LM4700

Overture™ Audio Power Amplifier Series

30W Audio Power Amplifier with Mute and Standby Modes

General Description

The LM4700 is an audio power amplifier capable of delivering typically 30W of continuous average output power into an 8Ω load with less than 0.1% THD+N.

The LM4700 has an independent smooth transition fade-in/out mute and a power conserving standby mode which can be controlled by external logic.

The performance of the LM4700, utilizing its Self Peak Instantaneous Temperature (‘Ke) (SPIKe™) protection circuitry, places it in a class above discrete and hybrid amplifiers by providing an inherently, dynamically protected Safe Operating Area (SOA). SPIKe protection means that these parts are completely safeguarded at the output against overvoltage, undervoltage, overloads, including thermal runaway and instantaneous temperature peaks.

Key Specifications

- THD+N at 1kHz at continuous average output power of 25W into 8Ω: 0.1% (max)
- THD+N from 20Hz to 20kHz at 30W of continuous average output power into 8Ω: 0.08% (typ)
- Standby current: 2.1mA (typ)

Features

- SPIKe Protection
- Minimal amount of external components necessary
- Quiet fade-in/out mute function
- Power conserving standby-mode
- Isolated 11-lead TO-220 package
- Wide supply range 20V - 66V

Applications

- Component stereo
- Compact stereo

Typical Application

Connection Diagram

FIGURE 1. Typical Audio Amplifier Application Circuit

*Optional components dependent upon specific design requirements. Refer to the External Components Description section for a component functional description.

SPIKe™ Protection and Overture™ are trademarks of National Semiconductor Corporation.
Absolute Maximum Ratings (Notes 4, 5)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage $|V_{CC}| + |V_{EE}|$
- (No Signal) 66V
- (with Input and Load) 64V

Common Mode Input Voltage $(V_{CC}$ or V_{EE}) and $|V_{CC}| + |V_{EE}| \leq 60V$

Differential Input Voltage 60V

Output Current Internally Limited

Power Dissipation (Note 6) 62.5W

Junction Temperature (Note 8) 150°C

Thermal Resistance
- θ_{JC} (Note 14) 2°C/W
- θ_{JA} 43°C/W

Soldering Information
- TF Package (10 sec.) 260°C
- Storage Temperature $-40°C \leq T_A \leq +150°C$

Operating Ratings (Notes 4, 5)

