Features

Universal Serial Bus (USB)
- Supports full-speed USB (12 Mb/s)
- Implements USB protocol composite device CDC device for communications, configuration and I/O control
- 128 byte buffer to handle data throughput at any UART baud rate:
 - 64 byte transmit
 - 64 byte receive
- Fully configurable VID and PID assignments, and string descriptors
- Bus powered or self-powered
- USB 2.0 Compliant (certification #: TBD)

USB Driver and Software Support
- Uses standard Microsoft® Windows® drivers for Virtual Com Port (VCP):
 - Windows XP(SP2 and later)/Vista/7
- Configuration utility for initial configuration

Universal Asynchronous Receiver/Transmitter (UART)
- Responds to SET LINE CODING commands to dynamically change baud rates
- Supports baud rates: 300-1000k
- Hardware flow control
- UART signal polarity option

General Purpose Input/Output (GPIO) Pins
- Eight (8) general purpose I/O pins

EEPROM
- 256 bytes of user EEPROM

Other
- USB activity LED outputs (TxLED and RxLED)
- SSPND output pin
- USBCFG output pin (indicates if requested current is allowed)
- Operating voltage: 3.0-5.5V
- Oscillator input: 12 MHz
- ESD protection > 4 kV HBM
- Industrial (I) Operating Temperature: -40°C to +85°C

Package Types

The device will be offered in the following packages:
- 20-lead QFN (5 x 5(mm))
- 20-lead SOIC
- 20-lead SSOP
1.0 FUNCTIONAL DESCRIPTION

The MCP2200 is a USB-to-UART serial converter which enables USB connectivity in applications that have a UART interface. The device reduces external components by integrating the USB termination resistors. The MCP2200 also has 256 bytes of integrated user EEPROM.

The MCP2200 has eight general purpose input/output pins. Four pins have alternate functions to indicate USB and communication status. See Table 1-1 and Section 1.6 “GPIO Module” for details about the pin functions.

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>SSOP, SOIC QFN Pin Type</th>
<th>Standard Function</th>
<th>Alternate Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP0/SSPND</td>
<td>16 13 I/O</td>
<td>General purpose I/O</td>
<td>USB suspend status pin (refer to Section 1.6.1.1 “SSPND Pin Function”)</td>
</tr>
<tr>
<td>GP1/USBCFG</td>
<td>15 12 I/O</td>
<td>General purpose I/O</td>
<td>USB configuration status pin (refer to Section 1.6.1.2 “USBCFG Pin Function”)</td>
</tr>
<tr>
<td>GP2</td>
<td>14 11 I/O</td>
<td>General purpose I/O</td>
<td></td>
</tr>
<tr>
<td>GP3</td>
<td>9 6 I/O</td>
<td>General purpose I/O</td>
<td></td>
</tr>
<tr>
<td>GP4</td>
<td>8 5 I/O</td>
<td>General purpose I/O</td>
<td></td>
</tr>
<tr>
<td>GP5</td>
<td>7 4 I/O</td>
<td>General purpose I/O</td>
<td></td>
</tr>
<tr>
<td>GP6/RxLED</td>
<td>6 3 I/O</td>
<td>General purpose I/O</td>
<td>USB receive activity LED output (refer to Section 1.6.1.3 “RxLED Pin Function (IN Message)”)</td>
</tr>
<tr>
<td>GP7/TxLED</td>
<td>5 2 I/O</td>
<td>General purpose I/O</td>
<td>USB transmit activity LED output (refer to Section 1.6.1.4 “TxLED Pin Function (OUT Message)”)</td>
</tr>
<tr>
<td>RST</td>
<td>4 1 I</td>
<td>Reset input must be externally biased</td>
<td></td>
</tr>
<tr>
<td>CTS</td>
<td>13 10 I</td>
<td>Hardware flow control “Clear to Send” input signal</td>
<td></td>
</tr>
<tr>
<td>RX</td>
<td>12 9 I</td>
<td>USART RX input</td>
<td></td>
</tr>
<tr>
<td>RTS</td>
<td>11 8 O</td>
<td>Hardware flow control “Request to Send” output signal</td>
<td></td>
</tr>
<tr>
<td>TX</td>
<td>10 7 O</td>
<td>USART TX output</td>
<td></td>
</tr>
<tr>
<td>VDD</td>
<td>1 18 P</td>
<td>Power</td>
<td></td>
</tr>
<tr>
<td>VSS</td>
<td>20 17 P</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>OSC1</td>
<td>2 19 I</td>
<td>Oscillator input</td>
<td></td>
</tr>
<tr>
<td>OSC2</td>
<td>3 20 O</td>
<td>Oscillator output</td>
<td></td>
</tr>
<tr>
<td>D+</td>
<td>19 16 I/O</td>
<td>USB D+</td>
<td></td>
</tr>
<tr>
<td>D-</td>
<td>18 15 I/O</td>
<td>USB D-</td>
<td></td>
</tr>
<tr>
<td>VUSB</td>
<td>17 14 P</td>
<td>USB power pin (internally connected to 3.3V). Should be locally bypassed with a high quality ceramic capacitor.</td>
<td></td>
</tr>
<tr>
<td>EP</td>
<td>— 21 —</td>
<td>Exposed Thermal Pad (EP). Do not electrically connect, or connect to VSS.</td>
<td></td>
</tr>
</tbody>
</table>
1.1 Supported Operating Systems

Microsoft Windows XP (SP2 and later)/Vista/7 operating systems are supported.

1.1.1 Enumeration

The MCP2200 will enumerate as a USB device after POR. The device enumerates as both a Human Interface Device (HID) for I/O control, and a VCP.

1.1.1.1 HID

The MCP2200 enumerates as a HID so the device can be configured and the I/O can be controlled. A DLL is supplied by Microchip that allows I/O control using a custom interface.

1.1.1.2 VCP

The VCP enumeration implements the USB-to-UART data translation.

1.2 Control Module

The control module is the heart of the MCP2200. All other modules are tied together and controlled via the control module. The control module manages the data transfers between the USB and the UART, as well as command requests generated by the USB host controller, and commands for controlling the function of the UART and I/O.

1.2.1 Serial Interface

The control module interfaces to the UART and USB modules.

1.2.2 Interfacing to the Device

The MCP2200 can be accessed for reading and writing via USB host commands. The device cannot be accessed and controlled via the UART interface.

1.3 UART Interface

The MCP2200 UART interface consists of the TX and RX data signals and the RTS/CTS flow control pins. The UART is configurable for several baud rates. The available data formats and baud rates are listed in Table 1-3.

