
## SIOV- S25K275E4R12

Data sheet

#### SIOV nomenclature:

| S   | = | Disk type                                       |
|-----|---|-------------------------------------------------|
| 25  | = | Rated disk diameter                             |
| K   | = | Tolerance of V <sub>V</sub> at 1mA : $\pm 10\%$ |
| 275 | = | Max. AC voltage                                 |
| E4  | = | High-Energy series                              |
| R12 | = | Customized lead spacing                         |

Figure: Dimensions given in Millimeters (mm)



| b <sub>max</sub>        | = | 27,5         |
|-------------------------|---|--------------|
| h <sub>max</sub>        | = | 31,0         |
| <b>S</b> <sub>max</sub> | = | 5,9          |
| е                       | = | $12,7\pm1,0$ |
| а                       | = | $2,7\pm1,0$  |
| l <sub>min</sub>        | = | 10,0         |
| Ød                      | = | $1,0\pm0,05$ |
|                         |   |              |

<sup>1)</sup> seating plane in accordance with IEC 60717

#### **Electrical data:**

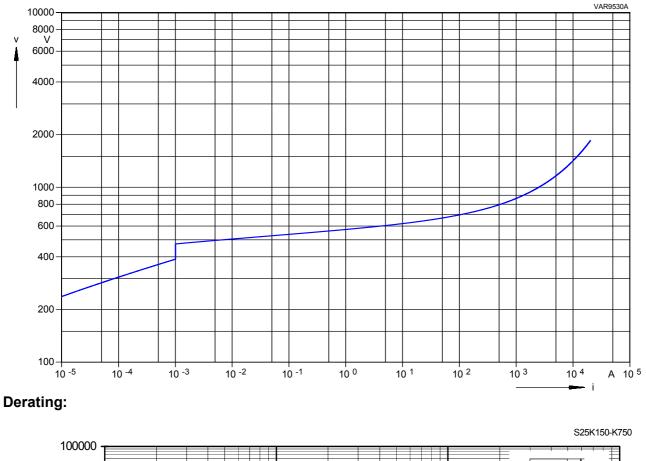
| <u>Maximum Ratings (85°C):</u><br>Max. operating AC voltage | V <sub>RMS</sub>                    | = | 275V          |
|-------------------------------------------------------------|-------------------------------------|---|---------------|
| Max. operating DC voltage                                   | v <sub>RMS</sub><br>V <sub>DC</sub> | = | 350V          |
| Surge current ( $8/20\mu$ s) 1 time                         | I <sub>max</sub>                    | = | 20000A        |
| Energy absorption (2ms) 1 time                              | W <sub>max</sub>                    | = | 600J          |
| Average power dissipation                                   | P <sub>max</sub>                    | = | 1,0W          |
| Characteristics (25°C):                                     |                                     |   |               |
| Varistor voltage at 1mA                                     | Vv                                  | = | $430V\pm10\%$ |
| Clamping voltage at 150A (8/20µs)                           | $V_{C,max}$                         | = | 710V          |
| Typ. capacitance at 1 kHz                                   | С                                   | = | 1330pF        |

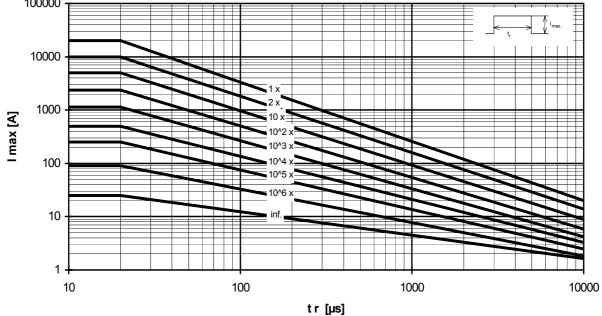
| ISSUE DATE 26.03 | ISSUE | d | PUBLISHER | KH PE VAR | PAGE | 1/6 |
|------------------|-------|---|-----------|-----------|------|-----|
|------------------|-------|---|-----------|-----------|------|-----|