Temperature Range $T_{MIN} \leq T_A \leq T_{MAX}$ $-20°C \leq T_A \leq +85°C$

Supply Voltage $|V_{CC}| + |V_{EE}|$ (Note 1) 20V to 64V

Electrical Characteristics (Notes 4, 5) The following specifications are for $V_{CC} = +28V$, $V_{EE} = -28V$ with $R_L = 8\Omega$, unless otherwise specified. Limits apply for $T_A = 25°C$.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>LM4700</th>
<th>Units (Limits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>V_{CC}</td>
<td>+</td>
<td>V_{EE}</td>
<td>$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>64</td>
<td>V (max)</td>
</tr>
<tr>
<td>P_O (Note 3)</td>
<td>Output Power</td>
<td>$THD + N = 0.1%$ (max), $f = 1$ kHz $R_L = 8\Omega$, $</td>
<td>V_{CC}</td>
<td>=</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_L = 4\Omega$, $</td>
<td>V_{CC}</td>
<td>=</td>
</tr>
<tr>
<td>THD + N</td>
<td>Total Harmonic Distortion Plus Noise</td>
<td>$30W/ch, R_L = 8\Omega, 20$ Hz $\leq f \leq 20$ kHz, $A_V = 26$ dB</td>
<td>0.08</td>
<td>%</td>
</tr>
<tr>
<td>SR (Note 3)</td>
<td>Slew Rate</td>
<td>$V_{IN} = 1.414$ Vrms, $t_{rise} = 2$ ns</td>
<td>18 12</td>
<td>V/μs (min)</td>
</tr>
<tr>
<td>I_{TOTAL} (Note 2)</td>
<td>Total Quiescent Power Supply Current</td>
<td>$V_{CM} = 0V$, $V_O = 0V$, $I_O = 0$ mA Standby: Off</td>
<td>25 40</td>
<td>mA (max)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standby: On</td>
<td>2.1</td>
<td>mA</td>
</tr>
<tr>
<td>Standby Pin</td>
<td>Standby Low Input Voltage</td>
<td>Not in Standby Mode</td>
<td>0.8</td>
<td>V (max)</td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Standby High Input Voltage</td>
<td>In Standby Mode</td>
<td>2.0</td>
<td>V (min)</td>
</tr>
<tr>
<td>V_{IH}</td>
<td></td>
<td></td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mute Pin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Mute Low Input Voltage</td>
<td>Output Not Muted</td>
<td>0.8</td>
<td>V (max)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Output Muted</td>
<td>2.0</td>
<td>V (min)</td>
</tr>
<tr>
<td>V_{IH}</td>
<td></td>
<td></td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>A_M</td>
<td>Mute Attenuation</td>
<td>$V_{PNB} = 2.5V$</td>
<td>115 80</td>
<td>dB (min)</td>
</tr>
<tr>
<td>V_{OS} (Note 2)</td>
<td>Input Offset Voltage</td>
<td>$V_{CM} = 0V$, $I_O = 0$ mA</td>
<td>2.0 15</td>
<td>mV (max)</td>
</tr>
<tr>
<td>I_B</td>
<td>Input Bias Current</td>
<td>$V_{CM} = 0V$, $I_O = 0$ mA</td>
<td>0.2 0.5</td>
<td>μA (max)</td>
</tr>
<tr>
<td>I_{OS}</td>
<td>Input Offset Current</td>
<td>$V_{CM} = 0V$, $I_O = 0$ mA</td>
<td>0.002 0.2</td>
<td>μA (max)</td>
</tr>
<tr>
<td>I_O</td>
<td>Output Current Limit</td>
<td>$</td>
<td>V_{CC}</td>
<td>=</td>
</tr>
<tr>
<td>V_{OD} (Note 2)</td>
<td>Output Dropout Voltage</td>
<td>$</td>
<td>V_{CC} - V_O</td>
<td>$, $V_{CC} = 20V$, $I_O = +100$ mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$</td>
<td>V_O - V_{EE}</td>
<td>$, $V_{EE} = -20V$, $I_O = -100$ mA</td>
</tr>
<tr>
<td>PSRR (Note 2)</td>
<td>Power Supply Rejection Ratio</td>
<td>$V_{CC} = 30V$ to 10V, $V_{EE} = -30V$, $V_{CM} = 0V$, $I_O = 0$ mA</td>
<td>115 85</td>
<td>dB (min)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CC} = 30V$, $V_{EE} = -30V$ to $-10V$, $V_{CM} = 0V$, $I_O = 0$ mA</td>
<td>110 85</td>
<td>dB (min)</td>
</tr>
<tr>
<td>Symbol</td>
<td>Parameter</td>
<td>Conditions</td>
<td>LM4700</td>
<td>Units (Limits)</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------------</td>
<td>---</td>
<td>--------</td>
<td>---------------</td>
</tr>
<tr>
<td>CMRR (Note 2)</td>
<td>Common Mode Rejection Ratio</td>
<td>$V_{CC} = 35V$ to $10V$, $V_{EE} = -10V$ to $-35V$, $V_{CM} = 10V$ to $-10V$, $I_O = 0mA$</td>
<td>110</td>
<td>80 dB (min)</td>
</tr>
<tr>
<td>A_{VOL} (Note 2)</td>
<td>Open Loop Voltage Gain</td>
<td>$R_L = 2k\Omega$, $\Delta V_O = 30V$</td>
<td>110</td>
<td>90 dB (min)</td>
</tr>
<tr>
<td>GBWP</td>
<td>Gain-Bandwidth Product</td>
<td>$f_O = 100kHz$, $V_{IN} = 50mVrms$</td>
<td>7.5</td>
<td>5 MHz (min)</td>
</tr>
<tr>
<td>θ_{IN} (Note 3)</td>
<td>Input Noise</td>
<td>$IHF — A$ Weighting Filter $R_{IN} = 600\Omega$ (Input Referred)</td>
<td>2.0</td>
<td>8 μV (max)</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-Noise Ratio</td>
<td>$P_O = 1W$, A-Weighted, Measured at 1 kHz, $R_S = 25\Omega$</td>
<td>98</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$P_O = 25W$, A-Weighted, Measured at 1 kHz, $R_S = 25\Omega$</td>
<td>108</td>
<td>dB</td>
</tr>
</tbody>
</table>

Note 1: Operation is guaranteed up to 64V, however, distortion may be introduced from SPIKe Protection Circuitry if proper thermal considerations are not taken into account. Refer to the Application Information section for a complete explanation.