1.3.1 Initial Configuration

The default UART configuration is 19200, 8, N, 1. The default start up baud rate can be changed using the Microchip supplied configuration PC tool. The primary baud rates are shown in Table 1-3.

Alternatively, a custom configuration tool can be created using the Microchip supplied DLL to set the baud rate, as well as other parameters. See Section 2.0 “Configuration” for details.

1.3.2 GET/SET Line Coding

The GET_LINE_CODING and SET_LINE_CODING commands are used to read and set the UART parameters while in operation. For example, Hyperterminal sends the SET_LINE_COMMAND when connecting to the port. The MCP2200 responds by setting the baud rate only. The other parameters (Data Bits, Parity, Stop Bits) remain unchanged.

1.3.2.1 Rounding Errors

The primary baud rate setting (with the rounding errors) are shown in Table 1-3. If baud rates other than the ones shown in the table are used, the error percentage can be calculated using Equation 1-1 to find the actual baud rate.

Table 1-2: UART Configurations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Baud Rates</td>
<td>See Table 1-3</td>
</tr>
<tr>
<td>Data Bits</td>
<td>8</td>
</tr>
<tr>
<td>Parity</td>
<td>N</td>
</tr>
<tr>
<td>Stop Bits</td>
<td>1</td>
</tr>
</tbody>
</table>

1.3.3 Custom Baud Rates

Custom baud rates are configured by sending the SET_LINE_CODING USB command, or by using the DLL. See Section 2.0 “Configuration” for more information.
1.3.4 HARDWARE FLOW CONTROL

Hardware flow control uses the RTS and CTS pins as a handshake between two devices. The RTS pin of one device is typically connected to the CTS of the other device.

RTS is an active low output which notifies the other device when it can receive data by driving the pin low. The MCP2200 trip point for de-asserting RTS (high) is 63 characters. This is one character short of “buffer full”.

CTS is an active low input which is used to notify the MCP2200 when it can send data. The MCP2200 will check CTS just before loading and sending UART data. If the pin is asserted during a transfer, the transfer will continue. Refer to Figure 1-1.

1.3.4.1 Flow Control Disabled

The buffer pointer does not increment (or reset to zero) if the buffer is full. Therefore, if hardware flow control is not enabled and an overflow occurs (i.e., 65 unprocessed characters received), the new data overwrites the last position in the buffer.

![RTS/CTS CONNECTIONS EXAMPLE](image)

FIGURE 1-1: RTS/CTS CONNECTIONS EXAMPLE

I am ready to receive

I'll transmit if okay

RTS

CTS

MCU

MCP2200

TABLE 1-3: UART PRIMARY BAUD RATES

<table>
<thead>
<tr>
<th>Desired Rate</th>
<th>Actual Rate</th>
<th>% Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>300</td>
<td>0.00%</td>
</tr>
<tr>
<td>1200</td>
<td>1200</td>
<td>0.00%</td>
</tr>
<tr>
<td>2400</td>
<td>2400</td>
<td>0.00%</td>
</tr>
<tr>
<td>4800</td>
<td>4800</td>
<td>0.00%</td>
</tr>
<tr>
<td>9600</td>
<td>9600</td>
<td>0.00%</td>
</tr>
<tr>
<td>19200</td>
<td>19200</td>
<td>0.00%</td>
</tr>
<tr>
<td>38400</td>
<td>38339</td>
<td>0.16%</td>
</tr>
<tr>
<td>57600</td>
<td>57692</td>
<td>0.16%</td>
</tr>
<tr>
<td>115200</td>
<td>115385</td>
<td>0.16%</td>
</tr>
<tr>
<td>230400</td>
<td>230769</td>
<td>0.16%</td>
</tr>
<tr>
<td>460800</td>
<td>461538</td>
<td>0.16%</td>
</tr>
<tr>
<td>921600</td>
<td>923077</td>
<td>0.16%</td>
</tr>
</tbody>
</table>

1.4 USB Protocol Controller

The USB controller in the MCP2200 is full-speed USB 2.0 compliant.

- Composite device (CDC + HID):
 - CDC: USB-to-UART communications
 - HID: I/O control, EEPROM access and initial configuration
- 128 byte buffer to handle data throughput at any UART baud rate:
 - 64 byte transmit
 - 64 byte receive
- Fully configurable VID and PID assignments, and descriptors (stored on-chip)
- Bus powered or self-powered

1.4.1 DESCRIPTORS

The descriptors are stored in the MCP2200 during configuration using the supplied PC interface.

1.4.2 SUSPEND AND RESUME

The USB Suspend and Resume signals are supported for power management of the MCP2200. The device will enter Suspend mode when suspend signaling is detected on the bus.

The MCP2200 exits the Suspend mode when any of the following occur:

1. Resume signaling is detected or generated
2. A USB Reset signal is detected
3. A device Reset occurs

EQUATION 1-1: SOLVING FOR ACTUAL BAUD RATE

\[
\text{ActualRate} = \frac{12\text{MHz}}{\text{int}(x)}
\]

Where:

\[x = \frac{12\text{MHz}}{\text{DesiredBaud}}\]
1.5 USB Transceiver

The MCP2200 has a built-in, USB 2.0, full-speed transceiver internally connected to the USB module. The USB transceiver obtains power from the VUSB pin, which is internally connected to the 3.3V regulator. The best electrical signal quality is obtained when VUSB is locally bypassed with a high quality ceramic capacitor.

1.5.1 INTERNAL PULL-UP RESISTORS

The MCP2200 devices have built-in pull-up resistors designed to meet the requirements for full-speed USB.

1.5.1.1 Bus Power Only

In Bus Power Only mode, all power for the application is drawn from the USB (Figure 1-2). This is effectively the simplest power method for the device.

In order to meet the inrush current requirements of the USB 2.0 specifications, the total effective capacitance appearing across VBUS and ground must be no more than 10 µF. If not, some kind of inrush limiting is required. For more details, see Section 7.2.4 of the “Universal Serial Bus Specification”.

According to the USB 2.0 specification, all USB devices must also support a Low-Power Suspend mode. In the USB Suspend mode, devices must consume no more than 500 µA (or 2.5 mA for high powered devices that are remote wake-up capable) from the 5V VBUS line of the USB cable.

The host signals the USB device to enter Suspend mode by stopping all USB traffic to that device for more than 3 ms.

During USB Suspend mode, the D+ or D- pull-up resistor must remain active, which will consume some of the allowed suspend current budget (500 µA/2.5 mA).

