

General Description

The MAX1110/MAX1111 are low-power, 8-bit, 8-channel analog-to-digital converters (ADCs) that feature an internal track/hold, voltage reference, clock, and serial interface. They operate from a single +2.7 V to +5.5 V supply and consume only $85 \mu \mathrm{~A}$ while sampling at rates up to 50ksps. The MAX1110's 8 analog inputs and the MAX1111's 4 analog inputs are software-configurable, allowing unipolar/bipolar and single-ended/differential operation.
Successive-approximation conversions are performed using either the internal clock or an external serial-interface clock. The full-scale analog input range is determined by the 2.048 V internal reference, or by an externally applied reference ranging from 1V to VDD. The 4-wire serial interface is compatible with the SPI ${ }^{\top M}$, QSPI ${ }^{\text {TM }}$, and MICROWIRE ${ }^{\text {TM }}$ serial-interface standards. A serial-strobe output provides the end-of-conversion signal for interrupt-driven processors.
The MAX1110/MAX1111 have a software-programmable, $2 \mu \mathrm{~A}$ automatic power-down mode to minimize power consumption. Using power-down, the supply current is reduced to $6 \mu \mathrm{~A}$ at 1 ksps , and only $52 \mu \mathrm{~A}$ at 10ksps. Power-down can also be controlled using the $\overline{\text { SHDN }}$ input pin. Accessing the serial interface automatically powers up the device.
The MAX1110 is available in 20-pin SSOP and DIP packages. The MAX1111 is available in small 16-pin QSOP and DIP packages.

Applications
Portable Data Logging
Hand-Held Measurement Devices
Medical Instruments
System Diagnostics
Solar-Powered Remote Systems
4-20mA-Powered Remote
Data-Acquisition Systems

Pin Configurations appear at end of data sheet.

SPI and QSPI are trademarks of Motorola, Inc. MICROWIRE is a trademark of National Semiconductor Corp.

Features

* +2.7 V to +5.5V Single Supply
- Low Power: $85 \mu \mathrm{~A}$ at 50 ksps $6 \mu \mathrm{~A}$ at 1 ksps
- 8-Channel Single-Ended or 4-Channel Differential Inputs (MAX1110)
- 4-Channel Single-Ended or 2-Channel Differential Inputs (MAX1111)
- Internal Track/Hold; 50kHz Sampling Rate
- Internal 2.048V Reference
- SPI/QSPI/MICROWIRE-Compatible Serial Interface
- Software-Configurable Unipolar or Bipolar Inputs
- Total Unadjusted Error: ± 1 LSB max ± 0.3 LSB typ

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX1110CPP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Plastic DIP
MAX1110CAP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 SSOP
MAX1110C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice *

*Dice are specified at $T_{A}=+25^{\circ} \mathrm{C}, D C$ parameters only.
Ordering Information continued at end of data sheet.
Functional Diagram

