
MPSA42

MMBTA42

PZTA42

NPN High Voltage Amplifier

This device is designed for application as a video output to drive color CRT and other high voltage applications. Sourced from Process 48.

Absolute Maximum Ratings*

TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CES}	Collector-Emitter Voltage	300	V
V _{CBO}	Collector-Base Voltage	300	V
V_{EBO}	Emitter-Base Voltage	6.0	V
Ic	Collector Current - Continuous	500	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

- NOTES:

 1) These ratings are based on a maximum junction temperature of 150 degrees C.

 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

TA = 25°C unless otherwise noted

Symbol	Characteristic Max				Units
		MPSA42	*MMBTA42	**PZTA42	
P_D	Total Device Dissipation Derate above 25°C	625 5.0	350 2.8	1,000 8.0	mW mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3			°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	357	125	°C/W

^{*}Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

^{**} Device mounted on FR-4 PCB 36 mm X 18 mm X 1.5 mm; mounting pad for the collector lead min. 6 cm 2 .

NPN High Voltage Amplifier

(continued)

		\sim		4	
ACtr	ıcal	ľh	ara.	ctΔi	ristics
 CCLI	ıvaı	\mathbf{c}	aı a	CLE	131163

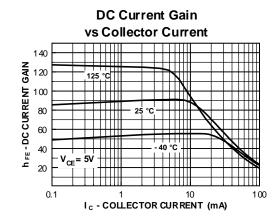
TA = 25°C unless otherwise noted

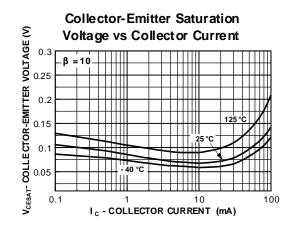
Parameter	Test Conditions	Min	Max	Units
ACTERISTICS				
Collector-Emitter Breakdown Voltage*	$I_C = 1.0 \text{ mA}, I_B = 0$	300		V
Collector-Base Breakdown Voltage	$I_C = 100 \mu A, I_E = 0$	300		V
Emitter-Base Breakdown Voltage	$I_E = 100 \mu A, I_C = 0$	6.0		V
Collector-Cutoff Current	$V_{CB} = 200 \text{ V}, I_E = 0$		0.1	μΑ
Emitter-Cutoff Current	$V_{EB} = 6.0 \text{ V}, I_{C} = 0$		0.1	μΑ
	ACTERISTICS Collector-Emitter Breakdown Voltage* Collector-Base Breakdown Voltage Emitter-Base Breakdown Voltage Collector-Cutoff Current	ACTERISTICS Collector-Emitter Breakdown Voltage* $I_C = 1.0 \text{ mA}, I_B = 0$ Collector-Base Breakdown Voltage $I_C = 100 \mu\text{A}, I_C = 0$ Emitter-Base Breakdown Voltage $I_E = 100 \mu\text{A}, I_C = 0$ Collector-Cutoff Current $V_{CB} = 200 V, I_E = 0$	ACTERISTICS Collector-Emitter Breakdown Voltage* $I_C = 1.0 \text{ mA}, I_B = 0$ 300 Collector-Base Breakdown Voltage $I_C = 100 \mu\text{A}, I_C = 0$ 300 Emitter-Base Breakdown Voltage $I_E = 100 \mu\text{A}, I_C = 0$ 6.0 Collector-Cutoff Current $V_{CB} = 200 \text{ V}, I_E = 0$	ACTERISTICS Collector-Emitter Breakdown Voltage* $I_C = 1.0 \text{ mA}, I_B = 0$ 300 Collector-Base Breakdown Voltage $I_C = 100 \mu\text{A}, I_E = 0$ 300 Emitter-Base Breakdown Voltage $I_E = 100 \mu\text{A}, I_C = 0$ 6.0 Collector-Cutoff Current $V_{CB} = 200 \text{ V}, I_E = 0$ 0.1

ON CHARACTERISTICS*

h _{FE}	DC Current Gain	$I_C = 1.0 \text{ mA}, V_{CE} = 10 \text{ V}$ $I_C = 10 \text{ mA}, V_{CE} = 10 \text{ V}$	25 40		
		$I_C = 30 \text{ mA}, V_{CE} = 10 \text{ V}$	40		
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_C = 20 \text{ mA}, I_B = 2.0 \text{ mA}$		0.5	V
V _{BE(sat)}	Base-Emitter Saturation Voltage	$I_C = 20 \text{ mA}, I_B = 2.0 \text{ mA}$		0.9	V

