New 48 x 24-mm Basic Temperature Controller with Enhanced Functions and Performance. Improved Indication Accuracy and Preventive Maintenance Function.

- **Indication Accuracy**
 - Thermocouple input: ±0.3% of PV (previous models: ±0.5%)
 - Pt input: ±0.2% of PV (previous models: ±0.5%)
 - Analog input: ±0.2% FS (previous models: ±0.5%)
- Models are available with screw terminal blocks or screwless clamp terminal blocks.
- A PV/SV-status display function can be set to automatically alternate between displaying the status of the Temperature Controller (auto/manual, RUN/STOP, and alarms) and the PV or SV.
- Preventive maintenance for relays in the Temperature Controller using a Control Output ON/OFF Counter.
- Switch the PV display between three colors.
- Compatible with Support Software (CX-Thermo version 4.2 or higher).
- Eleven-segment displays.
- Models are available with one or two alarm outputs.

Main I/O Functions

<table>
<thead>
<tr>
<th>Event Inputs</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Inputs</td>
<td>Universal thermocouple/Pt inputs (Models with temperature inputs)</td>
</tr>
<tr>
<td></td>
<td>Analog current/voltage inputs (Models with analog inputs)</td>
</tr>
<tr>
<td>Indication Accuracy</td>
<td>Thermocouple input: ±0.3% of PV</td>
</tr>
<tr>
<td></td>
<td>Pt input: ±0.2% of PV</td>
</tr>
<tr>
<td></td>
<td>Analog input: ±0.2% FS</td>
</tr>
<tr>
<td>Sampling Period</td>
<td>250 ms</td>
</tr>
</tbody>
</table>

- **Control Output 1**
 - Relay output
 - Voltage output (for driving SSR)
 - Current output

- **Auxiliary Outputs**
 - None
 - One
 - Two

- **Dual Display: PV and SV**
 - Auto/manual switching
 - Temperature Controller status display
 - Simple program function
 - Control output ON/OFF count alarm
 - PV change rate alarm
 - Models also available with RS-232C communications
 - Models also available with RS-485 communications

This datasheet is provided as a guideline for selecting products. Be sure to refer to the following user manuals for application precautions and other information required for operation before attempting to use the product.

- E5CN/E5AN/E5EN/E5GN Digital Temperature Controllers User’s Manual Basic Type (Cat. No. H156)
- E5CN/E5AN/E5EN/E5GN Digital Temperature Controllers Communications Manual Basic Type (Cat. No. H158)
Model Number Structure

Model Number Legend

Controllers

E5GN-[]-[]-[]-[]-[]-

1. **Control Output 1**
 - R: Relay output
 - Q: Voltage output (for driving SSR)
 - C: Linear current output

2. **Auxiliary Outputs**
 - Blank: None
 - 1: One output
 - 2: Two outputs

3. **Option**
 - Blank: None
 - 01: RS-232C communications
 - 03: RS-485 communications
 - B: Two event inputs
 - H: Heater burnout/Heater short/Heater overcurrent detection (CT1)

Input Type
- T: Universal thermocouple/platinum resistance thermometer input
- L: Analog current/voltage input

Power Supply Voltage
- Blank: 100 to 240 VAC
- D: 24 VAC/VDC

Terminal Type
- Blank: Models with screw terminal block
- C: Models with screwless clamp terminal block

Case Color
- Blank: Black

Communications Protocol
- Blank: None
- FLK: CompoWay/F communications

Note: Models cannot be made for all combinations of options that are possible in the model number legend. Confirm model availability in Ordering Information before ordering.

* Auxiliary outputs are relay outputs that can be used to output alarms or processing results.
Ordering Information

Controllers with Screw Terminal Blocks

Models with Temperature Inputs

Models with One Control Output and a 100 to 240-VAC Power Supply

<table>
<thead>
<tr>
<th>Case color</th>
<th>Control output</th>
<th>Control mode</th>
<th>No. of auxiliary outputs</th>
<th>Detection of heater burnout, SSR failure, and heater overcurrent</th>
<th>No. of event inputs</th>
<th>Transfer output</th>
<th>Communications</th>
<th>Previous model</th>
<th>New model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>Relay output</td>
<td>Standard</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>E5GN-RTC E5GN-RP E5GN-RT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standard or heating/cooling</td>
<td>1</td>
<td>---</td>
<td>2</td>
<td>---</td>
<td>---</td>
<td>RS-232C</td>
<td>E5GN-R1T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Detection for single-phase heaters</td>
<td></td>
<td>---</td>
<td>---</td>
<td>RS-485 E5GN-R03TC-FLK E5GN-R03P-FLK E5GN-R103T-FLK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standard</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>E5GN-R2T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standard or heating/cooling</td>
<td>1</td>
<td>---</td>
<td>2</td>
<td>---</td>
<td>---</td>
<td>RS-232C</td>
<td>E5GN-R2BT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Detection for single-phase heaters</td>
<td></td>
<td>---</td>
<td>---</td>
<td>RS-485 E5GN-R03TC-FLK E5GN-R03P-FLK E5GN-R103T-FLK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Voltage output</td>
<td>Black</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>E5GN-Q2T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(for driving SSR)</td>
<td>Standard</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>E5GN-Q2T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Detection for single-phase heaters</td>
<td></td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>E5GN-Q2T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Current output</td>
<td>Standard</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>E5GN-C11T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Transfer output using control output</td>
<td></td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>E5GN-C11T</td>
</tr>
</tbody>
</table>

*1. If heating/cooling control mode is used, an auxiliary output is used as a control output for the cooling side. The number of auxiliary outputs that can be used will decrease by one. Also, the signal for the control output for the cooling side will be a relay output.