*MAX1110 ONLY

+2.7V, Low-Power, Multichannel, Serial 8-Bit ADCs

ABSOLUTE MAXIMUM RATINGS

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$(\mathrm{V} D \mathrm{D}=+2.7 \mathrm{~V}$ to +5.5 V ; unipolar input mode; $\mathrm{COM}=0 \mathrm{~V}$; fSCLK $=500 \mathrm{kHz}$, external clock (50% duty cycle); 10 clocks/conversion cycle (50 ksps); $1 \mu \mathrm{~F}$ capacitor at REFOUT; $\mathrm{T}_{A}=\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\mathrm{MAX}}$; unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
DC ACCURACY					
Resolution			8		Bits
Relative Accuracy (Note 1)	INL	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 3.6 V	± 0.15	± 0.5	LSB
		VDD $=5.5 \mathrm{~V}$ (Note 2)	± 0.2		
Differential Nonlinearity	DNL	No missing codes over temperature		± 1	LSB
Offset Error		VDD $=2.7 \mathrm{~V}$ to 3.6 V	± 0.35	± 1	LSB
		VDD $=5.5 \mathrm{~V}$ (Note 2)	± 0.5		
Gain Error (Note 3)		Internal or external reference		± 1	LSB
Gain Temperature Coefficient		External reference, 2.048 V	± 0.8		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Total Unadjusted Error	TUE		± 0.3	± 1	LSB
Channel-to-Channel Offset Matching			± 0.1		LSB
DYNAMIC SPECIFICATIONS (10.034kHz sine-wave input, 2.048Vp-p, 50ksps, 500 kHz external clock)					
Signal-to-Noise and Distortion Ratio	SINAD		49		dB
Total Harmonic Distortion (up to the 5th harmonic)	THD		-70		dB
Spurious-Free Dynamic Range	SFDR		68		dB
Channel-to-Channel Crosstalk		V_{CH} = $2.048 \mathrm{Vp}-\mathrm{p}, 25 \mathrm{kHz}$ (Note 4)	-75		dB
Small-Signal Bandwidth		-3dB rolloff	1.5		MHz
Full-Power Bandwidth			800		kHz

+2.7V, Low-Power, Multic hannel, Serial 8-Bit ADCs

ELECTRICAL CHARACTERISTICS (continued)

($\mathrm{V}_{\mathrm{DD}}=+2.7 \mathrm{~V}$ to +5.5 V ; unipolar input mode; $\mathrm{COM}=0 \mathrm{~V}$; fSCLK $=500 \mathrm{kHz}$, external clock (50% duty cycle); 10 clocks/conversion cycle (50 ksps); $1 \mu \mathrm{~F}$ capacitor at REFOUT; $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$; unless otherwise noted.)

		3.5	mA
		± 50	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$

+2.7V, Low-Power, Multic hannel, Serial 8-Bit ADCs

ELECTRICAL CHARACTERISTICS (continued)

($\mathrm{V}_{\mathrm{DD}}=+2.7 \mathrm{~V}$ to +5.5 V ; unipolar input mode; $\mathrm{COM}=0 \mathrm{~V}$; fSCLK $=500 \mathrm{kHz}$, external clock (50% duty cycle); 10 clocks/conversion cycle (50 ksps); $1 \mu \mathrm{~F}$ capacitor at REFOUT; $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$; unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DIGITAL INPUTS: DIN, SCLK, $\overline{\mathbf{C S}}$						
DIN, SCLK, $\overline{C S}$ Input High Voltage	VIH	VDD $\leq 3.6 \mathrm{~V}$	2			V
		VDD $>3.6 \mathrm{~V}$	3			
DIN, SCLK, $\overline{C S}$ Input Low Voltage	VIL				0.8	V
DIN, SCLK, $\overline{C S}$ Input Hysteresis	VHYST			0.2		V
DIN, SCLK, $\overline{C S}$ Input Leakage	IIN	Digital inputs $=0 \mathrm{~V}$ or VDD			± 1	$\mu \mathrm{A}$
DIN, SCLK, $\overline{\mathrm{CS}}$ Input Capacitance	CIN	(Note 6)			15	pF

$\overline{\text { SHDN }}$ INPUT

SHDN Input High Voltage	VSH		VDD - 0.4		V
SHDN Input Mid-Voltage	VSM		1.1	VDD-1.1	V
$\overline{\text { SHDN }}$ Voltage, Floating	VFLT	$\overline{\text { SHDN }}=$ open		VDD / 2	V
$\overline{\text { SHDN }}$ Input Low Voltage	V SL			0.4	V
SHDN Input Current		$\overline{\mathrm{SHDN}}=0 \mathrm{~V}$ or VDD		± 4	$\mu \mathrm{A}$
$\overline{\text { SHDN }}$ Maximum Allowed Leakage for Mid-Input		$\overline{\text { SHDN }}=$ open		± 100	nA

