

Current Transducer LA 55-P

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

V_d

Electrical data

I _{PN}	Primary nominal current rms		50				Α
I _{PM}	Primary current, measuring range			0 ± 70			Α
$\mathbf{R}_{\scriptscriptstyle{\mathrm{M}}}$	Measuring resistance @		$T_A =$	$T_{A} = 70^{\circ}C \mid T_{A} = 85^{\circ}$			
			\mathbf{R}_{Mmin}	$\mathbf{R}_{\mathrm{M}\mathrm{max}}$	R _{M min}	$R_{\scriptscriptstyleMmax}$	
	with ± 12 V	$@ \pm 50 A_{max}$	10	100	60	95	Ω
		$@ \pm 70 A_{max}$	10	50	60 ¹⁾	60 ¹⁾	Ω
	with ± 15 V	$@ \pm 50 A_{max}$	50	160	135	155	Ω
		$@ \pm 70 A_{max}$	50	90	135 ²⁾	135 ²⁾	Ω
I _{SN}	Secondary nominal current rms			50			mΑ
K _N	Conversion ratio 1:1000						
V _c	Supply voltage (± 5 %) ± 12 15		;	V			
I _c	Current consumption $10 (@ \pm 15 \text{ V}) + I_s \text{ r}$			mΑ			

Accuracy - Dynamic performance data

Rms voltage for AC isolation test, 50 Hz, 1 min

X	Accuracy @ I _{PN} , T _A = 25°C	@ ± 15 V (± 5 %)	± 0.65		%
		@ ± 12 15 V (± 5 %)	± 0.90	ı	%
$\mathbf{e}_{\!\scriptscriptstyle L}$	Linearity error		< 0.15		%
			Тур	Max	
I _o	Offset current @ $I_p = 0$, $T_A =$	25°C		± 0.2	mΑ
I _{OM}	Magnetic offset current 3) @	$I_p = 0$ and specified R_M			
O	after an overload of 3 x I _{PN}			± 0.3	mΑ
I_{OT}	Temperature variation of I	0°C + 70°C	± 0.1	± 0.5	mΑ
0.	, and the second	- 25°C + 85°C	± 0.1	± 0.6	mΑ
t _{ra}	Reaction time @ 10 % of I _{PN}	I	< 500		ns
t,	Response time to 90 % of I _{PN} step		< 1		μs
di/dt	di/dt accurately followed		> 200		A/µs
BW	Frequency bandwidth (- 1 dB)		DC 200		kHz

General data

T _A	Ambient operating temperature		- 25 + 85	°C
T _s	Ambient storage temperature		- 40 + 90	°C
$\ddot{R_s}$	Secondary coil resistance @	$T_{\Delta} = 70^{\circ}C$	80	Ω
Ü		$T_A^{\prime\prime} = 85^{\circ}C$	85	Ω
m	Mass		18	g
	Standards		EN 50178: 1997	

Features

- Closed loop (compensated) current transducer using the Hall effect
- Printed circuit board mounting
- · Isolated plastic case recognized according to UL 94-V0.

Advantages

- · Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

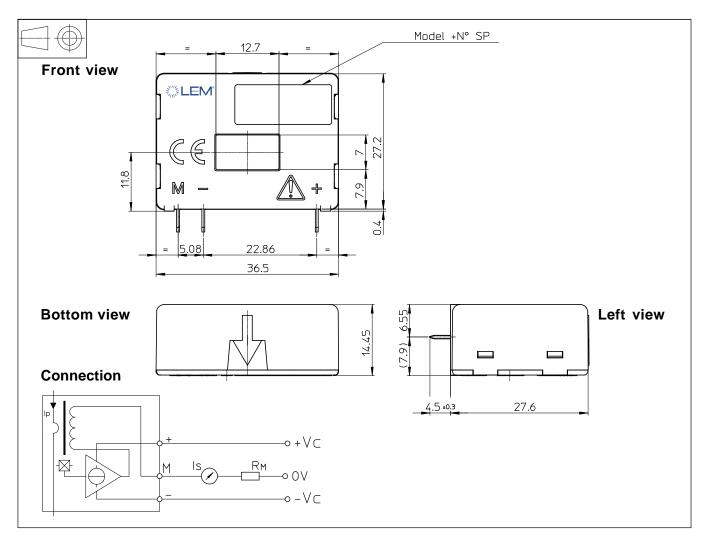
Applications

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Application Domain

• Industrial.

Notes: 1) Measuring range limited to \pm 60 A_{max}


²⁾ Measuring range limited to \pm 55 A $_{max}$

3) Result of the coercive field of the magnetic circuit.

2.5

Dimensions LA 55-P (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

General tolerance ± 0.2 mm
 Primary through-hole 12.7 x 7 mm
 Fastening & connection of secondary 3 pins 0.63 x 0.56mm

I_s is positive when I_p flows in the direction of the arrow.
 Temperature of the primary conductor should not exceed

with a single bar completely filling the primary hole.

• Dynamic performances (di/dt and response time) are best

• In order to achieve the best magnetic coupling, the primary

• This is a standard model. For different versions (supply

windings have to be wound over the top edge of the device.

voltages, turns ratios, unidirectional measurements...),

Recommended PCB hole

Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.

This transducer is a built-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

080114/13

please contact us.

Remarks

90°C.

0.9 mm