SMALL SIGNAL CHARACTERISTICS

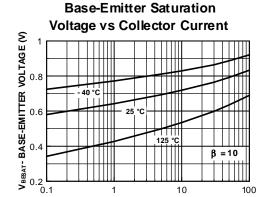

f _T	Current Gain - Bandwidth Product	$I_C = 10 \text{ mA}, V_{CE} = 20 \text{ V},$ f = 100 MHz	50		MHz
C _{cb}	Collector-Base Capacitance	$V_{CB} = 20 \text{ V}, I_{E} = 0, f = 1.0 \text{ MHz}$		3.0	pF

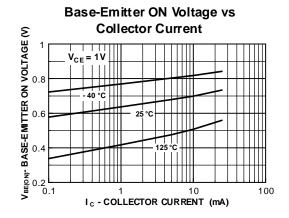

^{*}Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%

Spice Model

NPN (Is=34.9f Xti=3 Eg=1.11 Vaf=100 Bf=2.65K Ne=1.708 Ise=16.32p Ikf=23.79m Xtb=1.5 Br=9.769 Nc=2 Isc=0 Ikr=0 Rc=7 Cjc=14.23p Mjc=.5489 Vjc=.75 Fc=.5 Cje=49.62p Mje=.4136 Vje=.75 Tr=934.3p Tf=1.69n Itf=5 Vtf=20 Xtf=150 Rb=10)