*2. A current control output can be used as the transfer output. In that case, an auxiliary output is used as the control output. (This is not possible for models without an auxiliary output.) The control output will be a relay output. The number of auxiliary outputs that can be used will decrease by one.
Models with One Control Output and a 24-VAC/VDC Power Supply

<table>
<thead>
<tr>
<th>Case color</th>
<th>Control output</th>
<th>Control mode #1</th>
<th>No. of auxiliary outputs</th>
<th>Detection of heater burnout, SSR failure, and heater overcurrent</th>
<th>No. of event inputs</th>
<th>Transfer output #2</th>
<th>Communications</th>
<th>Previous model</th>
<th>New model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>Relay output</td>
<td>Standard</td>
<td>---</td>
<td>---</td>
<td>2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standard or heating/cooling</td>
<td>---</td>
<td>---</td>
<td>2</td>
<td>RS-232C</td>
<td>---</td>
<td>E5GN-RTC</td>
<td>E5GN-R1BD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Detection for single-phase heaters</td>
<td></td>
<td></td>
<td>---</td>
<td>E5GN-R1BD</td>
<td>E5GN-R1BD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
<td>2</td>
<td>RS-485</td>
<td>---</td>
<td>E5GN-R1BD</td>
<td>E5GN-R1BD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
<td>2</td>
<td></td>
<td>---</td>
<td>E5GN-R1BD</td>
<td>E5GN-R1BD</td>
</tr>
<tr>
<td></td>
<td>Voltage output (for driving SSR)</td>
<td>Standard</td>
<td>---</td>
<td>---</td>
<td>2</td>
<td>RS-232C</td>
<td>---</td>
<td>E5GN-QTC</td>
<td>E5GN-Q1BD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standard or heating/cooling</td>
<td>---</td>
<td>---</td>
<td>2</td>
<td></td>
<td>---</td>
<td>E5GN-Q1BD</td>
<td>E5GN-Q1BD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Detection for single-phase heaters</td>
<td></td>
<td></td>
<td>---</td>
<td>E5GN-Q1BD</td>
<td>E5GN-Q1BD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
<td>2</td>
<td>RS-485</td>
<td>---</td>
<td>E5GN-Q1BD</td>
<td>E5GN-Q1BD</td>
</tr>
<tr>
<td></td>
<td>Current output</td>
<td>Standard or heating/cooling</td>
<td>---</td>
<td>---</td>
<td>2</td>
<td>RS-232C</td>
<td>---</td>
<td>E5GN-C1TBD</td>
<td>E5GN-C1TBD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Transfer output using control output</td>
<td></td>
<td></td>
<td>---</td>
<td>E5GN-C1TBD</td>
<td>E5GN-C1TBD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
<td>2</td>
<td>RS-485</td>
<td>---</td>
<td>E5GN-C1TBD</td>
<td>E5GN-C1TBD</td>
</tr>
</tbody>
</table>

Notes

1. If heating/cooling control mode is used, an auxiliary output is used as a control output for the cooling side. The number of auxiliary outputs that can be used will decrease by one. Also, the signal for the control output for the cooling side will be a relay output.

2. A current control output can be used as the transfer output. In that case, an auxiliary output is used as the control output. (This is not possible for models without an auxiliary output.) The control output will be a relay output. The number of auxiliary outputs that can be used will decrease by one.
Models with Analog Inputs

Models with One Control Output and a 100 to 240-VAC Power Supply

<table>
<thead>
<tr>
<th>Case color</th>
<th>Control output</th>
<th>Control mode #1</th>
<th>No. of auxiliary outputs</th>
<th>Detection of heater burnout, SSR failure, and heater overcurrent</th>
<th>No. of event inputs</th>
<th>Transfer output #2</th>
<th>Communications</th>
<th>Previous model</th>
<th>New model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>Relay output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E5GN-R103L-FLK</td>
</tr>
<tr>
<td></td>
<td>Voltage output (for driving SSR)</td>
<td>Standard or heating/cooling</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E5GN-Q103L-FLK</td>
</tr>
<tr>
<td></td>
<td>Current output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E5GN-C1L</td>
</tr>
</tbody>
</table>

Note: Models with analog inputs do not display the temperature unit.

*1. If heating/cooling control mode is used, an auxiliary output is used as a control output for the cooling side. The number of auxiliary outputs that can be used will decrease by one. Also, the signal for the control output for the cooling side will be a relay output.

*2. A current control output can be used as the transfer output. In that case, an auxiliary output is used as the control output. (This is not possible for models without an auxiliary output.) The control output will be a relay output. The number of auxiliary outputs that can be used will decrease by one.

Models with One Control Output and a 24-VAC/VDC Power Supply

<table>
<thead>
<tr>
<th>Case color</th>
<th>Control output</th>
<th>Control mode #1</th>
<th>No. of auxiliary outputs</th>
<th>Detection of heater burnout, SSR failure, and heater overcurrent</th>
<th>No. of event inputs</th>
<th>Transfer output #2</th>
<th>Communications</th>
<th>Previous model</th>
<th>New model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>Relay output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E5GN-R103LD-FLK</td>
</tr>
<tr>
<td></td>
<td>Voltage output (for driving SSR)</td>
<td>Standard or heating/cooling</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E5GN-Q103LD-FLK</td>
</tr>
<tr>
<td></td>
<td>Current output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E5GN-C1LD</td>
</tr>
</tbody>
</table>

*1. If heating/cooling control mode is used, an auxiliary output is used as a control output for the cooling side. The number of auxiliary outputs that can be used will decrease by one. Also, the signal for the control output for the cooling side will be a relay output.