Note 2: DC Electrical Test; Refer to Test Circuit #1.

Note 3: AC Electrical Test; Refer to Test Circuit #2.

Note 4: All voltages are measured with respect to the GND (pin 7), unless otherwise specified.

Note 5: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.

Note 6: For operating at case temperatures above 25°C, the device must be derated based on a 150°C maximum junction temperature and a thermal resistance of $\theta_{JC} = 2°C/W$ (junction to case). Refer to the section, Determining the Correct Heat Sink, in the Application Information section.

Note 7: Human body model, 100 pF discharged through a 1.5 kΩ resistor.

Note 8: The operating junction temperature maximum is 150°C, however, the instantaneous Safe Operating Area temperature is 250°C.

Note 9: Typicals are measured at 25°C and represent the parametric norm.

Note 10: Limits are guarantees that all parts are tested in production to meet the stated values.

Note 11: V_{EE} must have at least -9V at its pin with reference to ground in order for the under-voltage protection circuitry to be disabled. In addition, the voltage differential between V_{CC} and V_{EE} must be greater than 14V.

Note 12: The output dropout voltage, V_{OD}, is the supply voltage minus the clipping voltage. Refer to the Clipping Voltage vs. Supply Voltage graph in the Typical Performance Characteristics section.

Note 13: For a 4Ω load, and with ±20V supplies, the LM4700 can deliver typically 22 Watts of continuous average power per channel with less than 0.1% (THD+N). With supplies above ±20V, the LM4700 cannot deliver more than 22 watts into 4Ω due to current limiting of the output transistors. Thus, increasing the power supply above ±20V will only increase the internal power dissipation, not the possible output power. Increased power dissipation will require a larger heat sink as explained in the Application Information section.

Note 14: Preliminary engineering evaluation of θ_{JC} for the TF package has been assessed as 2°C/W. This is a preliminary engineering number and represents the data to this point. Please contact your local National Semiconductor sales representative for more information.
Test Circuit #1 (Note 2) (DC Electrical Test Circuit)

Test Circuit #2 (Note 3) (AC Electrical Test Circuit)

Bridged Amplifier Application Circuit

FIGURE 2. Bridged Amplifier Application Circuit
Single Supply Application Circuit

Auxiliary Amplifier Application Circuit

FIGURE 3. Single Supply Amplifier Application Circuit

FIGURE 4. Auxiliary Amplifier Application Circuit
Equivalent Schematic (Excluding Active Protection Circuitry)
External Components Description