DIGITAL OUTPUTS: DOUT, SSTRB

Output Low Voltage	VoL	ISINK $=5 \mathrm{~mA}$		0.4	V
		I SINK $=16 \mathrm{~mA}$		0.8	
Output High Voltage	VOH	ISOURCE $=0.5 \mathrm{~mA}$	VDD - 0.5		V
Three-State Leakage Current	IL	$\overline{C S}=V_{D D}$	± 0.01	± 10	$\mu \mathrm{A}$
Three-State Output Capacitance	Cout	$\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{DD}}($ Note 6)		15	pF

+2.7V, Low-Power, Multichannel, Serial 8-Bit ADCs

+2.7V, Low-Power, Multichannel, Serial 8-Bit ADCs

$\left(\mathrm{V}_{\mathrm{DD}}=+2.7 \mathrm{~V}\right.$; fSCLK $=500 \mathrm{kHz}$; external clock (50% duty cycle); $\mathrm{R}_{\mathrm{L}}=\infty ; \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

INTEGRAL NONLINEARITY vs.

+2.7V, Low-Power, Multichannel, Serial 8-Bit ADCs

Pin Description

PIN		NAME	FUNCTION
MAX1110	MAX1111		
1-4	1-4	CH0-CH3	Sampling Analog Inputs
5-8	-	CH4-CH7	Sampling Analog Inputs
9	5	COM	Ground Reference for Analog Inputs. Sets zero-code voltage in single-ended mode. Must be stable to $\pm 0.5 \mathrm{LSB}$.
10	6	$\overline{\text { SHDN }}$	Three-Level Shutdown Input. Normally floats. Pulling $\overline{\text { SHDN }}$ low shuts the MAX1110/ MAX1111 down to $10 \mu \mathrm{~A}$ (max) supply current; otherwise, the devices are fully operational. Pulling SHDN high shuts down the internal reference.
11	7	REFIN	Reference Voltage Input for Analog-to-Digital Conversion. Connect to REFOUT to use the internal reference.
12	8	REFOUT	Internal Reference Generator Output. Bypass with a $1 \mu \mathrm{~F}$ capacitor to AGND.
13	9	AGND	Analog Ground
14	10	DGND	Digital Ground
15	11	DOUT	Serial-Data Output. Data is clocked out on SCLK's falling edge. High impedance when $\overline{\mathrm{CS}}$ is high.
16	12	SSTRB	Serial-Strobe Output. In internal clock mode, SSTRB goes low when the MAX1110/ MAX1111 begin the A/D conversion and goes high when the conversion is done. In external clock mode, SSTRB pulses high for two clock periods before the MSB is shifted out. High impedance when $\overline{\mathrm{CS}}$ is high (external clock mode only).
17	13	DIN	Serial-Data Input. Data is clocked in at SCLK's rising edge. The voltage at DIN may exceed $V_{D D}$ (up to 5.5 V).
18	14	$\overline{\mathrm{CS}}$	Active-Low Chip Select. Data is not clocked into DIN unless $\overline{\mathrm{CS}}$ is low. When $\overline{\mathrm{CS}}$ is high, DOUT is high impedance. The voltage at $\overline{C S}$ may exceed VDD (up to 5.5 V).
19	15	SCLK	Serial-Clock Input. Clocks data in and out of serial interface. In external clock mode, SCLK also sets the conversion speed (duty cycle must be 45% to 55%). The voltage at SCLK may exceed VDD (up to 5.5 V).
20	16	VDD	Positive Supply Voltage, +2.7V to +5.5V

Figure 1. Load Circuits for Enable Time

Figure 2. Load Circuits for Disable Time

+2.7V, Low-Power, Multic hannel, Serial 8-Bit ADCs

Detailed Description

The MAX1110/MAX1111 analog-to-digital converters (ADCs) use a successive-approximation conversion technique and input track/hold (T/H) circuitry to convert an analog signal to an 8-bit digital output. A flexible serial interface provides easy interface to microprocessors ($\mu \mathrm{Ps}$). Figure 3 shows the Typical Operating Circuit.