#### Disc type

Ordering code: B72225S4271K101




#### SIOV- S25K275E4R12


Ordering code: B72225S4271K101

Disc type

Data sheet

#### V/I Characteristic:





| ISSUE DATE | 26.03.04 | ISSUE | d | PUBLISHER | KH PE VAR | PAGE | 2/6 |
|------------|----------|-------|---|-----------|-----------|------|-----|
|------------|----------|-------|---|-----------|-----------|------|-----|



## SIOV- S25K275E4R12

# Disc type Ordering code: B72225S4271K101

Data sheet

#### **Reliability Data:**

|   | Characteristics                    | Test Methods/Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Specifications                                                                                              |
|---|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| E | Varistor<br>Voltage                | The voltage between two terminals with the specified measuring current applied is called $V_v$ (1 mA <sub>DC</sub> @ 0.2 - 2 s).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | To meet the specified value.                                                                                |
| L | Clamping<br>Voltage                | The maximum voltage between two terminals<br>with the specified standard impulse current<br>(8/20µs) illustrated below applied.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | To meet the specified value.                                                                                |
|   |                                    | 2 Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                             |
| С |                                    | 100<br>90<br>Leading<br>Edge<br>50<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                             |
| Т |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             |
| R |                                    | Te Rise Time ja<br>Tr Ris |                                                                                                             |
| I |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             |
| С | Surge current derating,            | 100 surge currents (8/20 μs), unipolar, interval 30 s, amplitude corresponding to derating curve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $  \Delta V/V (1 mA)  $<br>$\leq 10 \%$ (measured                                                           |
| А | 8/20 μs                            | for 20 µs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | in direction of surge<br>current)<br>No visible damage                                                      |
| L | Surge current<br>derating,<br>2 ms | 100 surge currents (2ms), unipolar, interval<br>120s, amplitude corresponding to derating curve<br>for 2ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $  \Delta V/V (1 mA)  $<br>$\leq 10 \%$ (measured<br>in direction of surge<br>current)<br>No visible damage |



## SIOV- S25K275E4R12

## Disc type

# Ordering code: B72225S4271K101

Data sheet

|   | Characteristics     | Test Methods/Description                                                                                                                                         | Specifications                                                                                                                                |
|---|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| М | Tensile<br>strength | After gradually applying the force specified below and keeping the unit fixed for 10 seconds, the terminal shall be visually examined for any                    | $  \Delta V/V (1 mA)  $<br>$\leq 5 \%$<br>No break of solder                                                                                  |
| Е |                     | damage.                                                                                                                                                          | joint, no wire break                                                                                                                          |
| С |                     | Terminal diameter Force<br>0.5 mm 5 N<br>0.6 mm 10 N<br>0.8 mm 10 N                                                                                              |                                                                                                                                               |
| Н |                     | 1.0 mm 20 N                                                                                                                                                      |                                                                                                                                               |
| А | Solderability       | After dipping the terminals to a depth of approximately 3 mm from the body in a soldering bath of 235°C for 5 seconds, the terminals shall be visually examined. | The inspection shall<br>be carried out under<br>adequate light with<br>normal eyesight or                                                     |
| N |                     |                                                                                                                                                                  | with the assistance<br>of a magnifier<br>capable of giving a                                                                                  |
| C |                     |                                                                                                                                                                  | magnification of 4<br>times to 10 times.<br>The dipped surface<br>shall be covered                                                            |
| A |                     |                                                                                                                                                                  | with a smooth and<br>bright solder coating<br>with no more than                                                                               |
|   |                     |                                                                                                                                                                  | small amounts of scattered                                                                                                                    |
| L |                     |                                                                                                                                                                  | imperfections such<br>as pinholes or un-<br>wetted or de-wetted<br>areas. These<br>imperfections shall<br>not be concentrated<br>in one area. |

| ISSUE DATE | 26.03.04 | ISSUE | d | PUBLISHER | KH PE VAR | PAGE | 4/6 |
|------------|----------|-------|---|-----------|-----------|------|-----|
|            | 4        |       |   |           |           |      | 1   |



