

RoHS Compliant

Features

- V_{DS} (V) =100V
- I_D =1.6 A (V_{GS} =10V)
- $R_{DS(ON)} < 22m\Omega \text{ (Vgs =10V)}$
- $R_{DS(ON)} < 235m\Omega \text{ (Vgs =4.5V)}$

Absolute Maximum Ratings (Ta=25°C)

Parameter		Symbol	Rating	Unit	
Drain-Source Voltage		VDS	100	V	
Gate-Source Voltage		Vgs	±16	ľ	
Continuous Drain Current @ VGS=10V	TA=25°C	- ID	1.6		
	TA=70°C		1.3	A	
Pulsed Drain Current		Ірм 7		7	
Power Dissipation	TA=25°C	PD	1.3	W	
	TA=70°C		0.8	VV	
The second Decision and Long-time to Applicant (Alexton 4)		RthJA	100	°C/W	
Thermal Resistance.Junction- to-Ambier	inction- to-Ambient (Note.1)		99	C/VV	
Linear Derating Factor			0.01	W/°C	
Junction Temperature		TJ	150	°C	
Storage Temperature Range		Tstg	-55 to 150		

Note.1: Surface mounted on 1 in square Cu board

Electrical Characteristics Ta = 25°C

Characteristic	Symbol	Conditions	Min	Тур	Max	Unit	
Drain-Source Breakdown Voltage	VDSS	I _D =250μA, V _G s=0V	100			V	
Zero Gate Voltage Drain Current	Ipss	V _{DS} =100V, V _{GS} =0V			20		
		V _{DS} =100V, V _{GS} =0V, T _J =125°C			250	uA	
Gate-Body leakage current	lgss	V _{DS} =0V, V _{GS} =±16V			±100	nA	
Gate Threshold Voltage	V _{GS(th)}	Vps=Vgs lp=250µA	1		2.5	V	
Static Drain-Source On-Resistance (Note.1)	RDS(On)	Vgs=4.5V, Ip=1.3A		190	235	m0	
		Vgs=10V, ID=1.6A		178	220	mΩ	
Forward Transconductance	grs	V _{DS} =50V, I _D =1.6A	5.7			S	

Characteristic	Symbol	Conditions	Min	Тур	Max	Unit
Input Capacitance	Ciss			290		
Output Capacitance	Coss	V _G s=0V, V _D s=25V, f=1MHz		27		pF
Reverse Transfer Capacitance	Crss			13		
Gate Resistance	Rg			1.3		Ω
Total Gate Charge	Qg	Vgs=4.5V, Vps=50V, lp=1.6A		2.5		
Gate Source Charge	Qgs			0.5		nC
Gate Drain Charge	Qgd	1		1.2		1 1
Turn-On DelayTime	td(on)	Vgs=4.5V, Vds=50V, Id=1A, Rgen=6.8Ω		2.2		nS
Turn-On Rise Time	tr			2.1		
Turn-Off DelayTime	td(off)			9		
Turn-Off Fall Time	tf			3.6		
Body Diode Reverse Recovery Time	trr	V _R =50V, I _F = 1.1A, d ₁ /d _t = 100A/µs ,		20	30	
Body Diode Reverse Recovery Charge	Qrr	T _J = 25°C (Note.1)		13	20	nc
Maximum Body-Diode Continuous Current	ls				1.1	_
Pulsed Source Current	Isм	(Note.2)			7	Α
Diode Forward Voltage	Vsd	Is=1.1A, V _G s=0V, T _J = 25° (Note.1)			1.3	V

Note.1 : Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.

Note.2: Repetitive rating; pulse width limited by max. junction temperature.

Typical Characterisitics

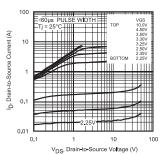


Fig 1. Typical Output Characteristics

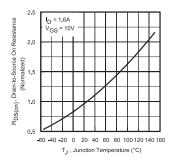


Fig 4. Normalized On-Resistance Vs. Temperature

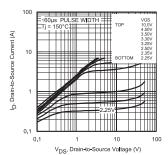


Fig 2. Typical Output Characteristics

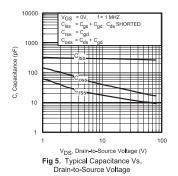


Fig 3. Typical Transfer Characteristics

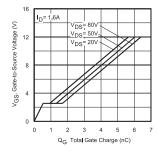


Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

multicomp PRO

Typical Characterisitics

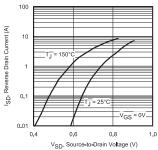


Fig 7. Typical Source-Drain Diode Forward Voltage

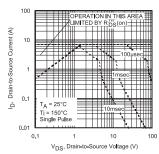
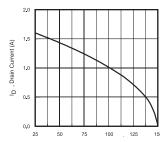



Fig 8. Maximum Safe Operating Area

T_A , Ambient Temperature (°C) **Fig 9.** Maximum Drain Current Vs.

Ambient Temperature

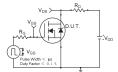


Fig 10a. Switching Time Test Circuit

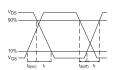


Fig 10b. Switching Time Waveforms

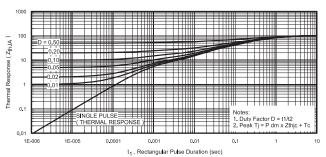


Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient



Fig 12. Typical On-Resistance Vs. Gate Voltage

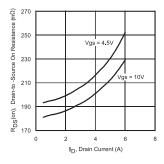


Fig 13. Typical On-Resistance Vs. Drain Current

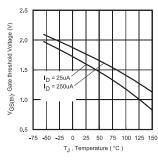


Fig 14. Typical Threshold Voltage Vs.
Junction Temperature

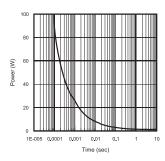


Fig 15. Typical Power Vs. Time

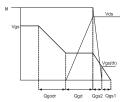


Fig 16a.Basic Gate Charge Waveform

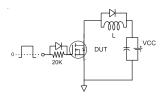



Fig 16b.Gate Charge Test Circuit

Diagram

Part Number Table

Description	Part Number		
MOSFET, N Channel, 1.6A, 100V, SOT23-3	IRLML0100		

Dimensions: Millimetres

Important Notice: This data sheet and its contents (the "Information") belong to the members of the AVNET group of companies (the "Group") or are licensed to it. No licence is granted for the use of it other than for information purposes in connection with the products to which it relates. No licence of any intellectual property rights is granted. The Information is subject to change without notice and replaces all data sheets previously supplied. The Information supplied is believed to be accurate but the Group assumes no responsibility for its accuracy or completeness, any error in or omission from it or for any use made of it. Users of this data sheet should check for themselves the Information and the suitability of the products for their purpose and not make any assumptions based on information included or omitted. Liability for loss or damage resulting from any reliance on the Information or use of it (including liability resulting from negligence or where the Group was aware of the possibility of such loss or damage arising) is excluded. This will not operate to limit or restrict the Group's liability for death or personal injury resulting from its negligence. Multicomp Pro is the registered trademark of Premier Farnell Limited 2019.