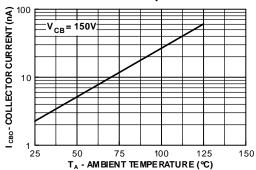
Typical Characteristics

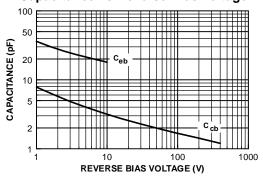


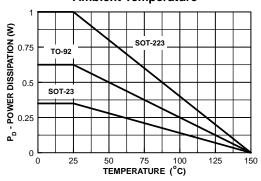


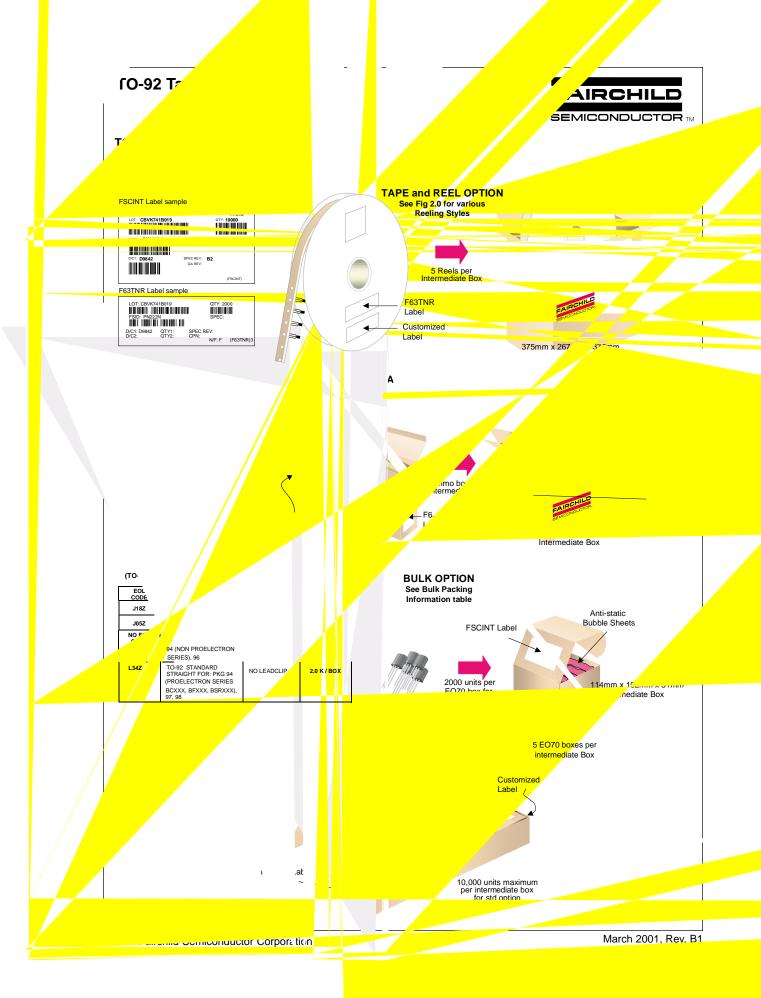
NPN High Voltage Amplifier

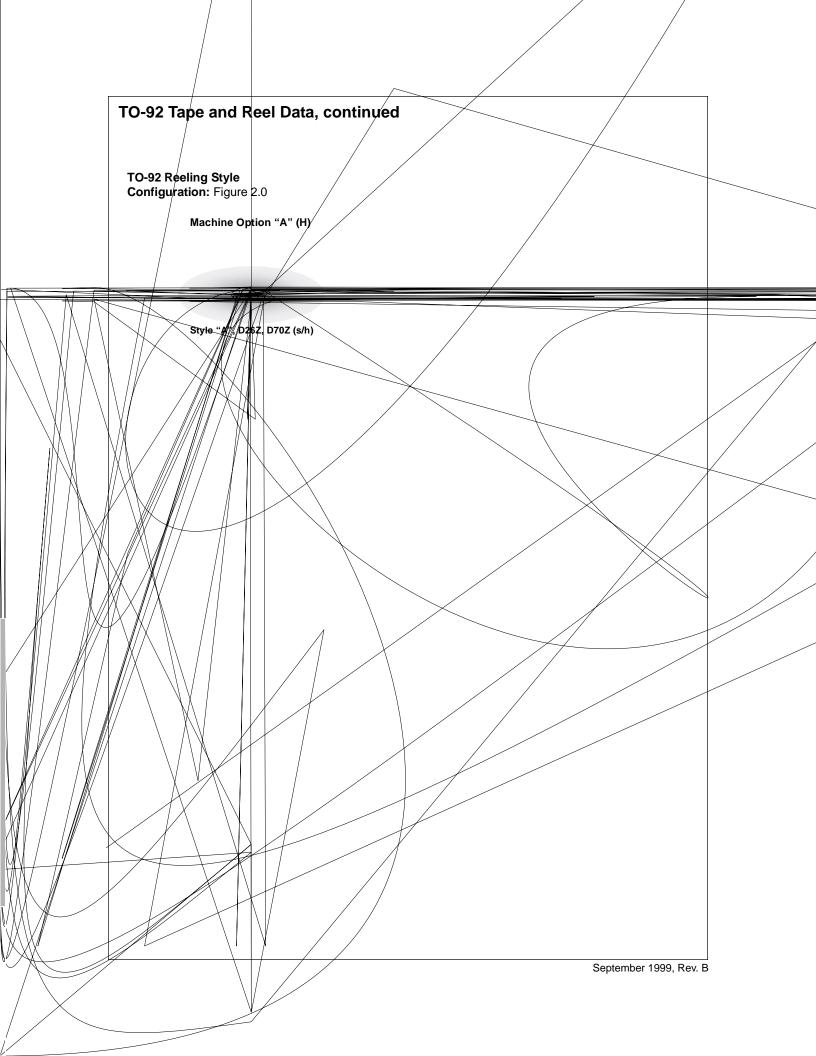
(continued)

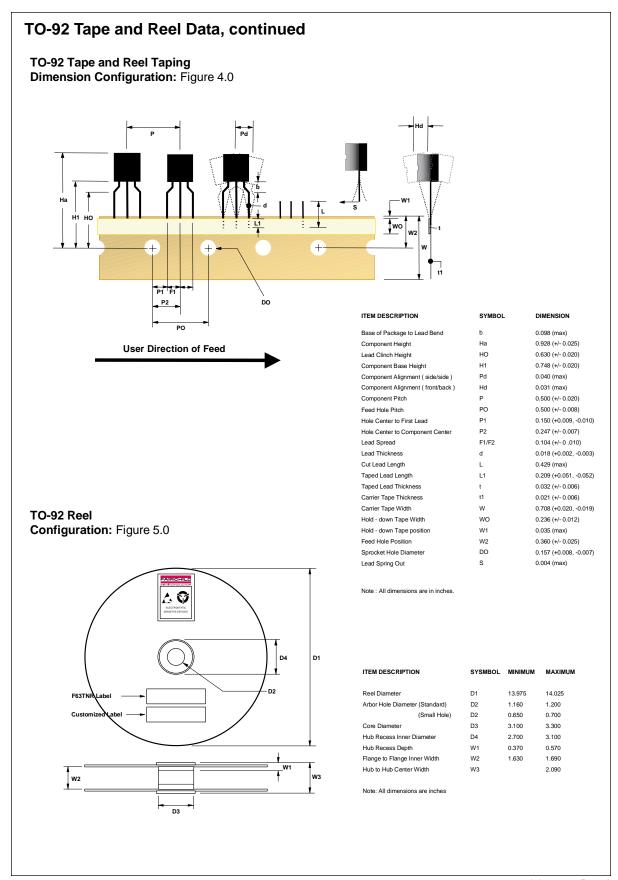

Typical Characteristics (continued)