*2. A current control output can be used as the transfer output. In that case, an auxiliary output is used as the control output. (This is not possible for models without an auxiliary output.) The control output will be a relay output. The number of auxiliary outputs that can be used will decrease by one.
Controllers with Screwless Clamp Terminal Blocks
Models with Temperature Inputs
Models with One Control Output and a 100 to 240-VAC Power Supply

<table>
<thead>
<tr>
<th>Case color</th>
<th>Control output</th>
<th>Control mode #1</th>
<th>No. of auxiliary outputs</th>
<th>Detection of heater burnout, SSR failure, and heater overcurrent</th>
<th>No. of event inputs</th>
<th>Transfer output #2</th>
<th>Communications</th>
<th>Previous model</th>
<th>Resistance thermocouple input</th>
<th>New model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>Relay output</td>
<td>Standard</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>E5GN-RTC</td>
<td>E5GN-RP</td>
<td>E5GN-RT-C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standard or heating/cooling</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>E5GN-R1TC</td>
<td>E5GN-R1P</td>
<td>E5GN-R1T-C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Detection for single-phase heaters</td>
<td>2</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>E5GN-R1BT-C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
<td>RS-232C</td>
<td>E5GN-R03TC-FLK</td>
<td>E5GN-R03P-FLK</td>
<td>E5GN-R103T-FLK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
<td>E5GN-R03P-FLK</td>
<td>--</td>
<td>--</td>
<td>E5GN-R103T-FLK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
<td>RS-485</td>
<td>--</td>
<td>--</td>
<td>E5GN-R203T-FLK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Voltage output (for driving SSR)</td>
<td>2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>RS-232C</td>
<td>E5GN-QTC</td>
<td>E5GN-QP</td>
<td>E5GN-QT-C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Detection for single-phase heaters</td>
<td>2</td>
<td>---</td>
<td>RS-232C</td>
<td>E5GN-Q1TC</td>
<td>E5GN-Q1P</td>
<td>E5GN-Q1T-C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
<td>E5GN-Q1P</td>
<td>--</td>
<td>--</td>
<td>E5GN-Q1BT-C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
<td>RS-485</td>
<td>E5GN-Q03TC-FLK</td>
<td>E5GN-Q03P-FLK</td>
<td>E5GN-Q103T-FLK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
<td>E5GN-Q03P-FLK</td>
<td>--</td>
<td>--</td>
<td>E5GN-Q103T-FLK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Current output</td>
<td>Standard or heating/cooling</td>
<td>2</td>
<td>Transfer output using control output</td>
<td>---</td>
<td>RS-232C</td>
<td>E5GN-C1T-C</td>
<td>E5GN-C1BT-C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
<td>E5GN-C1BT-C</td>
<td>--</td>
<td>--</td>
<td>E5GN-C10T-C-FLK</td>
</tr>
</tbody>
</table>

*1. If heating/cooling control mode is used, an auxiliary output is used as a control output for the cooling side. The number of auxiliary outputs that can be used will decrease by one. Also, the signal for the control output for the cooling side will be a relay output.

*2. A current control output can be used as the transfer output. In that case, an auxiliary output is used as the control output. (This is not possible for models without an auxiliary output.) The control output will be a relay output. The number of auxiliary outputs that can be used will decrease by one.
Models with One Control Output and a 24-VAC/VDC Power Supply

<table>
<thead>
<tr>
<th>Case color</th>
<th>Control output</th>
<th>Control mode #1</th>
<th>No. of auxiliary outputs</th>
<th>Detection of heater burnout, SSR failure, and heater overcurrent</th>
<th>No. of event inputs</th>
<th>Transfer output #2</th>
<th>Communic</th>
<th>Previous model</th>
<th>New model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>Relay output</td>
<td>Standard</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>E5GN-RTC</td>
<td>E5GN-RTD-C</td>
<td>E5GN-R1TC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standard or heating/cooling</td>
<td>1</td>
<td>RS-232C</td>
<td>--</td>
<td>--</td>
<td>E5GN-R1TC</td>
<td>E5GN-R1TC</td>
<td>E5GN-R1TC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>RS-485</td>
<td>E5GN-R103TC-FLK</td>
<td>E5GN-R103TD-C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Detection for single-phase heaters</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>E5GN-R2HTD-C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standard</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>E5GN-R2HTD-C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standard or heating/cooling</td>
<td>1</td>
<td>RS-232C</td>
<td>--</td>
<td>--</td>
<td>E5GN-Q2HTD-C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>RS-485</td>
<td>E5GN-Q203TC-FLK</td>
<td>E5GN-Q203TD-C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Detection for single-phase heaters</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>E5GN-Q203TD-C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standard</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>E5GN-Q203TD-C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standard or heating/cooling</td>
<td>1</td>
<td>RS-232C</td>
<td>--</td>
<td>--</td>
<td>E5GN-Q203TD-C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. If heating/cooling control mode is used, an auxiliary output is used as a control output for the cooling side. The number of auxiliary outputs that can be used will decrease by one. Also, the signal for the control output for the cooling side will be a relay output.

2. A current control output can be used as the transfer output. In that case, an auxiliary output is used as the control output. (This is not possible for models without an auxiliary output.) The control output will be a relay output. The number of auxiliary outputs that can be used will decrease by one.
Models with Analog Inputs

Models with One Control Output and a 100 to 240-VAC Power Supply

<table>
<thead>
<tr>
<th>Case color</th>
<th>Control output</th>
<th>Control mode #1</th>
<th>No. of auxiliary outputs</th>
<th>Detection of heater burnout, SSR failure, and heater overcurrent</th>
<th>No. of event inputs</th>
<th>Transfer output #2</th>
<th>Communcations</th>
<th>Previous model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>Current output</td>
<td>Standard or heating/cooling</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>E5GN-C1L-C</td>
</tr>
</tbody>
</table>

Note: Models with analog inputs do not display the temperature unit.