FIGURE 1-2: BUS POWER ONLY

1.6 GPIO Module

The GPIO Module is a standard 8-bit I/O port.

1.6.1 CONFIGURABLE PIN FUNCTIONS

The pins can be configured as:

- GPIO – Individually configurable general purpose input or output
- SSPND – USB Suspend state
- USBCFG – Indicates USB configuration status
- RxLED – Indicates USB receive traffic
- TxLED – Indicates USB transmit traffic

1.6.1.1 SSPND Pin Function

The SSPND pin (if enabled) reflects the USB state (Suspend/Resume). The pin is active ‘low’ when the Suspend state has been issued by the USB host. Likewise, the pin drives ‘high’ after the Resume state is achieved.

This pin allows the application to go into Low Power mode when USB communication is suspended, and switches to a full active state when USB activity is resumed.

1.6.1.2 USBCFG Pin Function

The USBCFG pin (if enabled) starts out ‘low’ during power-up or after Reset, and goes ‘high’ after the device successfully configures to the USB. The pin will go ‘low’ when in Suspend mode and ‘high’ when the USB resumes.

1.6.1.3 RxLED Pin Function (IN Message)

The ‘Rx’ in the pin name is in respect to the USB host. The RxLED pin is an indicator for USB ‘IN’ messages. This pin will either pulse low for a period of time (configurable for ~100 ms or ~200 ms), or toggle to the opposite state for every message received (IN message) by the USB host. This allows the application to count messages or provide a visual indication of USB traffic.

1.6.1.4 TxLED Pin Function (OUT Message)

The ‘Tx’ in the pin name is in respect to the USB host. The TxLED pin is an indicator for USB ‘OUT’ messages.

This pin will either pulse low for a period of time (configurable for ~100 ms or ~200 ms), or toggle to the opposite state for every message transmitted (OUT message) by the USB host. This allows the application to count messages or provide a visual indication of USB traffic.
1.7 EEPROM Module

The EEPROM module is a 256 byte array of nonvolatile memory. The memory locations are accessed for read/write operations via USB host commands. Refer to Section 2.0 “Configuration” for details on accessing the EEPROM.

The host should wait for the write cycle to complete and then verify the write by reading the byte(s).

1.8 RESET/POR

1.8.1 RESET PIN

The RST pin provides a method for triggering an external Reset of the device. A Reset is generated by holding the pin low. These devices have a noise filter in the reset path which detects and ignores small pulses.

1.8.2 POR

A Power-on Reset pulse is generated on-chip whenever VDD rises above a certain threshold. This allows the device to start in the initialized state when VDD is adequate for operation.

To take advantage of the POR circuitry, tie the RST pin through a resistor (1 kOhm to 10 kOhm) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset delay.

When the device starts normal operation (i.e., exits the Reset condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not achieved, the device must be held in Reset until the operating conditions are met.

1.9 Oscillator

The input clock must be 12 MHz to provide the proper frequency for the USB module.

USB full-speed is nominally 12 Mb/s. The clock input accuracy is ±0.25% (2,500 ppm maximum).

FIGURE 1-3: QUARTZ CRYSTAL OPERATION

FIGURE 1-4: CERAMIC RESONATOR OPERATION

Note 1: A series resistor (RS) may be required for quartz crystals with high drive level.

2: The value of RF is typically between 2 MΩ to 10 MΩ.
2.0 CONFIGURATION

The MCP2200 is configured by writing special commands using the HID interface. Configuration can be achieved using the configuration utility provided by Microchip. Alternatively, a custom utility can be developed by using the DLL available on the MCP2200 product page.

2.1 Configuration Utility

A configuration utility is provided by Microchip to allow the user to configure the MCP2200 to custom defaults. The Configuration Utility (Figure 2-1) connects to the device’s HID interface where all of the configurable features can be set.

2.2 Serial String

The MCP2200 is supplied from the factory with a serialized USB serial string.

<table>
<thead>
<tr>
<th>Configuration Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vendor ID (0x04D8)</td>
<td>The USB vendor identification assigned to Microchip by the USB consortium.</td>
</tr>
<tr>
<td>Product ID (0x00DF)</td>
<td>Device ID assigned by Microchip. The device can be used “as-is”, or Microchip can assign a custom PID by request.</td>
</tr>
<tr>
<td>Baud Rate</td>
<td>Sets the UART baud rate using a list of primary baud rates. See the UART section for details on setting non-primary baud rates.</td>
</tr>
<tr>
<td>IO Config</td>
<td>Individually configures the I/O to inputs or outputs.</td>
</tr>
<tr>
<td>IO Default</td>
<td>Individually configures the output default state for pins configured as outputs.</td>
</tr>
<tr>
<td>Tx/Rx LEDs</td>
<td>Enables/disables the GP6 and GP7 pins to function as USB traffic indicators. Pins are active low when configured as traffic indicators.</td>
</tr>
<tr>
<td>Hardware Flow Control</td>
<td>Enables/disables CTS and RTS flow control.</td>
</tr>
<tr>
<td>USBCFG Pin</td>
<td>Enables/disables the GP1 pin as a USB configuration status indicator.</td>
</tr>
<tr>
<td>Suspend Pin</td>
<td>Enables/disables the GP0 pin as a USB suspend status pin.</td>
</tr>
</tbody>
</table>
| Invert Sense | Enables/disables the UART lines states:
- Normal – Tx/Rx idle high; CTS/RTS active low
- Inverted – Tx/Rx idle low; CTS/RTS active high |
| Manufacturer String | USB manufacturer string. |
| Product String | USB product string. |
FIGURE 2-1: CONFIGURATION UTILITY

![Configuration Utility Interface](image)

- Vendor ID: 0x04D8, 0x04D8
- Product ID: 0x00DF, 0x00DF
- Baud Rate: 19200
- IO Config: 00111000
- Output Default: 00000000
- LED Function:
 - Blink LEDs: 100 ms
 - Toggle LEDs: 200 ms
- String Descriptors:
 - Manufacturer: Microchip Technology Inc.
 - Product: MCP2200 USB Serial Port Emulator

- Writing Manufacturer String Descriptor
- Writing Product String Descriptor
- Writing Configurations
- Device Configured
- Writing VID/PID
- Verifying Descriptor block
- Verifying Manufacturer Descriptor block
- Verifying Descriptor block
- Verifying Default Settings block
- Device Verified

Connected Configure Reset to Default
2.3 Simple Configuration and I/O DLL

A DLL is provided by Microchip to help the user develop a custom configurator. See the documentation on the MCP2200 product page for details on associating the DLL with a Visual C++ project.

