OSRAM LE D P1MQ **Datasheet** ## OSRAM OSTAR™ Projection Power ## LE D P1MQ OSRAM OSTAR Projection Power is a high luminance LED for projection applications. #### **Applications** - Projection & Display - Visualization #### **Features** - Package: OSTAR High Power Projection - Chip technology: UX:3 - Typ. Radiation: 120° (Lambertian emitter) - Color: λ_{dom} = 440 nm (• deep blue) - ESD: 2 kV acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 2) #### **Ordering Information** Total radiant flux 1) Type Ordering Code $I_{r} = 10000 \text{ mA}$ LE D P1MQ-GTHQ-R 24000 ... 33000 mW Q65115A0639 | Maximum Ratings | | | | |---|-------------------------------------|--------------|--------------------| | Parameter | Symbol | | Values | | Storage Temperature | T _{stg} | min.
max. | -40 °C
85 °C | | Junction Temperature | T _j | max. | 150 °C | | Forward Current $T_{j} = T_{j,max}$ | I _F | min.
max. | 200 mA
10000 mA | | Forward Current pulsed D = 0.7; f = 240 Hz; $T_j = T_{j,max}$ | F pulse | | 12000 mA | | Surge Current
$t_p \le 50 \ \mu s; \ D = 0.1; \ T_j = T_{j,max}$ | I _{FS} | max. | 14000 mA | | ESD withstand voltage acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 2) | V_{ESD} | | 2 kV | | Reverse current 2) | I _R | max. | 200 mA | | Max. voltage difference anode-board, cathode-board | ΔV_{a-b} , ΔV_{c-b} | max. | 40 V | #### **Characteristics** $I_F = 10000 \text{ mA}; T_B = 25 \text{ }^{\circ}\text{C}$ | Symbol | | Values | |-------------------------|---|---| | λ_{peak} | typ. | 430 nm | | | min. | 435 nm | | 40 | typ. | 440 nm | | | max. | 445 nm | | Δλ | typ. | 20 nm | | 2φ | typ. | 120 ° | | A_{color} | typ. | 2.6 x 1.55 mm ² | | | typ. | 0.77 | | | | | | $V_{_{\rm F}}$ | min. | 7.0 V | | · | typ. | 8.0 V | | | max. | 9.0 V | | V_{RESD} | min. | 45 V | | V_R | max. | 1.2 V | | | | | | $R_{thJBreal}$ | typ. | 1.1 K / W | | $R_{\text{thJB elec.}}$ | typ. | 0.73 K / W | | | $\lambda_{ m peak}$ $\lambda_{ m dom}$ $\Delta\lambda$ 2ϕ $A_{ m color}$ $\Phi_{ m E/V,120^{\circ}}$ $V_{ m F}$ $V_{ m RESD}$ $V_{ m R}$ | $\begin{array}{ccccc} \lambda_{\text{peak}} & \text{typ.} \\ \lambda_{\text{dom}} & & \text{min.} \\ \text{typ.} & & \text{max.} \\ \Delta \lambda & \text{typ.} \\ 2 \phi & \text{typ.} \\ A_{\text{color}} & \text{typ.} \\ & \Phi_{\text{E/V, 120}^{\circ}} & \text{typ.} \\ \end{array}$ $\begin{array}{cccc} V_{\text{F}} & & \text{min.} \\ \text{typ.} & & \text{max.} \\ V_{\text{R ESD}} & & \text{min.} \\ V_{\text{R}} & & & \text{max.} \\ \end{array}$ | ## **Brightness Groups** | Group | Total radiant flux $^{1)}$ I _F = 10000 mA min. Φ_{e} | Total radiant flux $^{1)}$ I _F = 10000 mA max. Φ_{e} | |-------|--|--| | GT | 24000 mW | 25900 mW | | GU | 25900 mW | 28000 mW | | HP | 28000 mW | 30400 mW | | HQ | 30400 mW | 33000 mW | ## **Wavelength Groups** | Group | Dominant Wavelength 3) | Dominant Wavelength 3) | | |-------|------------------------|------------------------|--| | | min. | max. | | | | $\lambda_{\sf dom}$ | $\lambda_{\sf dom}$ | | | R | 435 nm | 445 nm | | ## **Group Name on Label** Example: GT-R | Brightness | Wavelength | |------------|------------| | GT | R | #### Relative Spectral Emission 4) E_{rel} = f (λ); I_F = 10000 mA; T_J = 25 °C #### Radiation Characteristics 4) $I_{rel} = f(\phi); T_J = 25 \, ^{\circ}C$ #### Relative Partial Flux 4) $\Phi_{\scriptscriptstyle E}(2\phi)/\Phi_{\scriptscriptstyle E}(180^\circ)$ = f(ϕ); T_J = 25 °C #### Forward current 4) $$I_F = f(V_F); T_J = 25 °C$$ #### Relative Radiant Power 4), 6) $$\Phi_{\rm E}/\Phi_{\rm E}(10000 \text{ mA}) = f(I_{\rm E}); T_{\rm J} = 25 \,^{\circ}\text{C}$$ ## **Dominant Wavelength** 4) $$\Delta\lambda_{dom} = f(I_F); T_J = 25 \text{ }^{\circ}\text{C}$$ #### Forward Voltage 4) $$\Delta V_{_F} = V_{_F} - V_{_F} (25~^{\circ}C) = f(T_{_j}); I_{_F} = 10000~mA$$ #### Relative Radiant Power 4) $$\Phi_{\rm E}/\Phi_{\rm E}(25~{\rm ^{\circ}C}) = f(T_{\rm