

Data Sheet DMM-2726-B

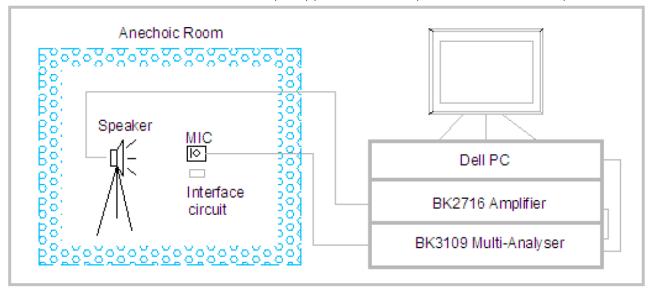
The PUI Audio DMM-2726-B digital PDM output MEMS omni-directional microphone features a nominal -26dBFS sensitivity, 64dB(A) signal-to-noise ratio, and a bottom port.

Features:

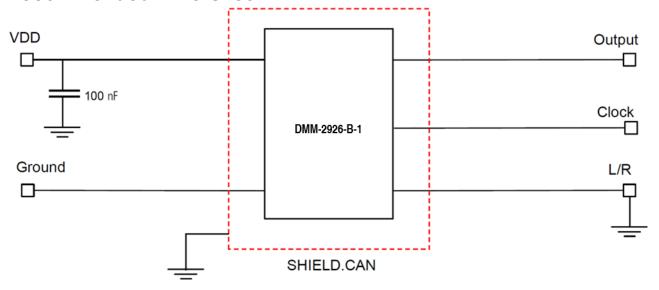
- 1.85mm x 2.75mm package
- 0.9mm height
- -26dBFS sensitivity
- 64dB (typical) signal-to-noise ratio
- Omni-directional polar response

Specifications $V_{SUPP} = 1.8V_{DC}$, $f_{IN} = 1$ kHz, Acoustic Input = 94dBSPL (1Pa), 0 dBV = 1V @ 1Pa, bandwidth (BW) = 20Hz \leq f \leq 20kHz, A-weighted, 768kHz \leq f_{CLK} \leq 2.4MHz unless otherwise stated.

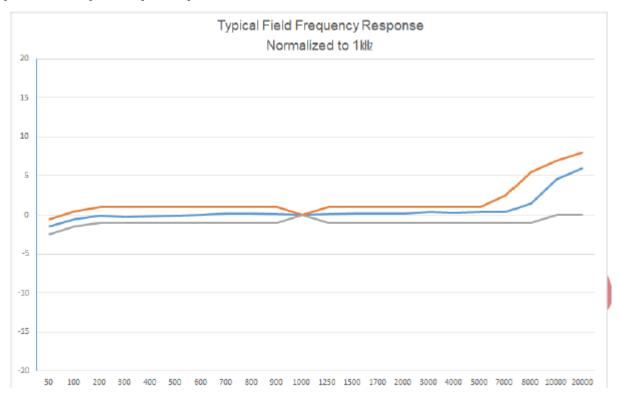
Parameters		Values	Units	
Typical Sensitivity		-26 ±1	dBFS	
Typical Signal-to-Noise Ratio	$f_{CLK} = 2.4MHz$	64	dB	
	$f_{CLK} = 768kHz$	61	dB	
Typical Frequency Range		$20 \le f \le 20,000$	Hz	
Total Harmonic Distortion	Maximum	0.5	97	
	Typical	0.15	%	
Typical Acoustic Overload Point (AOP) THD = 10%		121	dBSPL	
Operating Voltage Range		$1.6 \le V_S \le 3.6$	V_{DC}	
	$f_{CLK} = 2.4MHz$	780	μA	
Typical Power Supply Current	$f_{CLK} = 768kHz$	380		
	f _{CLK} ≤15KHz	10		
Directivity		Omnidirectional	-	
Environmental Compliances		RoHS/Halogen Free	-	
Typical Power Supply Rejection (PSR) $f_{NOISE} = 217$ Hz Square Wave 100 mV _{PP} Bandwidth = 8 kHz \leq fBW \leq 20 kHz A-weighted 768 kHz \leq fCLK \leq 2.4 MHz		-90	dBFS	

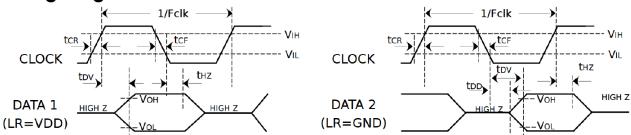

Specifications (continued) $V_{SUPP} = 1.8V_{DC}$, $f_{IN} = 1$ kHz, Acoustic Input = 94dBSPL (1Pa), 0 dBV = 1V @ 1Pa, bandwidth (BW) = 20Hz $\leq f \leq 20$ kHz, A-weighted, unless otherwise stated.