2.3.1 SIMPLE I/O DLL CALLS

The DLL provides the following functions to allow configuration of the device and control of the I/O.

2.3.1.1 Initialization

void InitMCP2200 (VID, PID)
bool IsConnected()

2.3.1.2 Configuration (only needs to be set once; stored in NVM)

bool ConfigureIOPins (mask)
bool fnRxLED (On/Off, Toggle/Blink, 100/200mS)
bool fnTxLED (On/Off, Toggle/Blink, 100/200mS)
bool fnHardwareFlowControl (On/Off)
bool fnUSBCfg (on/off)
bool fnSuspend (on/off)
bool SetBaudRate (baudrate)
between ConfigureAll (TRISmask, RxLED, TxLED, RxTGL, TxTGL, LEDX, FLOW, USBCFG, SSPND, BaudRate)

2.3.1.3 I/O Control

bool ClearPin (pinnumber)
bool ReadPin (pinnumber)
bool SetPort (portValue)
bool ReadPort (*returnvalue)
bool WriteEEPROM (Address, Data)
bool ReadEEPROM (Address)

2.3.1.4 Summary

Summary:
SimpleIOC::InitMCP2200 (unsigned int VendorID, unsigned int ProductID)
bool SimpleIOC::ConfigureMCP2200 (unsigned char IOMap,
unsigned long BaudRate,
unsigned int RxLED,
unsigned int TxLED,
bool Hardware Flow Control,
bool USBCFG pin function,
bool Suspend pin function)
bool SimpleIOC::SetPin (unsigned int pin)
bool SimpleIOC::ClearPin (unsigned int pin)
bool SimpleIOC::ReadPin (unsigned int pin,
unsigned int *returnvalue)
bool SimpleIOC::WritePort (unsigned int value)
bool SimpleIOC::ReadPort (unsigned int *returnvalue)

While ConfigureMCP2200 configures the device with one call, it may also be configured one parameter at a time:
bool SimpleIOC::fnRxLED (unsigned int mode)
bool SimpleIOC::fnTxLED (unsigned int mode)
bool SimpleIOC::fnHardwareFlowControl (unsigned int onOff)
bool SimpleIOC::fnUSBCFG (unsigned int onOff)
bool SimpleIOC::fnSuspend (unsigned int onOff)
bool SimpleIOC::fnSetBaudRate (unsigned long BaudRateParam)
bool SimpleIOC::ConfigureIO (unsigned char IOMap)

Constants:
const unsigned int OFF = 0;
const unsigned int ON = 1;
const unsigned int TOGGLE = 3;
const unsigned int BLINKSLOW = 4;
const unsigned int BLINKFAST = 5;

2.3.1.5 InitMCP2200

SimpleIOC::InitMCP2200 (unsigned int VendorID, unsigned int ProductID)

Configures the Simple IO class for a specific Vendor and product ID.

Parameters:
Vendor ID - Assigned by USB IF (www.usb.org)
Product ID - Assigned by the Vendor ID Holder

Returns:
none

Example:
InitMCP2200 (0x04D8, 0x00DF);

2.3.1.6 ConfigureMCP2200

bool SimpleIOC::ConfigureMCP2200 (unsigned char IOMap,
unsigned long BaudRate,
unsigned int RxLED,
unsigned int TxLED,
bool Hardware Flow Control,
bool USBCFG pin function,
bool Suspend pin function)

Configures the device's default baudrate, GPIO configuration and pin functions. Other functions set each parameter one at a time. This configures the part in one call.

Precondition:
The Vendor and Product ID must have been specified by SimpleIOInit.
2.3.1.7 fnRxLED

bool SimpleIOClass::fnRxLED (unsigned int mode)

Summary:
Configures the RxLED pin function.

Description:
Sets the

Precondition:
The Vendor and Product ID must have been specified by SimpleIOInit.

Parameters:
mode (constant): OFF, TOGGLE, BLINKSLOW, BLINKFAST

Returns:
Function returns true if the transmission is successful, returns False if there the transmission fails.

Error code logged in LastError.

Example:
<code>
if (SimpleIOClass::fnRxLED(BLINKFAST) == SUCCESS)
 lblStatusBar->Text = "Success";
else
 lblStatusBar->Text = "Invalid command"
</code>

2.3.1.8 fnTxLED

bool SimpleIOClass::fnTxLED (unsigned int mode)

Summary:
Configures the TxLED pin function.

Description:
Sets the

Precondition:
The Vendor and Product ID must have been specified by SimpleIOInit.

Parameters:
mode (constant): OFF, TOGGLE, BLINKSLOW, BLINKFAST

Returns:
Function returns true if the transmission is successful, returns False if there the transmission fails.

Error code logged in LastError.

Example:
<code>
if (SimpleIOClass::fnTxLED(BLINKFAST) == SUCCESS)
 lblStatusBar->Text = "Success";
else
 lblStatusBar->Text = "Invalid command"
 + SimpleIOClass::LastError;
</code>

2.3.1.9 fnHardwareFlowControl

bool SimpleIOClass::fnHardwareFlowControl (unsigned int onOff)

Summary:
Configures the device.

Description:
Sets the

Precondition:
The Vendor and Product ID must have been specified by SimpleIOInit.

Parameters:
IOMap - An array of configuration parameters, one byte per IO Line

Returns:
Function returns true if the transmission is successful, returns False if there the transmission fails.
2.3.1.10 fnUSBCFG

bool SimpleIOClass::fnUSBCFG (unsigned int onOff)

Summary:
Configures the USBCFG pin function.

Precondition:
The Vendor and Product ID must have been specified by SimpleIOInit.

Parameters:
onOff (constant): ON or OFF.

Returns:
Function returns true if the transmission is successful, returns False if there the transmission fails.

Example:
<code>
if
(SimpleIOClass::ConfigureMCP2200(OutputPacket Buffer) == SUCCESS)
lblStatusBar->Text = "Success";
else
 lblStatusBar->Text = "Invalid command " + SimpleIOClass::LastError;
</code>

Remarks:
Error code is returned in LastError

2.3.1.11 fnSuspend

bool SimpleIOClass::fnSuspend (unsigned int onOff)

Summary:
Configures the SSPND function

Precondition:
The Vendor and Product ID must have been specified by SimpleIOInit.

Parameters:
onOff (constant): ON or OFF.

