toxicity, but, due to its close structural similarity to sulfolane, it would be expected to be of a similar order of magnitude as sulfolane.

The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

841WB Super Shield Water Based Nickel Conductive Paint / Water Based Nickel Conductive Paint & NICKEL

SULFOLANE

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

Acute Toxicity	×	Carcinogenicity	✓
Skin Irritation/Corrosion	×	Reproductivity	✓
Serious Eye Damage/Irritation	×	STOT - Single Exposure	×
Respiratory or Skin sensitisation	✓	STOT - Repeated Exposure	✓
Mutagenicity	×	Aspiration Hazard	×

Legend:

🗶 – Data either not available or does not fill the criteria for classification

- Data available to make classification

11.2.1. Endocrine Disruption Properties

Not Available

SECTION 12 Ecological information

nic

12.1. Toxicity

944WB Cumor Chield Water								
841WB Super Shield Water Based Nickel Conductive	Endpoint	Test Duration (hr)		Species	Value		Source	
Paint / Water Based Nickel Conductive Paint	Not Available	Not Available		Not Available	Not Available		Not Availa	able
Conductive Famil								
	Endpoint	Test Duration (hr)	Spec	ies		Value		Source
	EC50(ECx)	72h	Algae	or other aquatic plants		0.18mg/l		1

		, , ,			
	EC50(ECx)	72h	Algae or other aquatic plants	0.18mg/l	1
ickel	LC50	96h	Fish	0.168mg/L	4
ickei	EC50	72h	Algae or other aquatic plants	0.18mg/l	1
	EC50	48h	Crustacea	>100mg/l	1
	EC50	96h	Algae or other aquatic plants	0.36mg/l	2

Endpoint	Test Duration (hr)	Species	Value	Source
NOEC(ECx)	720h	Algae or other aquatic plants	918.089mg/l	2
LC50	96h	Fish	89581.016mg/l	2
	NOEC(ECx)	NOEC(ECx) 720h	NOEC(ECx) 720h Algae or other aquatic plants	NOEC(ECx) 720h Algae or other aquatic plants 918.089mg/l

	EC50	96h	Algae or other aquatic plants	7202.7mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50(ECx)	48h	Crustacea	40mg/l	1
	BCF	1008h	Fish	0.4-0.8	7
	ErC50	72h	Algae or other aquatic plants	>1000mg/l	1
sulfolane	LC50	96h	Fish	>100mg/l	2
	EC50	72h	Algae or other aquatic plants	500mg/l	2
	EC50	48h	Crustacea	40mg/l	1
	EC50	96h	Algae or other aquatic plants	>1000mg/l	1
	-	'			
Leaend:	Fytracted from 1	ILICLID Toyicity Data 2 Furone	FCHA Registered Substances - Ecotoxicologic	al Information - Aquatic Toy	city 4 IIS FF

Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

Metal-containing inorganic substances generally have negligible vapour pressure and are not expected to partition to air. Once released to surface waters and moist soils their fate depends on solubility and dissociation in water. Environmental processes (such as oxidation and the presence of acids or bases) may transform insoluble metals to more soluble ionic forms. Microbiological processes may also transform insoluble metals to more soluble forms. Such ionic species may bind to dissolved ligands or sorb to solid particles in aquatic or aqueous media. A significant proportion of dissolved/ sorbed metals will end up in sediments through the settling of suspended particles. The remaining metal ions can then be taken up by aquatic organisms.

When released to dry soil most metals will exhibit limited mobility and remain in the upper layer; some will leach locally into ground water and/ or surface water ecosystems when soaked by rain or melt ice. Environmental processes may also be important in changing solubilities.

Even though many metals show few toxic effects at physiological pHs, transformation may introduce new or magnified effects.

A metal ion is considered infinitely persistent because it cannot degrade further.

The current state of science does not allow for an unambiguous interpretation of various measures of bioaccumulation.

The counter-ion may also create health and environmental concerns once isolated from the metal. Under normal physiological conditions the counter-ion may be essentially insoluble and may not be bioavailable.

Environmental processes may enhance bioavailability.

DO NOT discharge into sewer or waterways

12.2. Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
sulfolane	HIGH	HIGH

12.3. Bioaccumulative potential

Ingredient	Bioaccumulation
sulfolane	LOW (BCF = 13)

12.4. Mobility in soil

Ingredient	Mobility
sulfolane	LOW (KOC = 21.59)

12.5. Results of PBT and vPvB assessment

Р	В	Т	
Not Available	Not Available	Not Available	
×	×	×	
X	×	×	
		No	
		No	
	Not Available	Not Available Not Available X	Not Available Not Available X X No No

12.6. Endocrine Disruption Properties

Not Available

12.7. Other adverse effects

Not Available

SECTION 13 Disposal considerations

13.1. Waste treatment methods

- ▶ Containers may still present a chemical hazard/ danger when empty.

Otherwise:

Product / Packaging disposal

- ▶ Return to supplier for reuse/ recycling if possible.
- product, then puncture containers, to prevent re-use, and bury at an authorised landfill.