*1. If heating/cooling control mode is used, an auxiliary output is used as a control output for the cooling side. The number of auxiliary outputs that can be used will decrease by one. Also, the signal for the control output for the cooling side will be a relay output.

*2. A current control output can be used as the transfer output. In that case, an auxiliary output is used as the control output. (This is not possible for models without an auxiliary output.) The control output will be a relay output. The number of auxiliary outputs that can be used will decrease by one.

Models with One Control Output and a 24-VAC/VDC Power Supply

<table>
<thead>
<tr>
<th>Case color</th>
<th>Control output</th>
<th>Control mode #1</th>
<th>No. of auxiliary outputs</th>
<th>Detection of heater burnout, SSR failure, and heater overcurrent</th>
<th>No. of event inputs</th>
<th>Transfer output #2</th>
<th>Communcations</th>
<th>Previous model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>Current output</td>
<td>Standard or heating/cooling</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>E5GN-C1LD-C</td>
</tr>
</tbody>
</table>

*1. If heating/cooling control mode is used, an auxiliary output is used as a control output for the cooling side. The number of auxiliary outputs that can be used will decrease by one. Also, the signal for the control output for the cooling side will be a relay output.

*2. A current control output can be used as the transfer output. In that case, an auxiliary output is used as the control output. (This is not possible for models without an auxiliary output.) The control output will be a relay output. The number of auxiliary outputs that can be used will decrease by one.

Accessories (Order Separately)

USB-Serial Conversion Cable

<table>
<thead>
<tr>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>E58-CIFQ1</td>
</tr>
</tbody>
</table>

Waterproof Packing

<table>
<thead>
<tr>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y92S-32</td>
</tr>
</tbody>
</table>

Note: The Waterproof Packing is included with the Controller only for models with screw terminal blocks.

Current Transformers (CTs)

<table>
<thead>
<tr>
<th>Hole diameter</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8 dia.</td>
<td>E54-CT1</td>
</tr>
<tr>
<td>12.0 dia.</td>
<td>E54-CT3</td>
</tr>
</tbody>
</table>

CX-Thermo Support Software

<table>
<thead>
<tr>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>EST2-2C-MV4</td>
</tr>
</tbody>
</table>

Note: The E5GN is supported by CX-Thermo version 4.2 and higher.
Specifications

Ratings

| Power supply voltage | No D in model number: 100 to 240 VAC, 50/60 Hz
D in model number: 24 VAC, 50/60 Hz; 24 VDC |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating voltage range</td>
<td>85% to 110% of rated supply voltage</td>
</tr>
</tbody>
</table>
| **Power consumption** | **E5GN** Screw terminal block
100 to 240 VAC: 5.5 VA (max.)
24 VAC/VDC: 3 VA/2 W (max.) |
| **E5GN-** | **C Screwless clamp terminal block**
100 to 240 VAC: 5.5 VA (max.)
24 VAC/VDC: 3 VA/2 W (max.) |

Sensor input

- Models with temperature inputs
 - Platinum resistance thermometer: Pt100 or JPt100
 - Infrared temperature sensor: 10 to 70°C, 60 to 120°C, 115 to 165°C, or 140 to 260°C
 - Voltage input: 0 to 50 mV

- Models with analog inputs
 - Current input: 4 to 20 mA or 0 to 20 mA
 Voltage input: 1 to 5 V, 0 to 5 V, or 0 to 10 V

Input impedance

- Current input: 150 Ω max., Voltage input: 1 MΩ min. (Use a 1:1 connection when connecting the ES2-HB.)

Control method

- ON/OFF control or 2-PID control (with auto-tuning)

Control outputs

- Relay output: SPST-NO, 250 VAC, 2 A (resistive load), electrical life: 100,000 operations, minimum applicable load: 5 V, 10 mA
- Voltage output (for driving SSR): Output voltage: 12 VDC ±15% (PNP), max. load current: 21 mA, with short-circuit protection circuit
- Current output: 4 to 20 mA DC/0 to 20 mA DC, load: 500 Ω max., resolution: approx. 10,000

Auxiliary outputs

- Number of outputs: 1 or 2 max. (Depends on the model.)
- Output specifications: Relay output: SPST-NO, 250 VAC, 2 A (resistive load), electrical life: 100,000 operations, minimum applicable load: 5 V, 10 mA

Event inputs

- Number of inputs: 2
- External contact input specifications: Contact input: ON: 1 kΩ max., OFF: 100 kΩ min.
 Non-contact input: ON: Residual voltage: 1.5 V max., OFF: Leakage current: 0.1 mA max.
 Current flow: Approx. 7 mA per contact

Setting method

- Digital setting using front panel keys

Indication method

- 11-segment digital display and individual indicators (7-segment display also possible)
 Character height: PV: 7.5 mm, SV: 3.6 mm

Multi SP

- Up to four set points (SP0 to SP3) can be saved and selected using event inputs, key operations, or serial communications.