Pseudo-Differential Input
The sampling architecture of the ADC's analog comparator is illustrated in Figure 4, the equivalent input circuit. In single-ended mode, IN+ is internally switched to the selected input channel, $\mathrm{CH}_{\text {_ }}$, and IN - is switched to COM. In differential mode, IN+ and IN- are selected from the following pairs: $\mathrm{CH} 0 / \mathrm{CH} 1, \mathrm{CH} 2 / \mathrm{CH} 3$, $\mathrm{CH} 4 / \mathrm{CH} 5$, and $\mathrm{CH} 6 / \mathrm{CH} 7$. Configure the MAX1110 channels with Table 1 and the MAX1111 channels with Table 2.
In differential mode, IN - and $\mathrm{IN}+$ are internally switched to either of the analog inputs. This configuration is pseudo-differential to the effect that only the signal at $\mathrm{IN}+$ is sampled. The return side (IN -) must remain stable within $\pm 0.5 \mathrm{LSB}(\pm 0.1 \mathrm{LSB}$ for best results) with respect to AGND during a conversion. To accomplish this, connect a $0.1 \mu \mathrm{~F}$ capacitor from IN - (the selected analog input) to AGND.
During the acquisition interval, the channel selected as the positive input ($\mathrm{IN}+$) charges capacitor Chold. The

Figure 3. Typical Operating Circuit
acquisition interval spans two SCLK cycles and ends on the falling SCLK edge after the last bit of the input control word has been entered. At the end of the acquisition interval, the T/H switch opens, retaining charge on CHOLD as a sample of the signal at $\mathrm{IN}+$. The conversion interval begins with the input multiplexer switching CHOLD from the positive input ($\mathrm{IN}+$) to the negative input (IN-). In single-ended mode, IN - is simply COM. This unbalances node ZERO at the input of the comparator. The capacitive DAC adjusts during the remainder of the conversion cycle to restore node ZERO to OV within the limits of 8 -bit resolution. This action is equivalent to transferring a charge of $18 \mathrm{pF} \times\left(\mathrm{V}_{\mathrm{I}} \mathrm{N}_{+}-\mathrm{V}_{\mathrm{IN}}\right.$) from CHOLD to the binary-weighted capacitive DAC, which in turn forms a digital representation of the analog input signal.

Track/Hold

The T/H enters its tracking mode on the falling clock edge after the sixth bit of the 8-bit control byte has been shifted in. It enters its hold mode on the falling clock edge after the eighth bit of the control byte has been shifted in. If the converter is set up for singleended inputs, IN - is connected to COM, and the converter samples the "+" input; if it is set up for differential inputs, IN - connects to the "-" input, and the difference $(\mathrm{IN}+-\mathrm{IN}-)$ is sampled. At the end of the conversion, the positive input connects back to $\mathrm{IN}+$, and ChOld charges to the input signal.

+2.7V, Low-Power, Multichannel, Serial 8-Bit ADCs

Table 1a. MAX1110 Channel Selection in Single-Ended Mode (SGL/DIF = 1)

SEL2	SEL1	SEL0	CH0	CH1	CH2	CH3	CH4	CH5	CH6	CH7	COM
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	+								-
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$		+							-
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$			+						-
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$				+					-
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$					+				-
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$						+			-
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$							+		-
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$								+	-

Table 1b. MAX1110 Channel Selection in Differential Mode (SGL/DIF $=0$)

SEL2	SEL1	SEL0	CH0	CH1	CH2	CH3	CH4	CH5	CH6	CH7
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	+	-						
$\mathbf{0}$	0	1			+	-				
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$					+	-		
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$							+	-
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	-	+						
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$			-	+				
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$					-	+		
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$							-	+

Table 2a. MAX1111 Channel Selection in Single-Ended Mode (SGL/DIF = 1)