If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same

▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- ► Reuse
- ► Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- ▶ Where in doubt contact the responsible authority.
- ▶ Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or incineration in a licensed apparatus (after admixture with suitable combustible material).
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Waste treatment options

Not Available

Sewage disposal options Not Available

SECTION 14 Transport information

Land transport (ADR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

14.1. UN number	Not Applicable	Not Applicable			
14.2. UN proper shipping name	Not Applicable	Not Applicable			
14.3. Transport hazard class(es)	Class Not Applicable Subrisk Not Applicable				
14.4. Packing group	Not Applicable				
14.5. Environmental hazard	Not Applicable				
	Hazard identification (Kemler)	Not Applicable			
	Classification code	Not Applicable			
14.6. Special precautions for	Hazard Label	Not Applicable			
user	Special provisions	Not Applicable			
	Limited quantity	Not Applicable			
	Tunnel Restriction Code	Not Applicable			

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

14.1. UN number	Not Applicable	Not Applicable			
14.2. UN proper shipping name	Not Applicable	Not Applicable			
	ICAO/IATA Class	Not Applicable			
14.3. Transport hazard class(es)	ICAO / IATA Subrisk	Not Applicable			
ciass(cs)	ERG Code	Not Applicable			
14.4. Packing group	Not Applicable				
14.5. Environmental hazard	Not Applicable				
	Special provisions		Not Applicable		
	Cargo Only Packing Instructions		Not Applicable		
	Cargo Only Maximum Qty / Pack		Not Applicable		
14.6. Special precautions for user	Passenger and Cargo	Passenger and Cargo Packing Instructions			
usei	Passenger and Cargo Maximum Qty / Pack		Not Applicable		
	Passenger and Cargo	Passenger and Cargo Limited Quantity Packing Instructions			
	Passenger and Cargo	Limited Maximum Qty / Pack	Not Applicable		

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

14.1. UN number	Not Applicable
14.2. UN proper shipping name	Not Applicable

14.3. Transport hazard class(es)		Not Applicable Not Applicable
14.4. Packing group	Not Applicable	
14.5. Environmental hazard	Not Applicable	
14.6. Special precautions for user	EMS Number Special provisions Limited Quantities	Not Applicable Not Applicable Not Applicable

Inland waterways transport (ADN): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

14.1. UN number	Not Applicable	
14.2. UN proper shipping	7	
name	Not Applicable	
14.3. Transport hazard class(es)	Not Applicable Not Applicable	
14.4. Packing group	Not Applicable	
14.5. Environmental hazard	Not Applicable	
14.6. Special precautions for user	Classification code	Not Applicable
	Special provisions	Not Applicable
	Limited quantity	Not Applicable
	Equipment required	Not Applicable
	Fire cones number	Not Applicable

14.7. Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

14.8. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
nickel	Not Available
talc	Not Available
sulfolane	Not Available

14.9. Transport in bulk in accordance with the ICG Code

Product name	Ship Type
nickel	Not Available
talc	Not Available
sulfolane	Not Available

SECTION 15 Regulatory information

15.1. Safety, health and environmental regulations / legislation specific for the substance or mixture

nickel is found on the following regulatory lists

Chemical Footprint Project - Chemicals of High Concern List

EU REACH Regulation (EC) No 1907/2006 - Annex XVII - Restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles

Europe EC Inventory

European Union - European Inventory of Existing Commercial Chemical Substances (EINECS)

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 2B: Possibly carcinogenic to humans

talc is found on the following regulatory lists

Chemical Footprint Project - Chemicals of High Concern List Europe EC Inventory

European Union - European Inventory of Existing Commercial Chemical Substances (EINECS)

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 2B: Possibly carcinogenic to humans

sulfolane is found on the following regulatory lists

Europe EC Inventory

European Union - European Inventory of Existing Commercial Chemical Substances

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI

This safety data sheet is in compliance with the following EU legislation and its adaptations - as far as applicable - : Directives 98/24/EC, - 92/85/EEC, - 94/33/EC, - 2008/98/EC, - 2010/75/EU; Commission Regulation (EU) 2020/878; Regulation (EC) No 1272/2008 as updated through ATPs.

15.2. Chemical safety assessment

No Chemical Safety Assessment has been carried out for this substance/mixture by the supplier.

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (nickel; talc; sulfolane)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	No (nickel)
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	No (sulfolane)
Vietnam - NCI	Yes
Russia - FBEPH	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	28/01/2022
Initial Date	05/07/2018

Full text Risk and Hazard codes

H302	Harmful if swallowed.	
H332	Harmful if inhaled.	
H335	May cause respiratory irritation.	

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. For detailed advice on Personal Protective Equipment, refer to the following EU CEN Standards:

EN 166 Personal eye-protection

EN 340 Protective clothing

EN 374 Protective gloves against chemicals and micro-organisms

EN 13832 Footwear protecting against chemicals

EN 133 Respiratory protective devices

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection

OTV: Odour Threshold Value BCF: BioConcentration Factors

BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List

NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory

NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act

TCSI: Taiwan Chemical Substance Inventory

INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

Reason for Change

A-2.00 - Added UFI number and format changes to the safety data sheet.