Bank switching

- Not supported

Other functions

- Manual output, heating/cooling control, loop burnout alarm, SP ramp, other alarm functions, heater burnout detection, 40% AT, 100% AT, MV limiter, input digital filter, self-tuning, temperature input shift, run/stop, protection functions, control output ON/OFF counter, extraction of square root, MV change rate limit, logic operations, PV/SV status display, simple program, automatic cooling coefficient adjustment

Ambient operating temperature

- −10 to 55°C (with no condensation or icing), for 3-year warranty: −10 to 50°C

Ambient operating humidity

- 25% to 85%

Storage temperature

- −25 to 65°C (with no condensation or icing)
Input Ranges

Thermocouple/Platinum Resistance Thermometer (Universal Inputs)

<table>
<thead>
<tr>
<th>Input Type</th>
<th>Platinum resistance thermometer</th>
<th>Thermocouple</th>
<th>Infrared temperature sensor</th>
<th>Analog input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Pt100</td>
<td>JPt100</td>
<td>K, J, T, E, L, U, N, R, S, B, W</td>
<td>PL II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10 to 70°C</td>
<td>60 to 120°C</td>
</tr>
<tr>
<td>Temperature range (°C)</td>
<td>2300</td>
<td>1800</td>
<td>1700</td>
<td>1600</td>
</tr>
<tr>
<td>Setting number</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Shaded settings are the default settings.

The applicable standards for the input types are as follows:
- L: Fe-CuNi, DIN 43710-1985
- U: Cu-CuNi, DIN 43710-1985
- W: W5Re/W26Re, ASTM E988-1990
- Pt100: JIS C 1604-1997, IEC 751
- PL II: According to Platinel II electromotive force charts from BASF (previously Engelhard)

Models with Analog Inputs

<table>
<thead>
<tr>
<th>Input Type</th>
<th>Current</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input specification</td>
<td>4 to 20 mA</td>
<td>0 to 20 mA</td>
</tr>
<tr>
<td>Setting range</td>
<td>Usable in the following ranges by scaling:</td>
<td>−1999 to 9999, −199.9 to 999.9, −19.99 to 99.99 or −1.999 to 9.999</td>
</tr>
<tr>
<td>Setting number</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Shaded settings are the default settings.
Alarm Outputs

Each alarm can be independently set to one of the following 13 alarm types. The default is 2: Upper limit. Auxiliary outputs are allocated for alarms. ON delays and OFF delays (0 to 999 s) can also be specified.

Note: For models with heater burnout, SSR failure, and heater overcurrent detection, alarm 1 will be an OR output of the alarm selected from the following alarm types and the alarms for heater burnout, SSR failure, and heater overcurrent. To output only a heater burnout alarm, SSR failure alarm, and heater overcurrent alarm for alarm 1, set the alarm type to 0 (i.e., no alarm function).

<table>
<thead>
<tr>
<th>Set value</th>
<th>Alarm type</th>
<th>Alarm output operation</th>
<th>Description of function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Alarm function OFF</td>
<td>Output OFF</td>
<td>No alarm</td>
</tr>
<tr>
<td>1 *1</td>
<td>Upper- and lower-limit</td>
<td>*2</td>
<td>Set the deviation in the set point by setting the alarm upper limit (H) and alarm lower limit (L).</td>
</tr>
<tr>
<td>2</td>
<td>Upper-limit</td>
<td>*3</td>
<td>Set the upward deviation in the set point by setting the alarm value (X).</td>
</tr>
<tr>
<td>3</td>
<td>Lower-limit</td>
<td>*4</td>
<td>Set the downward deviation in the set point by setting the alarm value (X).</td>
</tr>
<tr>
<td>4 *1</td>
<td>Upper- and lower-limit range</td>
<td>*5</td>
<td>A standby sequence is added to the upper- and lower-limit alarm (1).</td>
</tr>
<tr>
<td>5 *1</td>
<td>Upper- and lower-limit with standby sequence</td>
<td>*6</td>
<td>A standby sequence is added to the upper- and lower-limit alarm (2).</td>
</tr>
<tr>
<td>6</td>
<td>Upper-limit with standby sequence</td>
<td>*7</td>
<td>A standby sequence is added to the upper-limit alarm (3).</td>
</tr>
<tr>
<td>7</td>
<td>Lower-limit with standby sequence</td>
<td>*8</td>
<td>A standby sequence is added to the lower-limit alarm (4).</td>
</tr>
<tr>
<td>8</td>
<td>Absolute-value upper-limit</td>
<td>*9</td>
<td>The alarm will turn ON if the process value is larger than the alarm value (X) regardless of the set point.</td>
</tr>
<tr>
<td>9</td>
<td>Absolute-value lower-limit</td>
<td>*10</td>
<td>The alarm will turn ON if the process value is smaller than the alarm value (X) regardless of the set point.</td>
</tr>
<tr>
<td>10</td>
<td>Absolute-value upper-limit with standby sequence</td>
<td>*11</td>
<td>A standby sequence is added to the absolute-value upper-limit alarm (5).</td>
</tr>
<tr>
<td>11</td>
<td>Absolute-value lower-limit with standby sequence</td>
<td>*12</td>
<td>A standby sequence is added to the absolute-value lower-limit alarm (6).</td>
</tr>
<tr>
<td>12</td>
<td>LBA (alarm 1 type only)</td>
<td>---</td>
<td>#7</td>
</tr>
<tr>
<td>13</td>
<td>PV change rate alarm</td>
<td>---</td>
<td>#8</td>
</tr>
</tbody>
</table>

*1. With set values 1, 4 and 5, the upper and lower limit values can be set independently for each alarm type, and are expressed as "L" and "H."

*2. Set value: 1, Upper- and lower-limit alarm

*3. Set value: 4, Upper- and lower-limit range

*4. Set value: 5, Upper- and lower-limit with standby sequence

*5. Set value: 5, Upper- and lower-limit with standby sequence

*6. Refer to the E5CN/E5AN/E5EN/E5GN Digital Temperature Controllers User's Manual Basic Type (Cat. No. H156) for information on the operation of the standby sequence.