SEL2	SEL1	SEL0	CH0	CH1	CH2	CH3	COM
$\mathbf{0}$	$\mathbf{0}$	\mathbf{X}	+				-
$\mathbf{1}$	$\mathbf{0}$	\mathbf{X}		+			-
$\mathbf{0}$	$\mathbf{1}$	\mathbf{X}			+		-
$\mathbf{1}$	$\mathbf{1}$	\mathbf{X}				+	-

Table 2b. MAX1111 Channel Selection in Differential Mode (SGL/ $\overline{\operatorname{DIF}}=0$)

SEL2	SEL1	SEL0	CH0	CH1	CH2	CH3
$\mathbf{0}$	$\mathbf{0}$	\mathbf{X}	+	-		
$\mathbf{0}$	$\mathbf{1}$	\mathbf{X}			+	-
$\mathbf{1}$	$\mathbf{0}$	\mathbf{X}	-	+		
$\mathbf{1}$	$\mathbf{1}$	\mathbf{X}			-	+

+2.7V, Low-Power, Multic hannel, Serial 8-Bit ADCs

The time required for the T / H to acquire an input signal is a function of how quickly its input capacitance is charged. If the input signal's source impedance is high, the acquisition time lengthens, and more time must be allowed between conversions. The acquisition time, $t_{A C Q}$, is the minimum time needed for the signal to be acquired. It is calculated by:

$$
t A C Q=6 \times(R S+R I N) \times 18 p F
$$

where RIN $=6.5 \mathrm{k} \Omega$, RS $=$ the source impedance of the input signal, and $t_{A C Q}$ is never less than $1 \mu \mathrm{~s}$. Note that source impedances below $2.4 \mathrm{k} \Omega$ do not significantly affect the AC performance of the ADC.

Input Bandwidth
The ADC's input tracking circuitry has a 1.5 MHz smallsignal bandwidth, so it is possible to digitize highspeed transient events and measure periodic signals with bandwidths exceeding the ADC's sampling rate by using undersampling techniques. To avoid highfrequency signals being aliased into the frequency band of interest, anti-alias filtering is recommended.

Analog Inputs

Internal protection diodes, which clamp the analog input to VDD and AGND, allow the channel input pins to swing from (AGND - 0.3V) to (VDD + 0.3V) without dam-
age. However, for accurate conversions near full scale, the inputs must not exceed VDD by more than 50 mV or be lower than AGND by 50 mV .
If the analog input exceeds 50 mV beyond the supplies, do not forward bias the protection diodes of off channels over 2mA.
The MAX1110/MAX1111 can be configured for differential or single-ended inputs with bits 2 and 3 of the control byte (Table 3). In single-ended mode, the analog inputs are internally referenced to COM with a full-scale input range from COM to VREFIN + COM. For bipolar operation, set COM to VREFIN / 2.
In differential mode, choosing unipolar mode sets the differential input range at 0 V to VREFIN. In unipolar mode, the output code is invalid (code zero) when a negative differential input voltage is applied. Bipolar mode sets the differential input range to \pm VREFIN / 2 . Note that in this mode, the common-mode input range includes both supply rails. Refer to Table 4 for input voltage ranges.

Quick Look

To quickly evaluate the MAX1110/MAX1111's analog performance, use the circuit of Figure 5. The MAX1110/MAX1111 require a control byte to be written to DIN before each conversion. Tying DIN to +3V feeds

Table 3. Control-Byte Format

BIT 7 (MSB)	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0 (LSB)
START	SEL2	SEL1	SEL0	UNI/ $\overline{B I P}$	SGL/ $\overline{D I F}$	PD1	PD0