Absolute Maximum Ratings

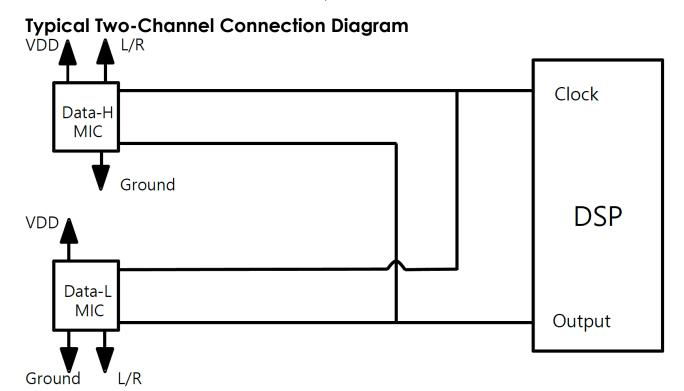

Parameters	Values	Units
Maximum Voltage on V _{DD} with respect to Ground	$-0.3 \le V_{DD} \le 5.0$	V_{DC}

	Standard operational	Minimum	1.19	MHz	
	mode	Maximum	3.6	771112	
Clock Frequency	Low power operational	Minimum	350	- - kHz	
	mode	Maximum	830		
	Sloop mode	Minimum		NI IZ	
	Sleep mode	Maximum	15		
Logic-High Input Level	(VIII)	Minimum	(0.65)V _{DD}		
Logic-riigiriiipoi Levei	(V IH)	Maximum	$V_{DD} + 0.3$		
Logic-Low Input Level	(\./)	Minimum	(-0.30)V _{DD}		
Logic-Low Importever	(V IL)	Maximum	(0.35)V _{DD}		
Logic-High Output Lev	rel (Voh)	Minimum	(0.70)V _{DD}	V	
$I_{OUT} = 0.5 mA$		Maximum			
Logic-Low Output Leve	el (Vol)	Minimum			
, ,		Maximum	(0.30)V _{DD}		
Bit-Clock Duty-Cycle (Dclk)			55	%	
Maximum Bit-Clock Rise and Fall Time			13		
Delay Time for Valid Data Minimum			0.5		
T2, T4 in Timing Diagram Maximum			25	ns	
Delay Time for High-Z Logic Output Minimum		19			
T1, T3 in Timing Diagra	am	Maximum	73		
Maximum Logic Output Capacitance Load			200	рF	
Maximum Time to Acti	vate Wake-Up (Twake)				
$f_{CLK} \ge 351 \text{kHz}$			20	ms	
Maximum Time to Activate Sleep State (TSLEEP)			20	1115	
f _{CLK} = 0Hz					
Weight			<0.3	gm	
Operating Temperature			$-40 \le T_{\odot} \le 105$	°C	
Storage Temperature			$-40 \le T_S \le 125$	°C	
MSL (Moisture Sensitivity Level) Class*			1	-	


Measurement Method Acoustic input applied to the microphone has a 94dBSPL amplitude.

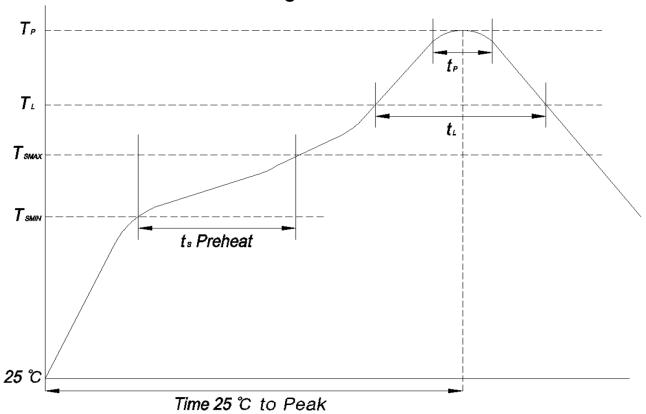

Recommended Drive Circuit

Typical Frequency Response (Normalized to 1kHz response magnitude.)



Timing Diagram

 $t_{\text{DD}} \colon 19 \text{ns} \quad t_{\text{Hz}} \colon 5{\sim}16 \text{ns} \quad t_{\text{DV}} \colon 73 \text{ns} \quad t_{\text{CR}} \, / t_{\text{CF}} \colon \text{max} 13 \text{ns}$


 $5ns \le t1$, $t3 \le 55ns$ $0.5ns \le t2$, $t4 \le 25ns$

Reliability Testing Microphone frequency response and sensitivity shall not deviate more than ±3 dB.

