

Outline type code: G

RoHS **Compliant**

Features

- **Double Side Cooling**
- High Surge Capability

Applications

- **High Power Drives**
- High Voltage Power Supplies
- Static Switches

Key Parameters Repetitive Peak **Part Number** dV/dt* dl/dt Conditions Voltages VDRM IT(AV) Ітѕм and VRRM V Tvj = -40°C to 125°C, $I_{DRM} = I_{RRM} = 60 \text{mA},$ V_{DRM} , V_{RRM} $t_p = 10ms$, MPPCT960G180 1800 960 A 14000 A 1000 V/µs 200 A/µs

Current Ratings

T_{case} = 60°C unless stated otherwise

Symbol	Parameter	Test Conditions	Max.	Units
I _{T(AV)}	Mean on-state current	Half wave resistive load	960	
IT(RMS)	RMS value	-	1510	Α
lτ	Continuous (direct) on-state current	-	1360	

Surge Ratings

Symbol	Parameter	Test Conditions	Max.	Units
Ітѕм	Surge (non-repetitive) on-state current	10ms half sine, T _{case} = 125°C	14	kA
l²t	I ² t for fusing	V _R = 0	0.98	MA ² s

Newark.com/multicomp-pro Farnell.com/multicomp-pro sg.element14.com/b/multicomp-pro

VDSM & VRSM = VDRM & VRRM +100V respectively

^{*} Higher dV/dt selections available

Thermal and Mechanical Ratings

Symbol	Parameter	Test Conditions		Min.	Max.	Units
Rth(j-c)	Thermal resistance – junction to case	Double side cooled	DC		0.35	°C/W
Rth(c-h)	Thermal resistance – case to heatsink	Double side cooled	DC	-	0.008	C/VV
Tvj	Virtual junction temperature	Blocking VDRM / VRRM	И		125	°C
Tstg	Storage temperature range			-40 140		C
Fm	Clamping force			12	18	kN

Dynamic Characteristics

Symbol	Parameter	Test Conditions		Min.	Max.	Units
IRRM/IDRM	Peak reverse and off-state current	At Vrrm/Vdrm, Tcase = 125°C		-	60	mA
dV/dt	Max. linear rate of rise of off-state voltage	To 67% V _{DRM} , T _j = 125°C, gate open		1000	-	V/µs
dI/dt	Rate of rise of on-state current	From 67% V _{DRM} to 1000A Gate source 30V, 10Ω,	Repetitive 50Hz		200	- A/μs
		t _r < 0.5μs, T _j = 125°C	Non-repetitive		1000	
VT	On-state voltage	IT = 1500A, Tcase = 125°C		1	1.45	V
V _{T(TO)}	Threshold voltage	T _{case} = 125°C		1	0.91) v
rт	On-state slope resistance	T _{case} = 125°C] _	0.36	mΩ
tgd	Delay time	V_D = 67% V_{DRM} , gate source 30V, 10Ω t_r = 0.5 μ s, T_j = 25°C			3	
tq	Turn-off time	T _j = 125°C, V _R = 100V, dI/dt = 10A/μs, dV _{DR} /dt = 20V/μs linear to 67% V _{DRM}			200	μs
Qs	Stored charge	$I_T = 1000A$, $tp = 1000us$, $T_j = 125$ °C,]	2000	μC
Irr	Reverse recovery current	dl/dt =10A/µs,			120	
IL.	Latching current	T _j = 25°C,]	1	Α
Ін	Holding current	T _j = 25°C,]	200	mA

Gate Trigger Characteristics and Ratings

Symbol	Parameter Test Conditions		Max.	Units	
Vgt	Gate trigger voltage	V _{DRM} = 5V, T _{case} = 25°C	3	\/	
Vgd	Gate non-trigger voltage	At 40% VDRM, Tcase = 125°C	0.3		
lgт	Gate trigger current	V _{DRM} = 5V, T _{case} = 25°C	300	m Λ	
Igd	Gate non-trigger current	At 40% V _{DRM} , T _{case} = 125°C	20	mA mA	