i}); I_{\rm F} = 10000~{\rm mA}$$ ## Dominant Wavelength 4) $$\Delta \lambda_{\text{dom}} = \lambda_{\text{dom}} - \lambda_{\text{dom}} (25 \ ^{\circ}\text{C}) = \text{f(T_j); I}_{\text{F}} = 10000 \ \text{mA}$$ #### Dimensional Drawing 7) C63062-A4391-A1-05 #### **Further Information:** **Approximate Weight:** 5,000.0 mg **ESD** advice: The device is protected by ESD device which is connected in parallel to the Chip. Notes: For superior solder joint connectivity results we recommend soldering under standard nitrogen atmosphere. Package not suitable for any kind of wet cleaning or ultrasonic cleaning. Molex Pico-SPOX™ Wire-to-Board Housing, Part Number 87439-1000 Molex Pico-SPOX™ Wire-to-Board Header, Part Number 87438-1043 Connector: Recommended mating Crimp Terminal, Part Number 87421-0000 connector: #### **Electrical Internal Circuit** Pins 1: Substrate potential, isolated from Cathode and Anode Pins 2: Anode Pins 3: Cathode #### **Reflow Soldering Profile** Product complies to MSL Level 2 acc. to JEDEC J-STD-020E | Profile Feature | Symbol | Pb | Pb-Free (SnAgCu) Assembly | | | |---|--------------------------------|---------|---------------------------|---------|-----| | | | Minimum | Recommendation | Maximum | | | Ramp-up rate to preheat*) | | | 2 | 3 | K/s | | 25 °C to 150 °C | | | | | | | Time t _s | t_s | 60 | 100 | 120 | S | | T_{Smin} to T_{Smax} | | | | | | | Ramp-up rate to peak*) | | | 2 | 3 | K/s | | T_{Smax} to T_{P} | | | | | | | Liquidus temperature | T_{L} | | 217 | | °C | | Time above liquidus temperature | $t_{\scriptscriptstyle \perp}$ | | 80 | 100 | S | | Peak temperature | T_{P} | | 245 | 260 | °C | | Time within 5 °C of the specified peak temperature T _p - 5 K | t _P | 10 | 20 | 30 | S | | Ramp-down rate* T _p to 100 °C | | | 3 | 6 | K/s | | Time 25 °C to T _P | | | | 480 | S | All temperatures refer to the center of the package, measured on the top of the component ^{*} slope calculation DT/Dt: Dt max. 5 s; fulfillment for the whole T-range Tray 7) 38 pieces per tray C63062-A4389-B10-01 #### **Barcode-Product-Label (BPL)** ### Barcode-Tray-Label (BTL) OHA02684_1 ## Schematic Transportation Box 7) ## **Dimensions of Transportation Box** | Width | Length | Height | | |------------|-----------|-----------|--| | 333 ± 5 mm | 218 ±5 mm | 28 ± 5 mm | | | 337 ± 5 mm | 218 ±5 mm | 63 ± 5 mm | | #### **Type Designation System** ## **Data Matrix Code Description** The Data Matrix Code bin information is Laser marked during testing Content: aaaa@bbbb@ccc@ddddd@eeeee Data Matrix Code Type: ECC200 | a = Luminous Flux (Phiv) [lm] or Radiant Flux (Phie) [W] | (example: 3306) | |--|------------------| | b = Forward Voltage (Vf) [V] | (example: 3.46) | | c = Wavelength (Ldom) [nm] | (example: 618) | | d = Color Coordinate Cx | (example: 0.321) | | e = Color Coordinate Cy | (example: 0.641) | @: Seperator = Blank LE D P1MQ **DATASHEET** #### **Notes** The evaluation of eye safety occurs according to the standard IEC 62471:2006 (photo biological safety of lamps and lamp systems). Within the risk grouping system of this IEC standard, the device specified in this data sheet fall into the class moderate risk (exposure time 0.25 s). Under real circumstances (for exposure time, conditions of the eye pupils, observation distance), it is assumed that no endangerment to the eye exists from these devices. As a matter of principle, however, it should be mentioned that intense light sources have a high secondary exposure potential due to their blinding effect. When looking at bright light sources (e.g. headlights), temporary reduction in visual acuity and afterimages can occur, leading to irritation, annoyance, visual impairment, and even accidents, depending on the situation. Subcomponents of this device contain, in addition to other substances, metal filled materials including silver. Metal filled materials can be affected by environments that