

Product Change Notification: MFOL-09UGKQ160

Date:

04-Aug-2025

Product Category:

8-Bit Microcontrollers, Analog Temperature Sensors, Power Management - System Supervisors/Voltage Detectors, Voltage References

Notification Subject:

CCB 7643 Final Notice: Qualification of palladium coated copper with gold flash (CuPdAu) as a new bond wire material for selected MCP9700B, MCP130, MCP9700, MCP9700A, TC1047A, TC1047, MCP102, MCP9701, MCP9701A, TCM808, MCP1525, MCP1541 device families available in 3L SOT-23 (1.3mm) package at MTAI assembly site.

Affected CPNs:

MFOL-09UGKQ160_Affected_CPN_08042025.pdf MFOL-09UGKQ160_Affected_CPN_08042025.csv

PCN Status: Final Notification

PCN Type: Manufacturing Change

Microchip Parts Affected: Please open one of the files found in the Affected CPNs section. Note: For your convenience Microchip includes identical files in two formats (.pdf and .xls)

Description of Change: Qualification of palladium coated copper with gold flash (CuPdAu) as a new bond wire material for selected MCP9700B, MCP130, MCP9700, MCP9700A, TC1047A, TC1047, MCP102, MCP9701, MCP9701A, TCM808, MCP1525, MCP1541 device families available in 3L SOT-23 (1.3mm) package at MTAI assembly site.

Pre and Post Summary Changes:

	Pre Change	Post Change				
Assembly Site	Microchip Technology Thailand (HQ) (MTAI)	Microchip Technology Thailand (HQ) (MTAI)				

Wire Material	Au	CuPdAu
Die Attach Material	8390A	8390A
Molding Compound Material	G600V	G600V
Lead-Frame Material	CDA194	CDA194

Impacts to Datasheet: None

Change Impact: None

Reason for Change: To improve manufacturability by qualifying palladium coated copper with gold flash (CuPdAu) as a new bond wire material.

Change Implementation Status: In Progress

Estimated First Ship Date: 21 August 2025 (date code: 2534)

Note Below EFSD: Note: Please be advised that after the estimated first ship date customers may receive pre and post change parts.

Timetable Summary:

	June 2025			>	August 2025						
Work Week	23	24	25	26	27		32	33	34	35	36
Initial PCN Issue Date		X									
Qual Report Availability							x				
Final PCN Issue Date							x				
Estimated Implementation Date									X		

Method to Identify Change: Traceability Code

Qualification Report: Please open the attachments included with this PCN labeled as PCN_#_Qual_Report.

Revision History: June 12, 2025: Issued initial notification.

August 04, 2025: Issued final notification. Attached qualification report. Provided estimated first ship date to be on August 21, 2025.

Note: The change described in this PCN does not alter Microchip's current regulatory compliance regarding the material content of the applicable product.

Attachments:

PCN_MFOL-09UGKQ160_Qual Report.pdf

Please contact your local Microchip sales office with questions or concerns regarding this notification.

Terms and Conditions:

If you wish to <u>receive Microchip PCNs via email</u> please register for our PCN email service at our <u>PCN</u> <u>home page</u> select register then fill in the required fields. You will find instructions about registering for Microchips PCN email service in the <u>PCN FAQ</u> section.

If you wish to <u>change your PCN profile</u>, <u>including opt out</u>, please go to the <u>PCN home page</u> select login and sign into your myMicrochip account. Select a profile option from the left navigation bar and make the applicable selections.

MFOL-09UGKQ160 - CCB 7643 Final Notice: Qualification of palladium coated copper with gold flash (CuPdAu) as a new bond wire material for selected MCP9700B, MCP130, MCP9700, MCP9700A, TC1047A, TC1047, MCP102, MCP9701A, TCM808, MCP1525, MCP1541 device families available in 3L SOT-23 (1.3mm) package at MTAI assembly site.

Affected Catalog Part Numbers (CPN) MCP9700BT-H/TT MCP9700BT-E/TT MCP130T-270I/TT MCP130T-300I/TT MCP130T-315I/TT MCP130T-450I/TT MCP130T-460I/TT MCP130T-475I/TT MCP130T-485I/TT MCP130T-450I/TTV02 MCP9700T-H/TT MCP9700T-E/TT MCP9700AT-E/TT TC1047AVNBTR TC1047VNBTR MCP102T-195I/TT MCP102T-195I/TTV01 MCP102T-240E/TT MCP102T-270E/TT MCP102T-300E/TT MCP102T-315E/TT MCP102T-450E/TT MCP102T-475E/TT MCP9701T-E/TT MCP9701AT-E/TT TCM808ZENB713 MCP1525T-I/TT

Date: Sunday, August 3, 2025

MFOL-09UGKQ160 - CCB 7643 Final Notice: Qualification of palladium coated copper with gold flash (CuPdAu) as a new wire material for selected MCP9700B, MCP130, MCP9700, MCP9700A, TC1047A, TC1047, MCP102, MCP9701, MCP97 TCM808, MCP1525, MCP1541 device families available in 3L SOT-23 (1.3mm) package at MTAI assembly site.	
MCP1541T-I/TT	
Dun Control A 2 2 2025	
Date: Sunday, August 3, 2025	

QUALIFICATION REPORT SUMMARY RELIABILITY LABORATORY

PCN #: MFOL-09UGKQ160

Date: July 21, 2025

Qualification of palladium coated copper with gold flash (CuPdAu) as a new bond wire material for selected MCP9700B, MCP130, MCP9700, MCP9700A, TC1047A, TC1047, MCP102, MCP9701, MCP9701A, TCM808, MCP1525, MCP1541 device families available in 3L SOT-23 (1.3mm) package at MTAI assembly site.