Returns:
Function returns true if the transmission is successful, returns False if there the transmission fails.

Example:
<code>
if
(SimpleIOClass::ConfigureMCP2200(OutputPacket Buffer) == SUCCESS)
lblStatusBar->Text = "Success";
else
 lblStatusBar->Text = "Invalid command " + SimpleIOClass::LastError;
</code>

Remarks:
Error code is returned in LastError

2.3.1.12 fnSetBaudRate

bool SimpleIOClass::fnSetBaudRate (unsigned long BaudRateParam)

Summary:
Configures the device.

Precondition:
The Vendor and Product ID must have been specified by SimpleIOInit.

Parameters:
IOMap - An array of configuration parameters, one byte per IO Line

Returns:
Function returns true if the transmission is successful, returns False if there the transmission fails.

Example:
<code>
if
(SimpleIOClass::ConfigureMCP2200(OutputPacket Buffer) == SUCCESS)
lblStatusBar->Text = "Success";
else
 lblStatusBar->Text = "Invalid command " + SimpleIOClass::LastError;
</code>

Remarks:
Error code is returned in LastError

2.3.1.13 ConfigureIO

bool SimpleIOClass::ConfigureIO (unsigned char IOMap)

Summary:
Configures the IO pins for Digital Input, Digital Output

Description:
IO Pins can be configured as Digital Input, Digital Output
Precondition:
The Vendor and Product ID must have been specified by SimpleIOInit.

Parameters:
IOMap - one byte, with each bit corresponding to each GPIO pin. 0 for output, 1 for input.

Returns:
Function returns true if the transmission is successful, returns False if there the transmission fails.

Example:
<code>
if (SimpleIOClass::ConfigureGPIO(OutputPacketBuffer) == SUCCESS)
 lblStatusBar->Text = "Success";
else
 lblStatusBar->Text = "Invalid command " + SimpleIOClass::LastError;
</code>

2.3.1.14 SetPin

bool SimpleIOClass::SetPin(unsigned int pin)

Summary:
Sets the specified pin.

Description:
Sets the specified pin to one.

Precondition:
Must have previously been configured as an output via a ConfigureGPIO call.

Parameters:
pin - The pin number to set (0-7)

Returns:
Function returns true if the transmission is successful, returns False if there the transmission fails.

Example:
<code>
if (SimpleIOClass::SetPin (2))
 lblStatusBar->Text = "Success";
else
 lblStatusBar->Text = "Invalid command " + SimpleIOClass::LastError;
</code>

Remarks:
none

2.3.1.15 ClearPin

bool SimpleIOClass::ClearPin(unsigned int pin)

Summary:
Clears the specified pin.

Description:
Sets the specified pin to zero.

Precondition:
Must have previously been configured as an output via a ConfigureGPIO call.

Parameters:
pin - The pin number to set (0-7)

Returns:
Function returns true if the transmission is successful, returns False if there the transmission fails.

Example:
<code>
if (SimpleIOClass::ClearPin (2))
 lblStatusBar->Text = "Success";
else
 lblStatusBar->Text = "Invalid command " + SimpleIOClass::LastError;
</code>

Remarks:
none

2.3.1.16 ReadPin

bool SimpleIOClass::ReadPin(unsigned int pin, unsigned int *returnvalue)

Summary:
Reads the specified pin.

Description:
Reads the specified pin and returns the value in returnvalue. If the pin has been configured as Digital Input, the return value will be either 0 or 1. If the pin has been configured as Analog Input, the pin will be read by the ADC and return a 10 bit value, right justified.

Precondition:
Must have previously been configured as an input via a ConfigureGPIO call.

Parameters:
pin - The pin number to set (0-7)
returnvalue - the value read on the pin (0 or 1)
Returns:
true if the pin was successfully read.
false if the pin was not read (not configured as an input).

Example:
<code>
unsigned int rv;
if (SimpleIODevice::ReadGPIOn (0, &rv))
{
 lblStatusBar->Text = "Success";
}
else
 lblStatusBar->Text = "Invalid command " + SimpleIODevice::LastError;
</code>

2.3.1.17 WritePort
bool SimpleIODevice::WritePort(unsigned int portValue)

Summary:
Writes a value to the GPIO port.

Description:
Writes the GPIO port. This provides a means to write all pins at once instead of one-at-a-time.

Precondition:
Must have previously been configured as an output via a ConfigureGPIO call.

Parameters:
portValue - Byte value to set on the port.

Returns:
Function returns true if the transmission is successful
returns False if there the transmission fails.

Example:
<code>
unsigned int rv;
if (SimpleIODevice::WritePort (0x5A))
{
 lblStatusBar->Text = "Success";
}
else
 lblStatusBar->Text = "Invalid command " + SimpleIODevice::LastError;
</code>

Remarks:
Pins configured for output returns the current state of the port.
Pins configured as input read as zero.

2.3.1.18 ReadPort
bool SimpleIODevice::ReadPort(unsigned int *returnvalue)

Summary:
Reads the GPIO port as digital input.

Description:
Reads the GPIO port and returns the value in returnvalue. This provides a means to read all pins at once instead of one-at-a-time.

Precondition:
Must have previously been configured as an input via a ConfigureGPIO call.

Parameters:
returnvalue - the value read on the port.

Returns:
Function returns true if the read is successful
returns False if there the transmission fails.

Example:
<code>
unsigned int rv;
if (SimpleIODevice::ReadGPIOPort (&rv))
{
 lblStatusBar->Text = "Success";
}
else
 lblStatusBar->Text = "Invalid command " + SimpleIODevice::LastError;
</code>

Remarks:
Pins configured for output returns the current state of the port.
Pins configured as input read as zero.
3.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings (†)

Ambient temperature under bias ... -40°C to +85°C
Storage temperature .. -65°C to +150°C
Voltage on VDD with respect to VSS, PIC18F ... -0.3V to +6.0V
Voltage on VDD with respect to VSS, PIC18LF .. -0.3V to +4.0V
Voltage on MCLR with respect to VSS ... -0.3V to +9.0V
Voltage on VUSB pin with respect to VSS .. -0.3V to +4.0V
Voltage on D+ and D- pins with respect to VSS ... -0.3V to (VUSB + 0.3V)
Voltage on all other pins with respect to VSS .. -0.3V to (VDD + 0.3V)
Total power dissipation(†) .. 800 mW
Maximum current out of VSS pin ... 95 mA
Maximum current into VDD pin .. 95 mA
Clamp current, IK (VPIN < 0 or VPIN > VDD) .. ± 20 mA
Maximum output current sunk by any I/O pin ... 25 mA
Maximum output current sourced by any I/O pin .. 25 mA
Maximum current sunk by all ports .. 90 mA
Maximum current sourced by all ports .. 90 mA

Note 1: Power dissipation is calculated as follows: PDIS = VDD x (IDD – Σ IOH) + Σ ((VDD – VOH) x IOH) + Σ (VOL x IOL).