<table>
<thead>
<tr>
<th>Components</th>
<th>Functional Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (R_{ib})</td>
<td>Prevents currents from entering the amplifier’s non-inverting input which may be passed through to the load upon power down of the system due to the low input impedance of the circuitry when the undervoltage circuitry is off. This phenomenon occurs when the supply voltages are below 1.5V.</td>
</tr>
<tr>
<td>2 (R_i)</td>
<td>Inverting input resistance to provide AC gain in conjunction with (R_F). Also creates a highpass filter with (C_i) at (f_C = 1/(2\pi R_i C_i)).</td>
</tr>
<tr>
<td>3 (R_F)</td>
<td>Feedback resistance to provide AC gain in conjunction with (R_i).</td>
</tr>
<tr>
<td>4 (C_i) (Note 15)</td>
<td>Feedback capacitor which ensures unity gain at DC.</td>
</tr>
<tr>
<td>5 (C_{is})</td>
<td>Provides power supply filtering and bypassing. Refer to the Supply Bypassing application section for proper placement and selection of bypass capacitors.</td>
</tr>
<tr>
<td>6 (R_V) (Note 15)</td>
<td>Acts as a volume control by setting the input voltage level.</td>
</tr>
<tr>
<td>7 (R_{in}) (Note 15)</td>
<td>Sets the amplifier’s input terminals DC bias point when (C_{in}) is present in the circuit. Also works with (C_{in}) to create a highpass filter at (f_C = 1/(2\pi R_{in} C_{in})). Refer to Figure 4.</td>
</tr>
<tr>
<td>8 (C_{in}) (Note 15)</td>
<td>Input capacitor which blocks the input signal’s DC offsets from being passed onto the amplifier’s inputs.</td>
</tr>
<tr>
<td>9 (R_{sn}) (Note 15)</td>
<td>Works with (C_{sn}) to stabilize the output stage by creating a pole that reduces high frequency instabilities. The pole is set at (f_C = 1/(2\pi R_{sn} C_{sn})). Refer to Figure 4.</td>
</tr>
<tr>
<td>10 (C_{sn}) (Note 15)</td>
<td>Works with (R_{sn}) to stabilize the output stage by creating a pole that reduces high frequency instabilities.</td>
</tr>
<tr>
<td>11 (L) (Note 15)</td>
<td>Provides high impedance at high frequencies so that (R) may decouple a highly capacitive load and reduce the Q of the series resonant circuit. Also provides a low impedance at low frequencies to short out (R) and pass audio signals to the load. Refer to Figure 4.</td>
</tr>
<tr>
<td>12 (R) (Note 15)</td>
<td>Provides DC voltage biasing for the transistor Q1 in single supply operation.</td>
</tr>
<tr>
<td>13 (R_A)</td>
<td>Provides bias filtering for single supply operation.</td>
</tr>
<tr>
<td>14 (C_A)</td>
<td>Provides bias filtering for single supply operation.</td>
</tr>
<tr>
<td>15 (R_{inp}) (Note 15)</td>
<td>Limits the voltage difference between the amplifier’s inputs for single supply operation. Refer to the Clicks and Pops application section for a more detailed explanation of the function of (R_{inp}).</td>
</tr>
<tr>
<td>16 (R_{bi})</td>
<td>Provides input bias current for single supply operation. Refer to the Clicks and Pops application section for a more detailed explanation of the function of (R_{bi}).</td>
</tr>
<tr>
<td>17 (R_E)</td>
<td>Establishes a fixed DC current for the transistor Q1 in single supply operation. This resistor stabilizes the half-supply point along with (C_A).</td>
</tr>
</tbody>
</table>

Note 15: Optional components dependent upon specific design requirements.
Typical Performance Characteristics

THD + N vs Frequency
- **DS012369-10**
- **DS012369-11**
- **DS012369-12**

THD + N vs Output Power
- **DS012369-13**
- **DS012369-14**
- **DS012369-15**

THD + N vs Output Power
- **DS012369-16**
- **DS012369-17**
- **DS012369-18**

Clipping Voltage vs Supply Voltage
- **DS012369-19**
- **DS012369-20**
- **DS012369-21**

[Images and graphs showing THD+N values across different frequencies and output powers, as well as clipping voltages vs supply voltage graphs.]
Typical Performance Characteristics (Continued)

Power Dissipation vs Output Power

Output Power vs Load Resistance

Output Power vs Supply Voltage

Pulse Response

Large Signal Response

Output Mute vs Mute Pin Voltage

Output Mute vs Mute Pin Voltage

DS012369-22

DS012369-23

DS012369-24

DS012369-25

DS012369-26

DS012369-27

DS012369-28

DS012369-29

DS012369-30
Typical Performance Characteristics (Continued)

Power Supply Rejection Ratio

Common-Mode Rejection Ratio

Open Loop Frequency Response

Safe Area

Spike Protection Response

Supply Current vs Supply Voltage

Pulse Thermal Resistance

Pulse Thermal Resistance

Supply Current vs Output Voltage

www.national.com
Typical Performance Characteristics (Continued)

MUTE MODE
By placing a logic-high voltage on the mute pin, the signal going into the amplifiers will be muted. If the mute pin is left floating or connected to a logic-low level, the amplifier will be in a non-muted state. Refer to the Typical Performance Characteristics section for curves concerning Mute Attenuation vs Mute Pin Voltage.