BIT	NAME	DESCRIPTION
7 (MSB)	START	The first logic "1" bit after $\overline{\mathrm{CS}}$ goes low defines the beginning of the control byte.
$\begin{aligned} & 6 \\ & 5 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { SEL2 } \\ & \text { SEL1 } \\ & \text { SEL0 } \end{aligned}$	Select which of the input channels are to be used for the conversion (Tables 1 and 2).
3	UNI/ $/$ BIP	$\mathbf{1}$ = unipolar, $\mathbf{0}=$ bipolar. Selects unipolar or bipolar conversion mode. Select differential operation if bipolar mode is used. See Table 4.
2	SGL/DIF	$\mathbf{1}=$ single ended, $\mathbf{0}=$ differential. Selects single-ended or differential conversions. In singleended mode, input signal voltages are referred to COM. In differential mode, the voltage difference between two channels is measured. See Tables 1 and 2.
1	PD1	$\mathbf{1}=$ fully operational, $\mathbf{0}=$ power-down. Selects fully operational or power-down mode.
0 (LSB)	PD0	1 = external clock mode, $\mathbf{0}=$ internal clock mode. Selects external or internal clock mode.

+2.7V, Low-Power, Multichannel, Serial 8-Bit ADCs

in control bytes of \$FF (hex), which trigger singleended, unipolar conversions on CH7 (MAX1110) or

+2.7V, Low-Power, Multic hannel, Serial 8-Bit ADCs

Make sure the CPU's serial interface runs in master mode so the CPU generates the serial clock. Choose a clock frequency from 50 kHz to 500 kHz .

1) Set up the control byte for external clock mode and call it TB1. TB1 should be of the format 1XXXXX11 binary, where the Xs denote the particular channel and conversion mode selected.
2) Use a general-purpose I/O line on the CPU to pull $\overline{\mathrm{CS}}$ low.
3) Transmit TB1 and, simultaneously, receive a byte and call it RB1. Ignore RB1.
4) Transmit a byte of all zeros ($\$ 00$ hex) and, simultaneously, receive byte RB2.
5) Transmit a byte of all zeros ($\$ 00$ hex) and, simultaneously, receive byte RB3.
6) Pull $\overline{\mathrm{CS}}$ high.

Figure 7 shows the timing for this sequence. Bytes RB2 and RB3 contain the result of the conversion padded with two leading zeros and six trailing zeros. The total conversion time is a function of the serial-clock frequency and the amount of idle time between 8 -bit transfers. Make sure that the total conversion time does not exceed 1 ms , to avoid excessive T / H droop.

Digital Inputs
$\overline{C S}$, SCLK, and DIN can accept input signals up to 5.5 V , regardless of the supply voltages. This allows the MAX1110/MAX1111 to accept digital inputs from both 3 V and 5 V systems.

+2.7V, Low-Power, Multichannel, Serial 8-Bit ADCs

Digital Output

In unipolar input mode, the output is straight binary (Figure 15). For bipolar inputs, the output is two's-complement (Figure 16). Data is clocked out at SCLK's falling edge in MSB-first format.

Clock Modes

The MAX1110/MAX1111 can use either an external serial clock or the internal clock to perform the successiveapproximation conversion. In both clock modes, the external clock shifts data in and out of the devices. Bit PDO of the control byte programs the clock mode. Figures 8-11 show the timing characteristics common to both modes.

External Clock

In external clock mode, the external clock not only shifts data in and out, it also drives the analog-to-digital
conversion steps. SSTRB pulses high for two clock periods after the last bit of the control byte. Successiveapproximation bit decisions are made and appear at DOUT on each of the next eight SCLK falling edges (Figure 7). After the eight data bits are clocked out, subsequent clock pulses clock out zeros from the DOUT pin.
SSTRB and DOUT go into a high-impedance state when $\overline{\mathrm{CS}}$ goes high; after the next $\overline{\mathrm{CS}}$ falling edge, SSTRB outputs a logic low. Figure 9 shows the SSTRB timing in external clock mode.
The conversion must complete in 1 ms , or droop on the sample-and-hold capacitors may degrade conversion results. Use internal clock mode if the serial-clock frequency is less than 50 kHz , or if serial-clock interruptions could cause the conversion interval to exceed 1ms.