MICROCHIP PACKAGE QUALIFICATION REPORT

Purpose Qualification of palladium coated copper with gold flash (CuPdAu) as a new bond wire

material for selected MCP9700B, MCP130, MCP9700, MCP9700A, TC1047A, TC1047, MCP102, MCP9701, MCP9701A, TCM808, MCP1525, MCP1541 device families

available in 3L SOT-23 (1.3mm) package at MTAI assembly site.

CN E000273199

 QUAL ID
 R2500676 Rev A

 Bonding No.
 BD-003375 Rev.01

 MP CODE
 GBAT1JC6XA00

 Part No.
 MCP9700T-H/TT

CCB No. 7643

Lead Frame

Paddle size64 x 38 milsMaterialCDA194SurfaceAg spot plateProcessStamped

Lead lock No

Part number 10100301
Plating composition Matte Tin

Bond Wire

Wire CuPdAu wire

Die Attach Material

Epoxy 8390A

Mold Compound

Mold compound G600V

Package

Type 3L SOT-23

Manufacturing Information

Assembly Lot No.	Wafer Lot No.	Date Code
MTAI260902099.000	TMPE225386632.300	2522M71
MTAI261000406.000	TMPE225386632.300	2523MS3
MTAI261000440.000	TMPE225386632.300	2523MTW

Result	X Pass	Fail	

3L SOT-23 assembled by MTAI pass reliability test per QCI-39000. This package was qualified the Moisture/Reflow Sensitivity Classification Level 1 at 260°C reflow temperature per IPC/JEDEC J-STD-020E standard.

	PACKAGE QUALIFIC	ATION	REP(ORT		
Test Number (Reference)	Test Condition	Standard/ Method	Qty. (Acc.)	Def/SS	Result	Remarks
Precondition Prior Perform	Electrical Test: +25°C and 125°C System: ETS88	JESD22- A113	693(0)	0/693	Pass	Good Devices
Reliability Tests (At MSL Level 1)	Bake 150°C, 24 hrs. System: CHINEE	JIP/ IPC/JEDEC		693		
	85°C/85%RH Moisture Soak 168 hrs. System: TABAI ESPEC Model PR-3SPH	J-STD-020E		693		
	3x Convection-Reflow 265°C max			693		
	System: Vitronics Soltec MR1243 Electrical Test: +25°C and 125°C System: ETS88		693(0)	0/693	Pass	

	PACKAGE QUALIFICA	ATION	REF	PORT		
Test Number (Reference)	Test Condition	Standard/ Method	Qty. (Acc.)	Def/SS.	Result	Remarks
	Stress Condition: -65°C to +150°C, 500 Cycles System: TABAI ESPEC TSA-70H	JESD22- A104		231		Parts had been pre-conditioned at 260°C
Temp Cycle	Electrical Test: +125°C System: ETS88		231(0)	0/231	Pass	77 units / lot
	Bond Strength: Wire Pull (>3.00 grams)		15(0)	0/15	Pass	
UNBIASED-HAST	Stress Condition: +130°C/85%RH, 96 hrs. System: HAST 6000X	JESD22- A118		231		Parts had been pre-conditioned at 260°C
ONDIAGED HAGT	Electrical Test: +25°C System: ETS88		231(0)	0/231	Pass	77 units / lot
HAST	Stress Condition: +130°C/85%RH, 96 hrs. Bias Volt: 5.5 Volts System: HAST 6000X	JESD22- A110		231		Parts had been pre-conditioned at 260°C
	Electrical Test: +25°C and 125°C System: ETS88		231(0)	0/231	Pass	77 units / lot

	PACKAGE QUALIFIC	CATION	N REF	PORT	•	
Test Number (Reference)	Test Condition	Standard/ Method	Qty. (Acc.)	Def/SS.	Result	Remarks
High	Stress Condition: Bake 175°C, 504 hrs. System: TPS Bake Oven	JESD22- A103		135		45 units / lot
Temperature Storage Life	Electrical Test: +25°C and 125°C System: ETS88		135(0)	0/135	Pass	
Bond Strength	Wire Pull (>3.00 grams)	Mil. Std. 883-2011	30(0) Wires	0/30	Pass	
Data Assembly	Bond Shear (>15.00 grams)	CDF-AEC- Q100-001	30(0) Bonds	0/30	Pass	