Performance Curves

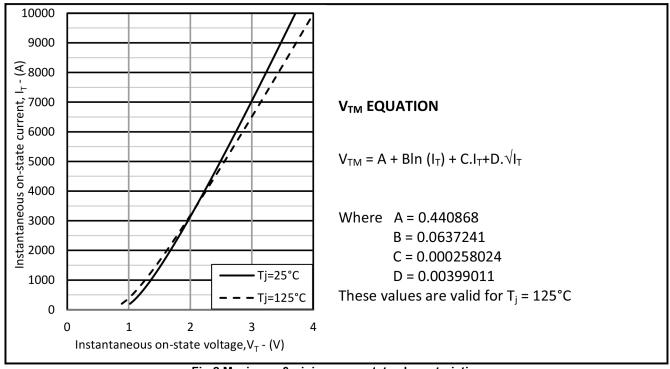
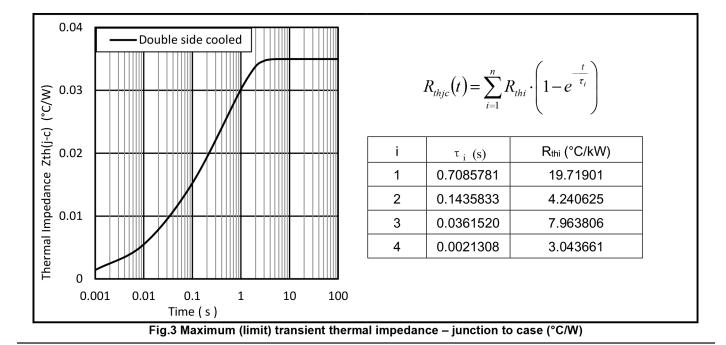
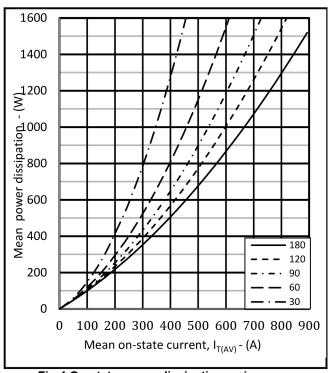
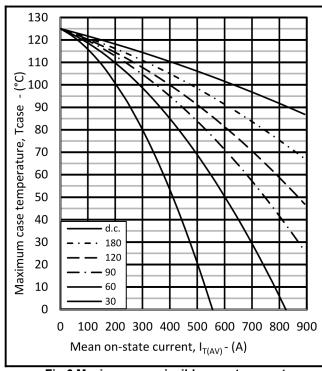




Fig.2 Maximum &minimum on-state characteristics



130 120 110 100 90 80 Maximum case temperature, 70 60 50 40 30 180 . 120 20 90 10 60 **-** 30 0 100 200 300 400 500 600 700 800 900 Mean on-state current, I_{T(AV)} - (A)

Fig.4 On-state power dissipation - sine wave

Fig.5 Maximum permissible case temperature, double side cooled - sine wave

1400 1200 <u>\$</u>1000 Mean power dissipation 800 600 400 d.c. · 180 120 200 90 **-** 60 30 0 100 200 300 400 500 600 700 800 900 Mean on-state current, $I_{T(AV)}$ - (A)

Fig.6 Maximum permissible case temperature, double side cooled - rectangular wave