contain traces of aggressive substances. Therefore, we recommend that customers minimize device exposure to aggressive substances during storage, production, and use. Devices that showed visible discoloration when tested using the described tests above did show no performance deviations within failure limits during the stated test duration. Respective failure limits are described in the IEC60810. For further application related information please visit https://ams-osram.com/support/application-notes #### Disclaimer #### Attention please! The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances. For information on the types in question please contact our Sales Organization. If printed or downloaded, please find the latest version on our website. #### **Packing** Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred. #### Product and functional safety devices/applications or medical devices/applications Our components are not developed, constructed or tested for the application as safety relevant component or for the application in medical devices. Our products are not qualified at module and system level for such application. In case buyer – or customer supplied by buyer – considers using our components in product safety devices/ applications or medical devices/applications, buyer and/or customer has to inform our local sales partner immediately and we and buyer and /or customer will analyze and coordinate the customer-specific request between us and buyer and/or customer. #### **Glossary** - Brightness: Brightness values are measured during a current pulse of typically 1 ms, with an internal reproducibility of ±8 % and an expanded uncertainty of ±11 % (acc. to GUM with a coverage factor of k = 3). - Reverse Operation: This product is intended to be operated applying a forward current within the specified range. Applying any continuous reverse bias or forward bias below the voltage range of light emission shall be avoided because it may cause migration which can change the electro-optical characteristics or damage the LED. - Wavelength: The wavelength is measured at a current pulse of typically 1 ms, with an internal reproducibility of ±0.5 nm and an expanded uncertainty of ±1 nm (acc. to GUM with a coverage factor of k = - Typical Values: Due to the special conditions of the manufacturing processes of semiconductor devices, the typical data or calculated correlations of technical parameters can only reflect statistical figures. These do not necessarily correspond to the actual parameters of each single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If requested, e.g. because of technical improvements, these typ. data will be changed without any further notice. - Forward Voltage: The forward voltage is measured during a current pulse of typically 1 ms, with an internal reproducibility of ±0.05 V and an expanded uncertainty of ±0.1 V (acc. to GUM with a coverage factor of k = 3). - Characteristic curve: In the range where the line of the graph is broken, you must expect higher differences between single devices within one packing unit. - Tolerance of Measure: Unless otherwise noted in drawing, tolerances are specified with ±0.1 and dimensions are specified in mm. LE D P1MQ DATASHEET | Version | Date | Change | |---------|------------|--| | 1.0 | 2019-09-18 | Initial Version | | 1.1 | 2020-02-18 | Maximum Ratings Characteristics | | 1.2 | 2021-03-22 | Ordering Information Brightness Groups Characteristics Dimensional Drawing Maximum Ratings | | 1.3 | 2025-03-10 | New Layout Applications Ordering Information Characteristics Brightness Groups Electro - Optical Characteristics (Diagrams) Glossary | 1.4 2025-06-12 Brand EU RoHS and China RoHS compliant product 此产品符合欧盟 RoHS 指令的要求; 按照中国的相关法规和标准, 不含有毒有害物质或元素。 #### Published by ams-OSRAM AG Tobelbader Strasse 30, 8141 Premstaetten, Austria Phone +43 3136 500-0 ams-osram.com © All rights reserved