*7. Refer to the E5CN/E5AN/E5EN/E5GN Digital Temperature Controllers User's Manual Basic Type (Cat. No. H156) for information on the operation of the standby sequence.

*8. Refer to the E5CN/E5AN/E5EN/E5GN Digital Temperature Controllers User's Manual Basic Type (Cat. No. H156) for information on the PV change rate alarm.

*Case 1 and 2: Always OFF when the upper-limit and lower-limit hysteresis overlaps.

*Case 3: Always OFF
Characteristics

<table>
<thead>
<tr>
<th>Indication accuracy</th>
<th>Thermocouple: ±1°C (±0.3% of indicated value or ±1°C, whichever is greater) ±1 digit max. Platinum resistance thermometer input: (±0.2% of indicated value or ±0.8°C, whichever is greater) ±1 digit max. Analog input: ±0.2% FS ±1 digit max. CT input: ±5% FS ±1 digit max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influence of temperature #2</td>
<td>Thermocouple input (R, S, B, W, PL II): (±1% of PV or ±1°C, whichever is greater) ±1 digit max. Other thermocouple input: #3 (±1% of PV or ±4°C, whichever is greater) ±1 digit max.</td>
</tr>
<tr>
<td>Influence of voltage #2</td>
<td>Platinum resistance thermometer input: (±1% of PV or ±2°C, whichever is greater) ±1 digit max. Analog input: (±1% FS) ±1 digit max.</td>
</tr>
<tr>
<td>Input sampling period</td>
<td>250 ms</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>Models with thermocouple/platinum resistance thermometer input (universal input): 0.1 to 999.9 EU (in units of 0.1 EU) #4 Models with analog input: 0.01 to 99.99% FS (in units of 0.01% FS)</td>
</tr>
<tr>
<td>Proportional band (P)</td>
<td>Models with thermocouple/platinum resistance thermometer input (universal input): 0.1 to 999.9 EU (in units of 0.1 EU) #4 Models with analog input: 0.1 to 999.9% FS (in units of 0.1% FS)</td>
</tr>
<tr>
<td>Integral time (I)</td>
<td>0 to 3999 s (in units of 1 s)</td>
</tr>
<tr>
<td>Derivative time (D)</td>
<td>0 to 3999 s (in units of 1 s) #5</td>
</tr>
<tr>
<td>Control period</td>
<td>0.5, 1 to 99 s (in units of 1 s)</td>
</tr>
<tr>
<td>Manual reset value</td>
<td>0.0 to 100.0% (in units of 0.1%)</td>
</tr>
<tr>
<td>Alarm setting range</td>
<td>−1999 to 9999 (decimal point position depends on input type)</td>
</tr>
<tr>
<td>Affect of signal source</td>
<td>Thermocouple: 0.1°C/µA max. (10 Ω max.) Platinum resistance thermometer: 0.1°C/Ω max. (10 Ω max.)</td>
</tr>
<tr>
<td>Insulation resistance</td>
<td>20 MΩ min. (at 500 VDC)</td>
</tr>
<tr>
<td>Dielectric strength</td>
<td>2,300 VAC, 50 or 60 Hz for 1 min (between terminals with different charge)</td>
</tr>
<tr>
<td>Vibration resistance</td>
<td>Malfunction: 10 to 55 Hz, 20 m/s² for 10 min each in X, Y, and Z directions Destruction: 10 to 55 Hz, 0.75-mm single amplitude for 2 hrs each in X, Y, and Z directions</td>
</tr>
<tr>
<td>Shock resistance</td>
<td>Malfunction: 100 m/s², 3 times each in X, Y, and Z directions Destruction: 300 m/s², 3 times each in X, Y, and Z directions</td>
</tr>
<tr>
<td>Weight</td>
<td>Controller: Approx. 90 g, Mounting Bracket: Approx. 10 g</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>Front panel: IP66, Rear case: IP20, Terminals: IP00</td>
</tr>
<tr>
<td>Memory protection</td>
<td>Non-volatile memory (number of writes: 1,000,000 times)</td>
</tr>
<tr>
<td>Setup Tool</td>
<td>CX-Thermo version 4.2 or higher</td>
</tr>
<tr>
<td>Setup Tool port</td>
<td>Provided on the side of the E5GN. Connect this port to the computer when using the Setup Tool. An E58-CIFG1 USB-Serial Conversion Cable is required to connect the computer to the port on the side of the E5GN. #6</td>
</tr>
<tr>
<td>Standards</td>
<td>UL 61010-1, CSA C22.2 No. 1010-1</td>
</tr>
<tr>
<td>Conformed standards</td>
<td>EN 61010-1 (IEC 61010-1): Pollution level 2, overcurrent category II</td>
</tr>
<tr>
<td>EMC</td>
<td>EMI: EN 61326 Radiated Interference Electromagnetic Field Strength: EN 55011 Group 1, class A Noise Terminal Voltage: EN 55011 Group 1, class A EMS: EN 61326 ESD Immunity: EN 61000-4-2 Electromagnetic Field Immunity: EN 61000-4-3 Burst Noise Immunity: EN 61000-4-4 Conducted Disturbance Immunity: EN 61000-4-6 Surge Immunity: EN 61000-4-5 Power Frequency Magnetic Field Immunity: EN 61000-4-8 Voltage Dip/Interrupting Immunity: EN 61000-4-11</td>
</tr>
</tbody>
</table>