2: VUSB must always be ≤ VDD + 0.3V

† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.
3.1 DC CHARACTERISTICS

Operating Conditions (unless otherwise indicated):

\[3.0\text{V} \leq V_{DD} \leq 5.5\text{V} \text{ at } -40^\circ\text{C} \leq T_A \leq +85^\circ\text{C} (I-Temp)\]

<table>
<thead>
<tr>
<th>Param No.</th>
<th>Characteristic</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>D001</td>
<td>Supply Voltage</td>
<td>VDD</td>
<td>3.0</td>
<td>—</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power-on Reset Release Voltage</td>
<td>VPOR</td>
<td>1.6</td>
<td>—</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power-on Reset Rearm Voltage</td>
<td>SVDD</td>
<td>0.8</td>
<td>—</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>D003</td>
<td>VDD Rise Rate to Ensure Power-on Reset</td>
<td>—</td>
<td>0.05</td>
<td>—</td>
<td></td>
<td>V/ms</td>
<td>Design guidance only Not tested</td>
</tr>
<tr>
<td>D004</td>
<td>Supply Current</td>
<td>IDD</td>
<td>—</td>
<td>10</td>
<td>12</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VDD = 3.0V</td>
<td>—</td>
<td>—</td>
<td>10</td>
<td>12</td>
<td>mA</td>
<td>Fosc = 12 MHz, (330 nF on VUSB)</td>
</tr>
<tr>
<td></td>
<td>VDD = 5.0V</td>
<td>—</td>
<td>—</td>
<td>13</td>
<td>15</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>D005</td>
<td>Standby current</td>
<td>IDDS</td>
<td>—</td>
<td>9</td>
<td>—</td>
<td>µA</td>
<td></td>
</tr>
</tbody>
</table>

Input Low-Voltage

<table>
<thead>
<tr>
<th>Param No.</th>
<th>Characteristic</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>D031</td>
<td>Schmitt Trigger (GPIO)</td>
<td>VIL</td>
<td>—</td>
<td>—</td>
<td>0.2</td>
<td>VDD</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>TTL (CTS pin)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.5V \leq VDD \leq 5.5V</td>
</tr>
</tbody>
</table>

Input High-Voltage

<table>
<thead>
<tr>
<th>Param No.</th>
<th>Characteristic</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>D041</td>
<td>Schmitt Trigger (GPIO)</td>
<td>VIH</td>
<td>0.8</td>
<td>VDD</td>
<td>2.0</td>
<td>—</td>
<td>VDD</td>
</tr>
<tr>
<td></td>
<td>TTL (RTS pin)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.5V \leq VDD \leq 5.5V</td>
</tr>
</tbody>
</table>

Input Leakage Current

<table>
<thead>
<tr>
<th>Param No.</th>
<th>Characteristic</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>D060</td>
<td>GPIO, CTS</td>
<td>IIL</td>
<td>—</td>
<td>±50</td>
<td>±100</td>
<td>nA</td>
<td>VSS \leq VPIN \leq VDD, pin at Hi-Z</td>
</tr>
<tr>
<td></td>
<td>RST</td>
<td></td>
<td>±50</td>
<td>±200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OSC1</td>
<td></td>
<td>±50</td>
<td>±100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Output Low-Voltage

<table>
<thead>
<tr>
<th>Param No.</th>
<th>Characteristic</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>D080</td>
<td>GPIO</td>
<td>VIL</td>
<td>—</td>
<td>—</td>
<td>0.6</td>
<td>V</td>
<td>IOL = 8.0 mA, VDD = 5.0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IOL = 6.0 mA, VDD = 3.3V</td>
</tr>
</tbody>
</table>

Output High-Voltage

<table>
<thead>
<tr>
<th>Param No.</th>
<th>Characteristic</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>D090</td>
<td>GPIO</td>
<td>VOH</td>
<td>VDD</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>IOH = -3.5 mA, VDD = 5.0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>VDD</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>IOH = -3.0 mA, VDD = 3.3V</td>
</tr>
</tbody>
</table>

Capacitive Loading Specs on Output Pins

<table>
<thead>
<tr>
<th>Param No.</th>
<th>Characteristic</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>D101</td>
<td>OSC2</td>
<td>COsc2</td>
<td>—</td>
<td>—</td>
<td>15</td>
<td>pF</td>
<td>Note 1</td>
</tr>
<tr>
<td>D102</td>
<td>GPIO</td>
<td>ClO</td>
<td>—</td>
<td>—</td>
<td>50</td>
<td>pF</td>
<td>Note 1</td>
</tr>
</tbody>
</table>

Note 1: This parameter is characterized, but not tested.
FIGURE 3-1: POR AND POR REARM WITH SLOW RISING VDD

Note 1: When NPOR is low, the device is held in Reset.
2: TPOR 1 μs typical.
3: TVLOW 2.7 μs typical.