Figure 8. Detailed Serial-Interface Timing

+2.7V, Low-Power, Multic hannel, Serial 8-Bit ADCs

MAX1110/MAX1111

+2.7V, Low-Power, Multichannel, Serial 8-Bit ADCs

Figure 12a. Continuous Conversions, External Clock Mode, 10 Clocks/Conversion Timing

Figure 12b. Continuous Conversions, External Clock Mode, 16 Clocks/Conversion Timing

Data Framing

The falling edge of $\overline{\mathrm{CS}}$ does not start a conversion. The first logic high clocked into DIN is interpreted as a start bit and defines the first bit of the control byte. A conversion starts on the falling edge of SCLK, after the eighth bit of the control byte (the PDO bit) is clocked into DIN. The start bit is defined as:

The first high bit clocked into DIN with $\overline{\mathrm{CS}}$ low any time the converter is ide; e.g., after $V_{D D}$ is applied. OR
The first high bit clocked into DIN after the MSB of a conversion in progress is clocked onto the DOUT pin.

If $\overline{\mathrm{CS}}$ is toggled before the current conversion is complete, then the next high bit clocked into DIN is recognized as a start bit; the current conversion is terminated, and a new one is started.
The fastest the MAX1110/MAX1111 can run is 10 clocks per conversion. Figure 12a shows the serialinterface timing necessary to perform a conversion every 10 SCLK cycles in external clock mode.
Many microcontrollers require that conversions occur in multiples of eight SCLK clocks; 16 clocks per conversion is typically the fastest that a microcontroller can drive the MAX1110/MAX1111. Figure 12b shows the serial-interface timing necessary to perform a conversion every 16 SCLK cycles in external clock mode.

+2.7V, Low-Power, Multic hannel, Serial 8-Bit ADCs

Abstract

Applic ations Information

Power-On Reset

When power is first applied, and if SHDN is not pulled low, internal power-on reset circuitry activates the MAX1110/MAX1111 in internal clock mode. SSTRB is high on power-up and, if $\overline{\mathrm{CS}}$ is low, the first logical 1 on DIN is interpreted as a start bit. Until a conversion takes place, DOUT shifts out zeros. No conversions should be performed until the reference voltage has stabilized (see Electrical Characteristics).

Power-Down
When operating at speeds below the maximum sampling rate, the MAX1110/MAX1111's automatic powerdown mode can save considerable power by placing the converters in a low-current shutdown state between conversions. Figure 13 shows the average supply current as a function of the sampling rate.
Select power-down with PD1 of the DIN control byte with SHDN high or floating (Table 3). Pull SHDN low at any time to shut down the converters completely. SHDN overrides PD1 of the control byte. Figures 14a and 14b illustrate the various power-down sequences in both external and internal clock modes.

Software Power-Down

Software power-down is activated using bit PD1 of the control byte. When software power-down is asserted, the ADCs continue to operate in the last specified clock mode until the conversion is complete. The ADCs then power down into a low quiescent-current state. In internal clock mode, the interface remains active, and conversion results may be clocked out after the MAX1110/ MAX1111 have entered a software power-down.
The first logical 1 on DIN is interpreted as a start bit, which powers up the MAX1110/MAX1111. If the DIN byte contains PD1 $=1$, then the chip remains powered up. If PD1 $=0$, power-down resumes after one conversion.

Table 5. Hard-Wired Power-Down and Internal Reference State

$\overline{\text { SHDN }}$ STATE	DEVICE MODE	INTERNAL REFERENCE
1	Enabled	Disabled
Floating	Enabled	Enabled
0	Power-Down	Disabled

Hard-Wired Power-Down
Pulling SHDN low places the converters in hard-wired power-down. Unlike software power-down, the conversion is not completed; it stops coincidentally with SHDN being brought low. SHDN also controls the state of the internal reference (Table 5). Letting SHDN float enables the internal 2.048 V voltage reference. When returning to normal operation with SHDN floating, there is a tRC delay of approximately $1 \mathrm{M} \Omega \times$ CLOAD, where CLOAD is the capacitive loading on the SHDN pin. Pulling SHDN high disables the internal reference, which saves power when using an external reference.