*1. The indication accuracy of K thermocouples in the −200 to 1300°C range, T and N thermocouples at a temperature of −100°C max., and U and L thermocouples at any temperatures is ±2°C ±1 digit max. The indication accuracy of the B thermocouple at a temperature of 400°C max. is not specified. The indication accuracy of B thermocouples in the 400 to 800°C range is ±3°C max. The indication accuracy of the R and S thermocouples at a temperature of 200°C max. is ±3°C ±1 digit max. The indication accuracy of W thermocouples is ±0.3 of PV or ±3°C, whichever is greater, ±1 digit max. The indication accuracy of PL II thermocouples is ±0.3 of PV or ±2°C, whichever is greater, ±1 digit max. |

*2. Ambient temperature: −10°C to 23°C to 55°C. Voltage range: −15% to 10% of rated voltage |

*3. K thermocouple at −100°C max.: ±10°C max. |

*4. “EU” stands for Engineering Unit and is used as the unit after scaling. For a temperature sensor, the EU is °C or °F. |

*5. When robust tuning (RT) is ON, the differential time is 0.0 to 999.9 (in units of 0.1 s). |

*6. External serial communications (RS-232C or RS-485) and cable communications for the Setup Tool can be used at the same time.
USB-Serial Conversion Cable

Applicable OS Windows 2000, XP, or Vista
Applicable software CX-Thermo version 4 or higher
Applicable models E5AN/E5EN/E5CN/E5CN-U/E5AN-H/E5EN-H/E5CN-H/E5GN
USB interface standard Conforms to USB Specification 1.1.
DTE speed 38400 bps
Connector specifications Computer: USB (type A plug)
 Temperature Controller: Setup Tool port
 (on bottom of Controller)
Power supply Bus power (Supplied from USB host controller.)
Power supply voltage 5 VDC
Current consumption 70 mA
Ambient operating temperature 0 to 55°C (with no condensation or icing)
Ambient operating humidity 10% to 80%
Storage temperature –20 to 60°C (with no condensation or icing)
Storage humidity 10% to 80%
Altitude 2,000 m max.
Weight Approx. 100 g

Note: A driver must be installed in the personal computer. Refer to installation information in the operation manual for the Conversion Cable.

Communications Specifications

Transmission line connection method RS-485: Multipoint
 RS-232C: Point-to-point
Communications RS-485 (two-wire, half duplex), RS-232C
Synchronization method Start-stop synchronization
Protocol CompoWay/F, SYSWAY, or Modbus
Baud rate 1200, 2400, 4800, 9600, 19200, 38400, or 57600 bps
Transmission code ASCII
Data bit length 7 or 8 bits
Stop bit length 1 or 2 bits
Error detection Vertical parity (none, even, odd)
 Frame check sequence (FCS) with SYSWAY
 Block check character (BCC) with
 CompoWay/F or CRC-16 Modbus
Flow control None
Interface RS-485, RS-232C
Retry function None
Communications buffer 217 bytes
Communications response wait time 0 to 99 ms
Default: 20 ms

* The baud rate, data bit length, stop bit length, and vertical parity can be individually set using the Communications Setting Level.

Current Transformer (Order Separately)

Ratings

Dielectric strength 1,000 VAC for 1 min
Vibration resistance 50 Hz, 98 m/s²
Weight E54-CT1: Approx. 11.5 g,
 E54-CT3: Approx. 50 g
Accessories (E54-CT3 only)
 Armatures (2)
 Plugs (2)

Heater Burnout Alarms, SSR Failure Alarms, and Heater Overcurrent Alarms

CT input (for heater current detection) Models with detection for single-phase heaters: One input
Maximum heater current 50 A AC
Input current indication accuracy ±5% FS ±1 digit max.
Heater burnout alarm setting range #1 0.1 to 49.9 A (in units of 0.1 A)
Minimum detection ON time: 100 ms
SSR failure alarm setting range #2 0.1 to 49.9 A (in units of 0.1 A)
Minimum detection OFF time: 100 ms
Heater overcurrent alarm setting range #3 0.1 to 49.9 A (in units of 0.1 A)
Minimum detection ON time: 100 ms

#1. For heater burnout alarms, the heater current will be measured when the control output is ON, and the output assigned to the alarm 1 function will turn ON if the heater current is lower than the set value (i.e., heater burnout detection current value).

#2. For SSR failure alarms, the heater current will be measured when the control output is OFF, and the output assigned to the alarm 1 function will turn ON if the heater current is higher than the set value (i.e., SSR failure detection current value).

#3. For heater overcurrent alarms, the heater current will be measured when the control output is ON, and the output assigned to the alarm 1 function will turn ON if the heater current is higher than the set value (i.e., heater overcurrent detection current value).

Electrical Life Expectancy Curve for Relays (Reference Values)
External Connections

• A voltage output (control output, for driving SSR) is not electrically insulated from the internal circuits. When using a grounding thermocouple, do not connect any of the control output terminals to ground. (If the control output terminals are connected to ground, errors will occur in the measured temperature values as a result of leakage current.)

E5GN Controllers

Wiring

E5GN

Models with Screw Terminal Blocks (M3 Screws)

E5GN-□-C

Models with Screwless Clamp Terminal Blocks

The E5GN is set for a K thermocouple (input type of 5) by default. If a difference sensor is used, an input error (s.err) will occur. Check the setting of the input type parameter.

A heater burnout alarm, heater short alarm, heater overcurrent alarm, or input error is sent to the output to which the alarm 1 function is assigned.

Auxiliary outputs 1 and 2

Relay outputs
250 VAC, 2 A (resistive load)

Voltage output (for driving SSR)
12 VDC, 21 mA

Current output
0 to 20 mA DC
4 to 20 mA DC

Load: 500 Ω max.