TABLE 3-1: USB MODULE SPECIFICATIONS

<table>
<thead>
<tr>
<th>DC Characteristics</th>
<th>Operating Conditions (unless otherwise indicated): 3.0V ≤ VDD ≤ 5.5V at -40°C ≤ TA ≤ +85°C (I-Temp)</th>
<th>Param No.</th>
<th>Characteristic</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>D313 USB Voltage</td>
<td></td>
<td>D313</td>
<td>USB Voltage</td>
<td>VUSB</td>
<td>3.0</td>
<td>—</td>
<td>3.6</td>
<td>V</td>
<td>Voltage on VUSB pin must be in this range for proper USB operation</td>
</tr>
<tr>
<td>D314 Input Leakage on Pin</td>
<td></td>
<td>D314</td>
<td>Input Leakage on Pin</td>
<td>IL</td>
<td>—</td>
<td>—</td>
<td>± 1</td>
<td>μA</td>
<td>VSS ≤ VPIN ≤ VDD pin at high-impedance</td>
</tr>
<tr>
<td>D315 Input Low Voltage for USB Buffer</td>
<td></td>
<td>D315</td>
<td>Input Low Voltage</td>
<td>VILUSB</td>
<td>—</td>
<td>—</td>
<td>0.8</td>
<td>V</td>
<td>For VUSB range</td>
</tr>
<tr>
<td>D316 Input High Voltage for USB Buffer</td>
<td></td>
<td>D316</td>
<td>Input High Voltage</td>
<td>VIHUSB</td>
<td>2.0</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>For VUSB range</td>
</tr>
<tr>
<td>D318 Differential Input Sensitivity</td>
<td></td>
<td>D318</td>
<td>Differential Input</td>
<td>VDIFS</td>
<td>—</td>
<td>—</td>
<td>0.2</td>
<td>V</td>
<td>The difference between D+ and D- must exceed this value while VCM is met</td>
</tr>
<tr>
<td>D319 Differential Common Mode Range</td>
<td></td>
<td>D319</td>
<td>Differential Common</td>
<td>VCM</td>
<td>0.8</td>
<td>—</td>
<td>2.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>D320 Driver Output Impedance(1)</td>
<td></td>
<td>D320</td>
<td>Driver Output Impedance</td>
<td>ZOUT</td>
<td>28</td>
<td>—</td>
<td>44</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>D321 Voltage Output Low</td>
<td></td>
<td>D321</td>
<td>Voltage Output Low</td>
<td>VOL</td>
<td>0.0</td>
<td>—</td>
<td>0.3</td>
<td>V</td>
<td>1.5 kΩ load connected to 3.6V</td>
</tr>
<tr>
<td>D322 Voltage Output High</td>
<td></td>
<td>D322</td>
<td>Voltage Output High</td>
<td>VOH</td>
<td>2.8</td>
<td>—</td>
<td>3.6</td>
<td>V</td>
<td>1.5 kΩ load connected to ground</td>
</tr>
</tbody>
</table>

Note 1: The D+ and D- signal lines have been built-in impedance matching resistors. No external resistors, capacitors or magnetic components are necessary on the D+/D- signal paths between the MCP2200 family device and the USB cable.
MCP2200

TABLE 3-2: THERMAL CONSIDERATIONS

Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C (I-Temp)

<table>
<thead>
<tr>
<th>Param No.</th>
<th>Sym</th>
<th>Characteristic</th>
<th>Typ</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH01</td>
<td>θJA</td>
<td>Thermal Resistance Junction to Ambient</td>
<td>85.2</td>
<td>°C/W</td>
<td>20-pin SOIC package</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>108.1</td>
<td>°C/W</td>
<td>20-pin SSOP package</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TBD</td>
<td>°C/W</td>
<td>20-pin QFN 5x5mm package</td>
</tr>
<tr>
<td>TH02</td>
<td>θJC</td>
<td>Thermal Resistance Junction to Case</td>
<td>24</td>
<td>°C/W</td>
<td>20-pin SOIC package</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>°C/W</td>
<td>20-pin SSOP package</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>°C/W</td>
<td>20-pin QFN 6x6mm package</td>
</tr>
<tr>
<td>TH03</td>
<td>T_JMAX</td>
<td>Maximum Junction Temperature</td>
<td>150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>TH04</td>
<td>PD</td>
<td>Power Dissipation</td>
<td>—</td>
<td>W</td>
<td>PD = PINTERNAL + PI/O</td>
</tr>
<tr>
<td>TH05</td>
<td>PINTERNAL</td>
<td>Internal Power Dissipation</td>
<td>—</td>
<td>W</td>
<td>PINTERNAL = IDD x VDD(1)</td>
</tr>
<tr>
<td>TH06</td>
<td>PI/O</td>
<td>I/O Power Dissipation</td>
<td>—</td>
<td>W</td>
<td>PI/O = Σ (IOL * VOL) + Σ (IOH * (VDD - VOH))</td>
</tr>
<tr>
<td>TH07</td>
<td>PDER</td>
<td>Derated Power</td>
<td>—</td>
<td>W</td>
<td>PDER = PDMAX (TJ - TA)/θJA(2,3)</td>
</tr>
</tbody>
</table>

Legend:
- TBD = To Be Determined.

Note
1: IDD is the current to run the chip alone without driving any load on the output pins.
2: TA = Ambient Temperature.
3: TJ = Junction Temperature.
3.2 AC Characteristics

3.2.1 TIMING PARAMETER SYMBOLOGY
The timing parameter symbols have been created in one of the following formats:

<table>
<thead>
<tr>
<th>1. TppS2ppS</th>
<th>2. TppS</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>Time</td>
</tr>
<tr>
<td>E</td>
<td>Time</td>
</tr>
</tbody>
</table>

Lowercase letters (pp) and their meanings:

<table>
<thead>
<tr>
<th>pp</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>io</td>
<td>Input or Output pin</td>
</tr>
<tr>
<td>rx</td>
<td>Receive</td>
</tr>
<tr>
<td>bitclk</td>
<td>RX/TX BITCLK</td>
</tr>
<tr>
<td>drt</td>
<td>Device Reset Timer</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Uppercase letters and their meanings:

<table>
<thead>
<tr>
<th>S</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Fall</td>
</tr>
<tr>
<td>H</td>
<td>High</td>
</tr>
<tr>
<td>I</td>
<td>Invalid (high-impedance)</td>
</tr>
<tr>
<td>L</td>
<td>Low</td>
</tr>
<tr>
<td>P</td>
<td>Period</td>
</tr>
<tr>
<td>R</td>
<td>Rise</td>
</tr>
<tr>
<td>V</td>
<td>Valid</td>
</tr>
<tr>
<td>Z</td>
<td>High-impedance</td>
</tr>
</tbody>
</table>

3.2.2 TIMING CONDITIONS
The operating temperature and voltage specified in Table 3-3 apply to all timing specifications unless otherwise noted. Figure 3-2 specifies the load conditions for the timing specifications.