External Reference

An external reference between 1 V and VDD should be connected directly at the REFIN terminal. The DC input impedance at REFIN is extremely high, consisting of leakage current only (typically 10nA). During a conversion, the reference must be able to deliver up to $20 \mu \mathrm{~A}$ average load current and have an output impedance of $1 \mathrm{k} \Omega$ or less at the conversion clock frequency. If the reference has higher output impedance or is noisy, bypass it close to the REFIN pin with a $0.1 \mu \mathrm{~F}$ capacitor.
If an external reference is used with the MAX1110/ MAX1111, tie SHDN to VDD to disable the internal reference and decrease power consumption.

Figure 13. Average Supply Current vs. Sampling Rate

+2.7V, Low-Power, Multichannel, Serial 8-Bit ADCs

Figure 14a. Power-Down Modes, External Clock Timing Diagram

Figure 14b. Power-Down Modes, Internal Clock Timing Diagram

Internal Reference

To use the MAX1110/MAX1111 with the internal reference, connect REFIN to REFOUT. The full-scale range of the MAX1110/MAX1111 with the internal reference is typically 2.048 V with unipolar inputs, and $\pm 1.024 \mathrm{~V}$ with bipolar inputs. The internal reference should be bypassed to AGND with a $1 \mu \mathrm{~F}$ capacitor placed as close to the REFIN pin as possible.

Transfer Function
Table 4 shows the full-scale voltage ranges for unipolar and bipolar modes. Figure 15 depicts the nominal, unipolar I/O transfer function, and Figure 16 shows the bipolar I/O transfer function when using a 2.048 V reference. Code transitions occur at integer LSB values. Output coding is binary, with $1 \mathrm{LSB}=8 \mathrm{mV}(2.048 \mathrm{~V} / 256)$ for unipolar operation and $1 \mathrm{LSB}=8 \mathrm{mV}[(2.048 \mathrm{~V} / 2--2.048 \mathrm{~V} / 2) / 256]$ for bipolar operation.

+2.7V, Low-Power, Multichannel, Serial 8-Bit ADCs

Figure 15. Unipolar Transfer Function

Figure 16. Bipolar Transfer Function

Figure 17. Power-Supply Grounding Connections

Layout, Grounding, and Bypassing

For best performance, use printed circuit boards. Wirewrap boards are not recommended. Board layout should ensure that digital and analog signal lines are separated from each other. Do not run analog and digital (especially clock) lines parallel to one another, or digital lines underneath the ADC package.
Figure 17 shows the recommended system ground connections. A single-point analog ground (star ground point) should be established at AGND, separate from the logic ground. Connect all other analog grounds and DGND to the star ground. No other digital system ground should be connected to this ground. The ground return to the power supply for the star ground should be low impedance and as short as possible for noise-free operation.
High-frequency noise in the VDD power supply may affect the comparator in the ADC. Bypass the supply to the star ground with $0.1 \mu \mathrm{~F}$ and $1 \mu \mathrm{~F}$ capacitors close to the VDD pin of the MAX1110/MAX1111. Minimize capacitor lead lengths for best supply-noise rejection. If the +3 V power supply is very noisy, a 10Ω resistor can be connected to form a lowpass filter.

+2.7V, Low-Power, Multichannel, Serial 8-Bit ADCs

Pin Configurations

Ordering Information (continued) \qquad Chip Information
TRANSISTOR COUNT: 1996
SUBSTRATE CONNECTED TO DGND

+2.7V, Low-Power, Multic hannel, Serial 8-Bit ADCs

Package Information

1. D\&E DO NDT INCLUDE MILD FLASH
2. MZLD FLASH \quad QR PROTRUSIUNS NDT TI EXCEED .006" PER SIDE.
3. HEAT SLUG DIMENSIINS \times ANJ

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

20
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 1998 Maxim Integrated Products
Printed USA
MノXINI is a registered trademark of Maxim Integrated Products.