Relay output
250 VAC, 2 A (resistive load)

RS-485 communications

RS-232C communications

CT input

Event input

Universal TC/Pt input

Auxiliary output 2 connection screws

M3 Screw Terminal Blocks

• Crimp terminal shape: Forked or round
• Tightening torque for all terminals: 0.5 N·m

5.8 mm max.

0.8 mm max.

Wire stripping: 10 mm
Ferrules: 8 to 12 mm

0.8 to 1.4 mm

10 mm
8 to 12 mm

0.8 mm max.
Nomenclature

E5GN
The front panel is the same for the E5GN.

Dimensions (Unit: mm)

E5GN
Models with Screw Terminal Blocks

Panel Cutout
Mounted Separately
Group Mounted

- Recommended panel thickness is 1 to 5 mm.
- Group mounting is not possible in the vertical direction. (Maintain the specified mounting space between Controllers.)
- To mount the Controller so that it is waterproof, insert the waterproof packing onto the Controller.
- When two or more Controllers are mounted, make sure that the surrounding temperature does not exceed the allowable operating temperature specified in the specifications.

E5GN-C
Models with Screwless Clamp Terminal Blocks

Panel Cutout
Mounted Separately
Group Mounted

- Recommended panel thickness is 1 to 5 mm.
- Group mounting is not possible in the vertical direction. (Maintain the specified mounting space between Controllers.)
- When two or more Controllers are mounted, make sure that the surrounding temperature does not exceed the allowable operating temperature specified in the specifications.

Accessories (Order Separately)

USB-Serial Conversion Cable
E58-CIFQ1

omron

Waterproof Packing
Y92S-32 (for DIN 48 × 24)

Order the Waterproof Packing separately if it becomes lost or damaged.
The Waterproof Packing can be used to achieve an IP66 degree of protection.
(Deterioration, shrinking, or hardening of the waterproof packing may occur depending on the operating environment. Therefore, periodic replacement is recommended to ensure the level of waterproofing specified in IP66. The time for periodic replacement depends on the operating environment. Be sure to confirm this point at your site. Consider one year a rough standard. OMRON shall not be liable for the level of water resistance if the customer does not perform periodic replacement.)
The Waterproof Packing does not need to be attached if a waterproof structure is not required.

Current Transformers

E54-CT1

E54-CT3

E54-CT3 Accessory
- Armature
- Plug

Connection Example

E54-CT1
Thru-current (Io) vs. Output Voltage (Eo) (Reference Values)
Maximum continuous heater current: 50 A (50/60 Hz)
Number of windings: 400±2
Winding resistance: 18±2 Ω

Thru-current (Io) A (r.m.s.)

- 100 mV
- 100 µV
- 10 mV
- 100 µV

Output voltage (Eo) V (r.m.s.)

- 100 V
- 100 Hz

Distortion factor

- 10%
- 3%
- 1%

RL = 10 Ω

- ∞

E54-CT3
Thru-current (Io) vs. Output Voltage (Eo) (Reference Values)
Maximum continuous heater current: 120 A (50/60 Hz)
(Maximum continuous heater current for the Temperature Controller is 50 A.)
Number of windings: 400±2
Winding resistance: 8±0.8 Ω

Thru-current (Io) A (r.m.s.)

- 100 mV
- 100 µV
- 10 mV
- 100 µV

Output voltage (Eo) V (r.m.s.)

- 100 V
- 100 Hz

Distortion factor

- 10%
- 3%
- 1%
Warranty and Limitations of Liability

WARRANTY
OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a period of one year (or other period if specified) from date of sale by OMRON.

OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.

LIMITATIONS OF LIABILITY
OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT LIABILITY.

In no event shall the responsibility of OMRON for any act exceed the individual price of the product on which liability is asserted.

IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.

Application Considerations

SUITABILITY FOR USE
OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the combination of products in the customer's application or use of the products.

At the customer's request, OMRON will provide applicable third party certification documents identifying ratings and limitations of use that apply to the products. This information by itself is not sufficient for a complete determination of the suitability of the products in combination with the end product, machine, system, or other application or use.

The following are some examples of applications for which particular attention must be given. This is not intended to be an exhaustive list of all possible uses of the products, nor is it intended to imply that the uses listed may be suitable for the products:

- Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or uses not described in this catalog.
- Nuclear energy control systems, combustion systems, railroad systems, aviation systems, medical equipment, amusement machines, vehicles, safety equipment, and installations subject to separate industry or government regulations.
- Systems, machines, and equipment that could present a risk to life or property.

Please know and observe all prohibitions of use applicable to the products.

NEVER USE THE PRODUCTS FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCTS ARE PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

PROGRAMMABLE PRODUCTS
OMRON shall not be responsible for the user's programming of a programmable product, or any consequence thereof.

Disclaimers

CHANGE IN SPECIFICATIONS
Product specifications and accessories may be changed at any time based on improvements and other reasons.

It is our practice to change model numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the products may be changed without any notice. When in doubt, special model numbers may be assigned to fix or establish key specifications for your application on your request. Please consult with your OMRON representative at any time to confirm actual specifications of purchased products.

DIMENSIONS AND WEIGHTS
Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when tolerances are shown.

PERFORMANCE DATA
Performance data given in this catalog is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of OMRON's test conditions, and the users must correlate it to actual application requirements. Actual performance is subject to the OMRON Warranty and Limitations of Liability.

ERRORS AND OMISSIONS
The information in this document has been carefully checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical, or proofreading errors, or omissions.