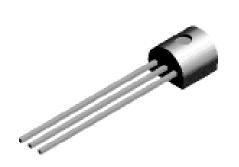

I c - COLLECTOR CURRENT (mA)

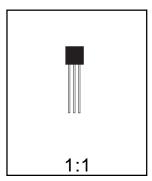



Collector-Base and Emitter-Base Capacitance vs Reverse Bias Voltage

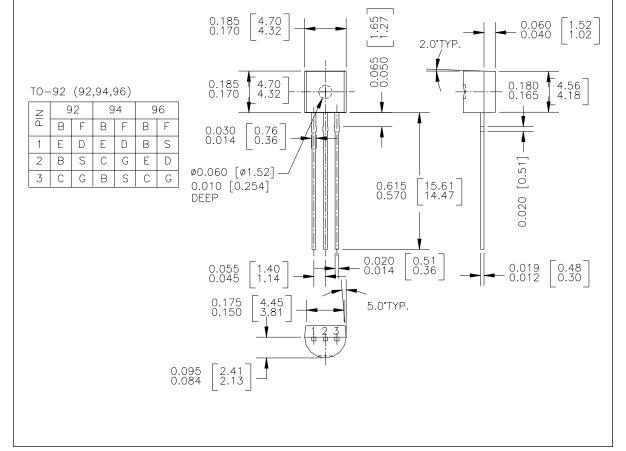


Power Dissipation vs Ambient Temperature



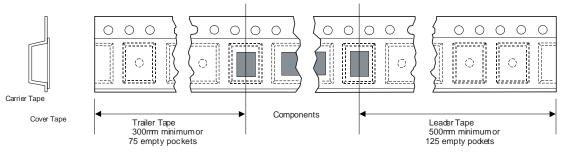


TO-92 Package Dimensions


TO-92 (FS PKG Code 92, 94, 96)

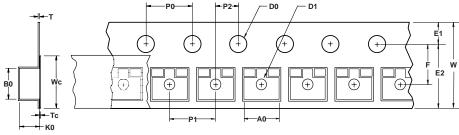
Scale 1:1 on letter size paper
Dimensions shown below are in:
inches [millimeters]

Part Weight per unit (gram): 0.1977


SOT-23 Packaging Configuration: Figure 10

SOT-23 PackagingInformation							
Packaging Option	Standard (no flow code)	D87Z					
Packagingtype	TNR	TNR					
Qty per Reel/Tube/Bag	3,000	10,000					
Reel Size	7" Dia	13"					
Box Dimension (mm)	187x107x183	343x343x64					
Max qty per Box	24,000	30,000					
Weight per unit (gm)	0.0082	0.0082					
Weight per Reel (kg)	0.1175	0.4006					
Note/Comments							

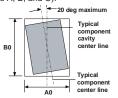
Human readable Label


SOT-23 Tape Leader and Trailer Configuration: Figure 20

SOT-23 Tape and Reel Data, continued

SOT-23 Embossed Carrier Tape

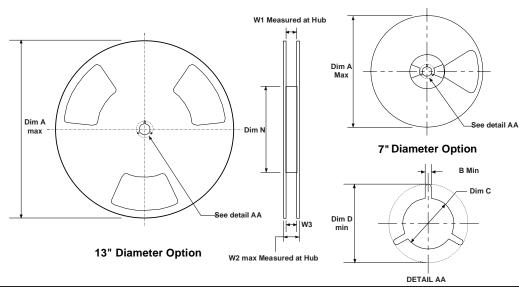
Configuration: Figure 3.0


User Direction of Feed

Dimensions are in millimeter														
Pkg type	Α0	В0	w	D0	D1	E1	E2	F	P1	P0	K0	Т	Wc	Тс
SOT-23 (8mm)	3.15 +/-0.10	2.77 +/-0.10	8.0 +/-0.3	1.55 +/-0.05	1.125 +/-0.125	1.75 +/-0.10	6.25 min	3.50 +/-0.05	4.0 +/-0.1	4.0 +/-0.1	1.30 +/-0.10	0.228 +/-0.013	5.2 +/-0.3	0.06 +/-0.02

Notes: A0, B0, and K0 dimensions are determined with respect to the EIA/Jedec RS-481 rotational and lateral movement requirements (see sketches A, B, and C).