TABLE 3-3: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

<table>
<thead>
<tr>
<th>AC CHARACTERISTICS</th>
<th>Standard Operating Conditions (unless otherwise stated)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operating temperature -40°C ≤ TA ≤ +85°C</td>
</tr>
<tr>
<td></td>
<td>Operating voltage VDD range as described in DC spec Section 3.1 “DC Characteristics”.</td>
</tr>
</tbody>
</table>

FIGURE 3-2: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

Pin

50 pF (15 pF for OSC2)
TIMING DIAGRAMS AND SPECIFICATIONS

TABLE 3-4: RESET, OSCILLATOR START-UP TIMER AND POWER-UP TIMER PARAMETERS

<table>
<thead>
<tr>
<th>Param No.</th>
<th>Sym</th>
<th>Characteristic</th>
<th>Min</th>
<th>Typ†</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>TRST</td>
<td>MCLR Pulse Width (low)</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>TPWRT</td>
<td>Power-up timer</td>
<td>40</td>
<td>65</td>
<td>140</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>TOST</td>
<td>Oscillator startup time</td>
<td>—</td>
<td>1024</td>
<td>—</td>
<td>TOST</td>
<td></td>
</tr>
</tbody>
</table>

* These parameters are characterized but not tested.
† Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
4.0 PACKAGING INFORMATION

4.1 Package Marking Information

Legend:
- XX...X: Customer-specific information
- Y: Year code (last digit of calendar year)
- YY: Year code (last 2 digits of calendar year)
- WW: Week code (week of January 1 is week '01')
- NNN: Alphanumeric traceability code
- Pb-free JEDEC designator for Matte Tin (Sn)

* This package is Pb-free. The Pb-free JEDEC designator (\(e^3 \)) can be found on the outer packaging for this package.

Example:

20-Lead QFN

```
XXXXXXXX
XXXXXXXX
XXXXXXXX
YYWWNNN
```

Example:

```
MCP2200
I/MQ\( e^3 \)
1004256
```

20-Lead SOIC

```
XXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXX
YYWWNNN
```

Example:

```
MCP2200
I/ISO\( e^3 \)
1004256
```

20-Lead SSOP

```
XXXXXXXXXXXX
XXXXXXXXXXXX
YYWWNNN
```

Example:

```
MCP2200
I/SS\( e^3 \)
1004256
```

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.
MCP2200

20-Lead Plastic Quad Flat, No Lead Package (MQ) – 5x5x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension</td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
</tr>
<tr>
<td>Contact Thickness</td>
<td>A3</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Exposed Pad Width</td>
<td>E2</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Exposed Pad Length</td>
<td>D2</td>
</tr>
<tr>
<td>Contact Width</td>
<td>b</td>
</tr>
<tr>
<td>Contact Length</td>
<td>L</td>
</tr>
<tr>
<td>Contact-to-Exposed Pad</td>
<td>K</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated.
3. Dimensioning and tolerancing per ASME Y14.5M.
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.
20-Lead Plastic Quad Flat, No Lead Package (MQ) - 5x5 mm Body [QFN]
With 0.40mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E</td>
</tr>
<tr>
<td>Optional Center Pad Width</td>
<td>W2</td>
</tr>
<tr>
<td>Optional Center Pad Length</td>
<td>T2</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C1</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C2</td>
</tr>
<tr>
<td>Contact Pad Width (X20)</td>
<td>X1</td>
</tr>
<tr>
<td>Contact Pad Length (X20)</td>
<td>Y1</td>
</tr>
<tr>
<td>Distance Between Pads</td>
<td>G</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C06-2139A
20-Lead Plastic Small Outline (SO) – Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

![Package Diagram](image)

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
</tr>
<tr>
<td>Standoff §</td>
<td>A1</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Chamfer (optional)</td>
<td>h</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
</tr>
<tr>
<td>Footprint</td>
<td>L1</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>ϕ</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>β</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. § Significant Characteristic.
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-094B
20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
<th>Dimension Limits</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Pitch</td>
<td>E</td>
<td></td>
<td>1.27 BSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C</td>
<td></td>
<td>9.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Pad Width (X20)</td>
<td>X</td>
<td></td>
<td>0.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Pad Length (X20)</td>
<td>Y</td>
<td></td>
<td>1.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance Between Pads</td>
<td>Gx</td>
<td></td>
<td>0.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance Between Pads</td>
<td>G</td>
<td></td>
<td>7.45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
2. BSC: Basic Dimension. Theoretically exact value shown without tolerances.
MCP2200

20-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

![Package Diagram](image-url)

<table>
<thead>
<tr>
<th>Units</th>
<th>Dimensions</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>N</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
<td>0.65 BSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
<td>–</td>
<td>–</td>
<td>2.00</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
<td>1.65</td>
<td>1.75</td>
<td>1.85</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
<td>0.05</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
<td>7.40</td>
<td>7.80</td>
<td>8.20</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
<td>5.00</td>
<td>5.30</td>
<td>5.60</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>6.90</td>
<td>7.20</td>
<td>7.50</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
<td>0.55</td>
<td>0.75</td>
<td>0.95</td>
</tr>
<tr>
<td>Footprint</td>
<td>L1</td>
<td>1.25 REF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>0.09</td>
<td>–</td>
<td>0.25</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>φ</td>
<td>0°</td>
<td>4°</td>
<td>8°</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
<td>0.22</td>
<td>–</td>
<td>0.38</td>
</tr>
</tbody>
</table>

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension</td>
<td>MIN</td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C</td>
</tr>
<tr>
<td>Contact Pad Width (X20)</td>
<td>X1</td>
</tr>
<tr>
<td>Contact Pad Length (X20)</td>
<td>Y1</td>
</tr>
<tr>
<td>Distance Between Pads</td>
<td>G</td>
</tr>
</tbody>
</table>

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
APPENDIX A: REVISION HISTORY

Revision A (March 2010)

• Original Release of this Document.
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>X</th>
<th>/XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>Temperature Range</td>
<td>Package</td>
</tr>
<tr>
<td>MCP2200:</td>
<td>USB-to-UART serial converter</td>
<td>MQ = Plastic Quad Flat, No Lead Package</td>
</tr>
<tr>
<td>MCP2200T:</td>
<td>USB-to-UART serial converter (Tape and Reel)</td>
<td>5x5x0.9 mm Body (QFN), 20-Lead</td>
</tr>
<tr>
<td>I = -40°C to +85°C (Industrial)</td>
<td>SO = Plastic Small Outline - Wide, 7.50 mm Body (SO), 20-Lead</td>
<td></td>
</tr>
<tr>
<td>SS = Plastic Shrink Small Outline - 5.30 mm Body (SS)</td>
<td>20-Lead</td>
<td></td>
</tr>
</tbody>
</table>

Examples:

a) MCP2200-IMQ: Industrial temperature, 20LD QFN Package.
b) MCP2200T-IMQ: Tape and Reel, Industrial temperature, 20LD QFN Package.
a) MCP2200-I/SS: Industrial temperature, 20LD SSOP Package.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOG, KEELOG logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rPIC and Uni/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPAEM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICKit, PICtail, REAL ICE, rLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway Harbour City, Kowloon Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5111
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2600
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471-6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2508-0102
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820