## SIOV- S25K275E4R12

### Disc type

# Ordering code: B72225S4271K101

Data sheet

|   | Characteristics   | Test Methods/Description                                                                                  | Specifications                  |
|---|-------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------|
| Μ | Resistance to     | Each lead shall be dipped into a solder bath                                                              |                                 |
| Е | soldering heat    | having a temperature of $260 \pm 5^{\circ}$ C to a point 2.0 to 2.5 mm from the body of the unit, be held | $\leq$ 5 %<br>No visible damage |
| С |                   | there for 10 $\pm$ 1 s and then be stored at room                                                         | ne violoio damago               |
| Н |                   | temperature and normal humidity for 1 to 2 hours. The change of $V_v$ and mechanical                      |                                 |
| А |                   | damages shall be examined.                                                                                |                                 |
| Ν | Electric strength | 2500 V <sub>RMS</sub> , 10 s                                                                              | No breakdown                    |
| Ι |                   | The varistor is placed in a container holding 1.6 $\pm$ 0.2 mm diameter metal balls such that only the    |                                 |
| С |                   | terminations of the varistor are protruding.                                                              |                                 |
| А |                   | The specified voltage shall be applied between<br>both terminals of the specimen connected                |                                 |
| L |                   | together and the electrode inserted between the metal balls.                                              |                                 |

| ISSUE DATE | 26.03.04 | ISSUE | d | PUBLISHER | KH PE VAR | PAGE | 5/6 |   |
|------------|----------|-------|---|-----------|-----------|------|-----|---|
|            |          |       |   |           |           |      |     | L |



#### Disc type

#### SIOV- S25K275E4R12

### Ordering code: B72225S4271K101

Data sheet

|        | Characteristics                 | Test Methods/Description                                                                                                                                                                                                                                  | Specifications                                        |
|--------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| E<br>N | Max. AC<br>operating<br>voltage | After being continuously applied the maximum allowable voltage at $85 \pm 2^{\circ}$ C for 1000 hours, the specimen shall be stored at room temperature and normal humidity for 1 to 2 hours. Thereafter, the change of V <sub>v</sub> shall be measured. | ∆ V/V (1 mA)  <br>≤ 10 %                              |
| V      | Damp heat,<br>steady state      | The specimen shall be subjected to $40 \pm 2^{\circ}$ C, 90 to 95 % r.H. for 56 days without load and then stored at room temperature and normal humidity for 1 to 2 hours. Thereafter, the change of V <sub>v</sub> shall be measured.                   | ∆ V/V (1 mA)  <br>≤ 10 %                              |
| R<br>O | Climatic<br>sequence            | The specimen shall be subjected to:<br>a) dry heat at +85°C, 16 h<br>b) damp heat, 1st cycle: 55°C, 93 % r.H., 24 h<br>c) cold, -40°C, 2 h<br>d) damp heat, additional                                                                                    | ∆ V/V (1 mA)  <br>≤ 10 %                              |
| N<br>M |                                 | 5 cycles: 55°C, 93 % r.H., 24 h/cycle<br>Then the specimen shall be stored at room<br>temperature and normal humidity for 1 to 2<br>hours. Thereafter, the change of $V_v$ shall be<br>measured.                                                          |                                                       |
| E      | Fast<br>temperature<br>cycling  | The temperature cycle shown below shall be<br>repeated 5 times. Then the specimen shall be<br>stored at room temperature and normal humidity<br>for 1 to 2 hours. The change of V <sub>v</sub> and<br>mechanical damage shall be examined.                | $  \Delta V/V (1 mA)   \le 5 \%$<br>No visible damage |
| Т      |                                 | $\begin{array}{c cccc} \underline{Step} & \underline{Temperature} \ (^{\circ}C) & \underline{Period} \ (min.) \\ 1 & -40 \pm 3 & 30 \pm 3 \\ 2 & transition \ time & < 10 \ s \\ 3 & 85 \pm 2 & 30 \pm 3 \end{array}$                                     |                                                       |
| A<br>L |                                 |                                                                                                                                                                                                                                                           |                                                       |

# <u>Note:</u> More details can be found in the data book 'SIOV Metal Oxide Varistors', Ordering No. EPC: 62002-7600

© EPCOS AG 2002. Reproduction, publication and dissemination of this data sheet, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

| ISSUE DATE 26.03.04 | ISSUE d | PUBLISHER | KH PE VAR | PAGE | 6/6 |
|---------------------|---------|-----------|-----------|------|-----|
|---------------------|---------|-----------|-----------|------|-----|