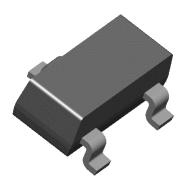
Sketch A (Side or Front Sectional View)
Component Rotation

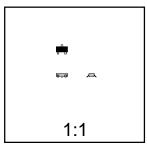


Sketch B (Top View)
Component Rotation

Sketch C (Top View)
Component lateral movement

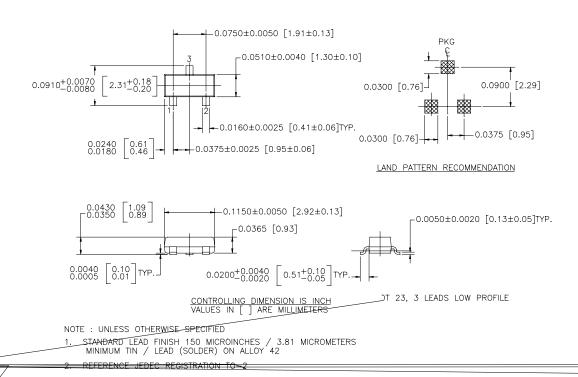
SOT-23 Reel Configuration: Figure 4.0

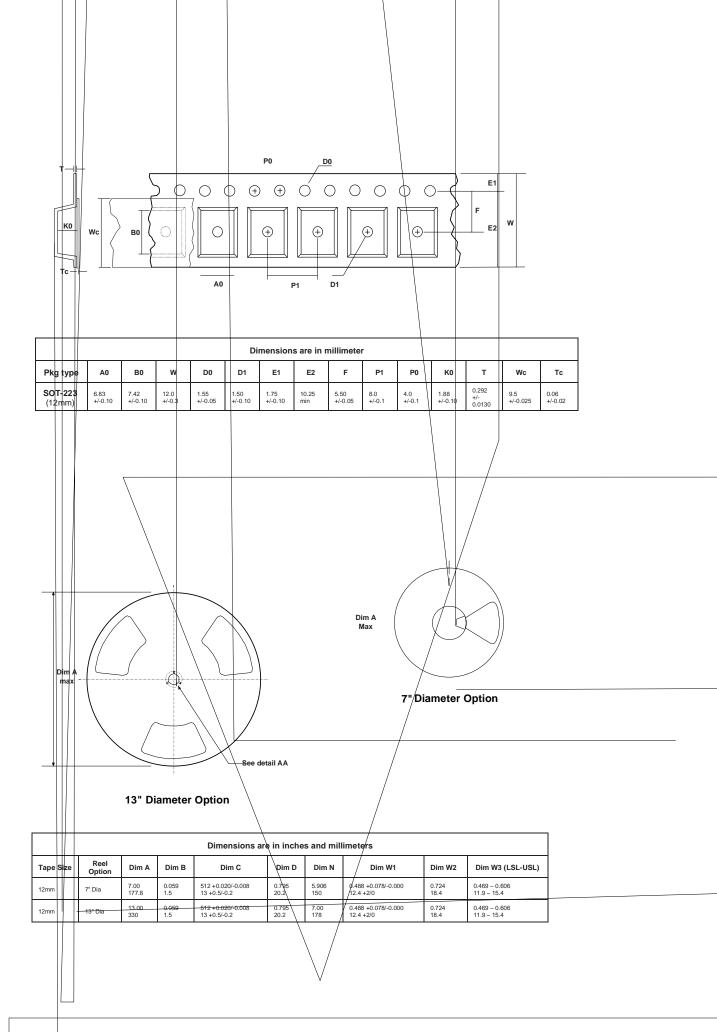



	Dimensions are in inches and millimeters								
Tape Size	Reel Option	Dim A	Dim B	Dim C	Dim D	Dim N	Dim W1	Dim W2	Dim W3 (LSL-USL)
8mm	7" Dia	7.00 177.8	0.059 1.5	512 +0.020/-0.008 13 +0.5/-0.2	0.795 20.2	2.165 55	0.331 +0.059/-0.000 8.4 +1.5/0	0.567 14.4	0.311 - 0.429 7.9 - 10.9
8mm	13" Dia	13.00 330	0.059 1.5	512 +0.020/-0.008 13 +0.5/-0.2	0.795 20.2	4.00 100	0.331 +0.059/-0.000 8.4 +1.5/0	0.567 14.4	0.311 - 0.429 7.9 - 10.9