Fig.7 On-state power dissipation - rectangular wave

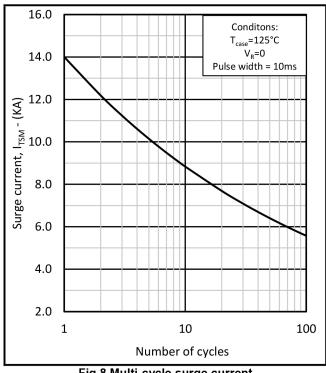


Fig.8 Multi-cycle surge current

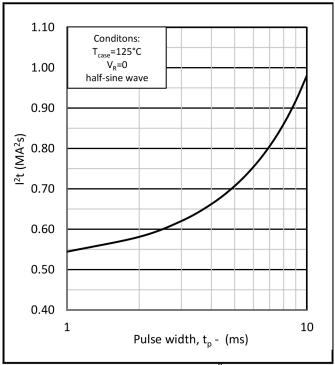


Fig.9 Single-cycle I2t

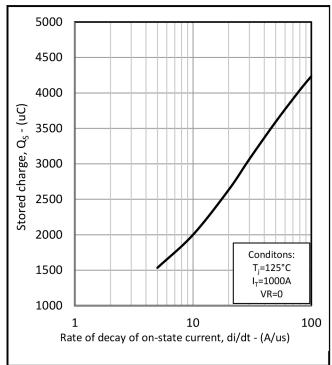


Fig.10 Stored charge vs di/dt

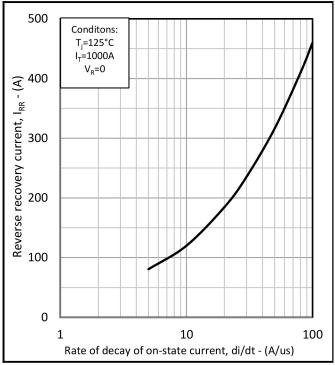


Fig.11 Reverse recovery current vs di/dt

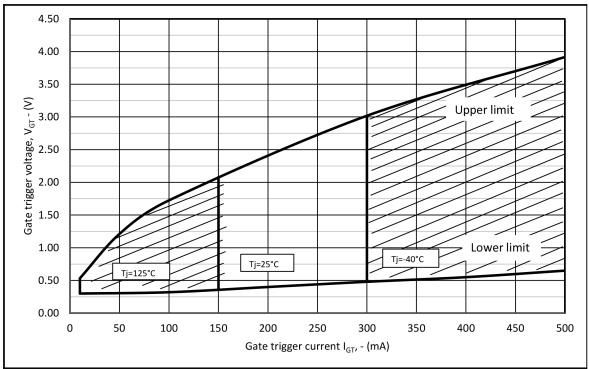


Fig.12 Gate characteristics

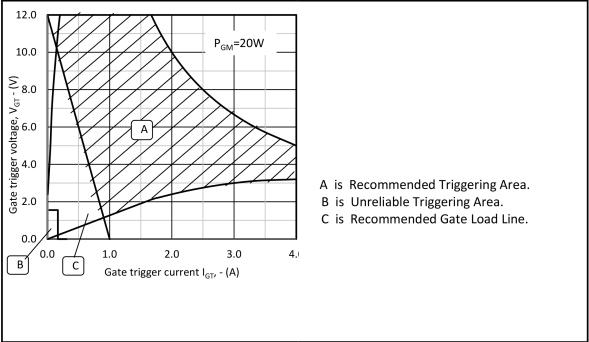
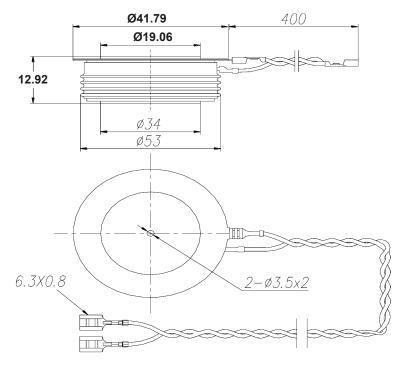



Fig.13 Gate characteristics

Package outline type code: G

Part Number Table

Description	Part Number	
Phase Control Thyristor Module, 1800V, 960A, G Case Code	MPPCT960G180	

Important Notice: This data sheet and its contents (the "Information") belong to the members of the AVNET group of companies (the "Group") or are licensed to it. No licence is granted for the use of it other than for information purposes in connection with the products to which it relates. No licence of any intellectual property rights is granted. The Information is subject to change without notice and replaces all data sheets previously supplied. The Information supplied is believed to be accurate but the Group assumes no responsibility for its accuracy or completeness, any error in or omission from it or for any use made of it. Users of this data sheet should check for themselves the Information and the suitability of the products for their purpose and not make any assumptions based on information included or omitted. Liability for loss or damage resulting from any reliance on the Information or use of it (including liability resulting from negligence or where the Group was aware of the possibility of such loss or damage arising) is excluded. This will not operate to limit or restrict the Group's liability for death or personal injury resulting from its negligence. Multicomp Pro is the registered trademark of Premier Farnell Limited 2019.