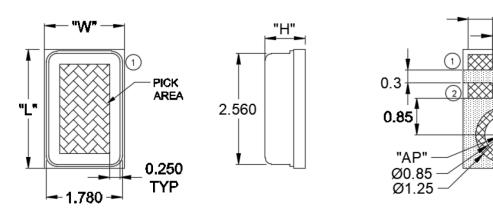
Type of Test	Test Specifications
Simulated Reflow (Without Solder)	Samples for qualification testing require 3 passes 260±5 °C reflow solder profiles. 2 hours of setting time is required between each reflow profile test.
Static Humidity	Precondition at +25°C for 1 hour. Expose to +85°C with 85% relative humidity for 120 hours. Finally, dry at room ambient for 3±1 hour before taking final measurement.
Temperature Shock	Each cycle shall consist of 30 minutes at -40°C, 30 minutes at +85°C with 5 minutes transition time. Test duration is for 30 cycles, starting from cold to hot temperature.
ESD Sensitivity	Perform ESD sensitivity threshold measurements for each contact according to MIL-STD-883G, Method 3015.7 for Human Body Model. Identify the ESD threshold levels indicating passage of 8000V Human Body Model.
Vibration Test	Vibrate randomly along three perpendicular directions for 30 minutes in each direction, 4 cycles from 10Hz to 55 Hz with a peak acceleration of 20 Gs.
Shock Test	Subject samples to half-sine shock pulses (3000±15% Gs for 0.3ms) in each direction, for a total of 18 shocks.
Drop Test	Drop samples from 1.5m height onto a steel surface, total 18 times and inspected for mechanical damage.

Recommended Reflow Soldering Procedure

	Lead(Pb) Free Solder	
	Temperature min.(T _{SMIN})	150℃
Preheat	Temperature max.(T _{SMAX})	200℃
	Time (ts)	60-120 Seconds
Liguidue	Temperature (T _L)	217℃
Liquidus	Time (t∟)	60-150 Seconds
Peak	Temperature (T _P)	260℃
Peak	Time within 5℃ of actual peak temperature (t _P)	30 Seconds Max.
Ramp up	Average ramp up rate T_{SMAX} to T_P	3℃ / Second Max.
Ramp down Average ramp down rate T _P to T _{SMAX}		6℃ / Second Max.
Time 25°C to Peak temperature 8 Minutes Ma		

-0.55 | **-- 0.5**

3)

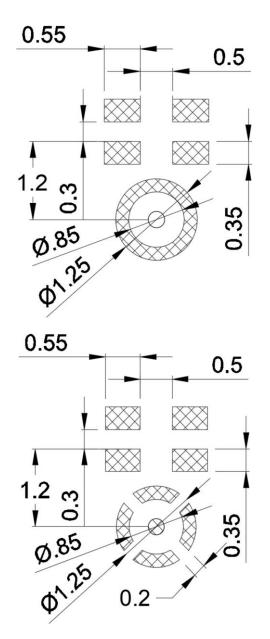

0.125

0.35

0.775

0.925

Dimensions (±0.15mm tolerance)

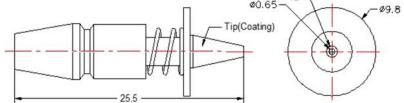


Item	Dimension	Tolerance
Length(L)	2.75	±0.10mm
Width(W)	1.85	±0.10mm
Height(H)	0.90	±0.10mm
Acoustic Port(AP)	Ø0.25	±0.05mm

Pin 1	Pin 2	Pin 3	Pin 4	Pin 5
VDD	Clock	Ground	L/R	Output

Note: Connect the "L/R" pin to ground when the microphone is used in a single-channel application.

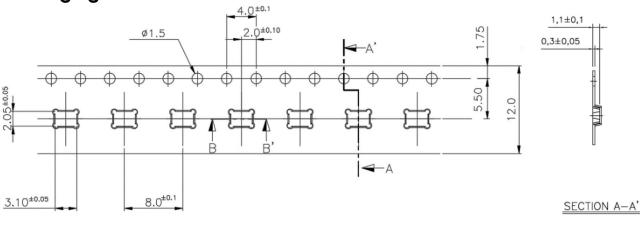
PCB Land and Stencil Pattern (This land pattern is advisory only and its use or adaptation is entirely voluntary. PUI Audio disclaims all liability of any kind associated with the use, application, or adaptation of this land pattern.)

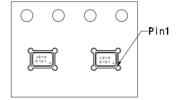


Pick and Place Tool Recommendations

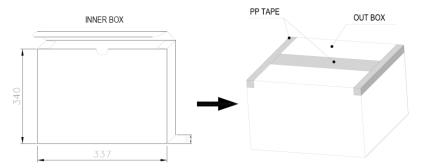
Note: Pick Area only extends to 0.25mm of any edge or hole unless otherwise specified.

Recommended Nozzle Model: CN065


Appendix of the control of the cont



Interner Diameter : Φ 0.65mm
Externer Diameter : Φ1.2mm


©2025, PUI Audio Inc.

Reel Diameter	Quantity Per Reel
13"	5,900

5,900PCS X 2BAG = 11,800PCS

CARTON SIZE: 330(W) X 350(L) X 355(H)

QUANTITY: 70,800 PCS

Specifications Revisions

Revision	Description	Date	Approval	
Α	Datasheet released from Engineering	04/21/2025	KH	

Note:

- 1. Unless otherwise specified:
 - A. All dimensions are in millimeters.
 - B. Default tolerances are ± 0.5 mm and angles are $\pm 3^{\circ}$.
- 2. Specifications subject to change or withdrawal without notice.