SOT-23 Package Dimensions

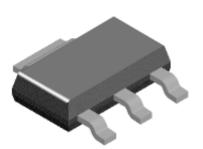
SOT-23 (FS PKG Code 49)

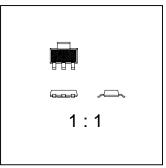



Scale 1:1 on letter size paper

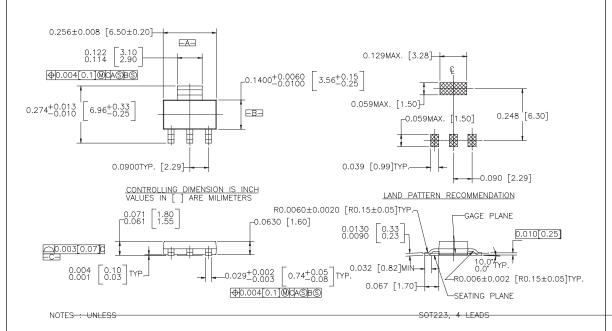
Dimensions shown below are in: inches [millimeters]

Part Weight per unit (gram): 0.0082


SOT-223 Tape and Reel Data FAIRCHILD SEMICONDUCTOR TM **SOT-223 Packaging** Configuration: Figure 1.0 Customized Label **Packaging Description:** Packaging Description: SOT-223 parts are shipped in tape. The carrier tape is made from a dissipative (carbon filled) polycarbonate reason. The cover tape is a multilayer film (Heat Activated Adhesive in nature) primarily composed of polyester film, adhesive layer, sealant, and anti-static sprayed agent. These reeled parts in standard option are shipped with 2,500 units per 13° o 330cm diameter reel. The reels are dark blue in color and is made of polystyrene plastic (anti-static coated). Other option comes in 500 units per 7° or 177cm diameter reel. This and some other options are further described in the Packaging Information table. F63TNR Label Antistatic Cover Tape These full reles are individually barcode labeled and placed inside a standard intermediate box (flustrated in figure 1.0) made of recyclable corrugated brown paper. One box contains two reels maximum. And these boxes are placed inside a barcode labeled shipping box which comes in different sizes depending on the number of parts Static Dissipative shipped. **Embossed Carrier Tape** Packaging Option no flow code **SOT-223 Unit Orientation** TNR Packaging type TNR Qty per Reel/Tube/Bag 2,500 500 Reel Size 13" Dia 7" Dia Box Dimension (mm) 343x64x343 184x187x47 Max qty per Box 5.000 1.000 343mm x 342mm x 64mm Weight per unit (gm) 0.1246 0.1246 F63TNR Label Intermediate box for Standard Weight per Reel (kg) 0.7250 0.1532 F63TNR Label F63TNR Label sample 184mm x 184mm x 47mm QTY: 3000 Pizza Box for D84Z Option **SOT-223 Tape Leader and Trailer** SPEC REV: CPN: D/C1: D9842 D/C2: Configuration: Figure 2.0 QTY1 QTY2 (F63TNR)3 \bigcirc \bigcirc 0 0 \bigcirc \circ 0 \bigcirc 0 0 Components Trailer Tape Leader Tape 300mm minimum or 500mm minimum or 38 empty pockets 62 empty pockets



Dim N


SOT-223 (FS PKG Code 47)

Scale 1:1 on letter size paper

Part Weight per unit (gram): 0.1246

 $_{\pm}$ RENCE JEDEC REGISTRATION TO-261, VARIATION AA, ISSUE A, DATED JAN 1990

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 $ACEx^{TM}$ FASTr™ PowerTrench® SyncFET™ Bottomless™ QFET™ TinyLogic™ GlobalOptoisolator™ QSTM UHC™ CoolFET™ GTO™ **VCX**TM $CROSSVOLT^{TM}$ QT Optoelectronics™ HiSeC™

DOME™ ISOPLANAR™ Quiet Series™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.