STANDBY MODE
The standby mode of the LM4700 allows the user to drastically reduce power consumption when the amplifier is idle. By placing a logic-high voltage on the standby pin, the amplifier will go into Standby Mode. In this mode, the current drawn from the VCC supply is typically less than 10 µA total for both amplifiers. The current drawn from the VEE supply is typically 2.1 mA. Clearly, there is a significant reduction in idle power consumption when using the standby mode. Refer to the Typical Performance Characteristics section for curves showing Supply Current vs Standby Pin Voltage for both supplies.

UNDER-VOLTAGE PROTECTION
Upon system power-up, the under-voltage protection circuitry allows the power supplies and their corresponding capacitors to come up close to their full values before turning on the LM4700 such that no DC output spikes occur. Upon turn-off, the output of the LM4700 is brought to ground before the power supplies such that no transients occur at power-down.

OVER-VOLTAGE PROTECTION
The LM4700 contains over-voltage protection circuitry that limits the output current to approximately 3.5 A while also providing voltage clamping, though not through internal clamping diodes. The clamping effect is quite the same, however, the output transistors are designed to work alternately by sinking large current spikes.

SPIKE PROTECTION
The LM4700 is protected from instantaneous peak-temperature stressing of the power transistor array. The Safe Operating Area graph in the Typical Performance Characteristics section shows the area of device operation where SPIKE Protection Circuitry is not enabled. The waveform to the right of the SOA graph exemplifies how the dynamic protection will cause waveform distortion when enabled.

THERMAL PROTECTION
The LM4700 has a sophisticated thermal protection scheme to prevent long-term thermal stress of the device. When the temperature on the die reaches 165°C, the LM4700 shuts down. It starts operating again when the die temperature drops to about 155°C, but if the temperature again begins to rise, shutdown will occur again at 165°C. Therefore, the device is allowed to heat up to a relatively high temperature if...
the fault condition is temporary, but a sustained fault will cause the device to cycle in a Schmitt Trigger fashion between the thermal shutdown temperature limits of 165°C and 155°C. This greatly reduces the stress imposed on the IC by thermal cycling, which in turn improves its reliability under sustained fault conditions.

Since the die temperature is directly dependent upon the heat sink used, the heat sink should be chosen such that thermal shutdown will not be reached during normal operation. Using the best heat sink possible within the cost and space constraints of the system will improve the long-term reliability of any power semiconductor device, as discussed in the Determining the Correct Heat Sink Section.

DETERMINING MAXIMUM POWER DISSIPATION

Power dissipation within the integrated circuit package is a very important parameter requiring a thorough understanding if optimum power output is to be obtained. An incorrect maximum power dissipation calculation may result in inadequate heat sinking causing thermal shutdown and thus limiting the output power.

Equation (1) exemplifies the theoretical maximum power dissipation point of each amplifier where \(V_{CC} \) is the total supply voltage.

\[
P_{D\text{MAX}} = \frac{V_{CC}^2}{2\pi^2R_L}
\]

(1)

Thus by knowing the total supply voltage and rated output load, the maximum power dissipation point can be calculated. Refer to the graphs of Power Dissipation vs Output Power in the Typical Performance Characteristics section which show the actual full range of power dissipation not just the maximum theoretical point that results from equation (1).

DETERMINING THE CORRECT HEAT SINK

The choice of a heat sink for a high-power audio amplifier is made entirely to keep the die temperature at a level such that the thermal protection circuitry does not operate under normal circumstances.

The thermal resistance from the die (junction) to the outside air (ambient) is a combination of three thermal resistances, \(\theta_{JC} \), \(\theta_{CS} \) and \(\theta_{SA} \). The thermal resistance, \(\theta_{JC} \) (junction to case), of the LM4700 is 2°C/W. Using Thermalloy Therma-cote thermal compound, the thermal resistance, \(\theta_{CS} \) (case to sink), is about 0.2°C/W. Since convection heat flow (power dissipation) is analogous to current flow, thermal resistance is analogous to electrical resistance, and temperature drops are analogous to voltage drops, the power dissipation out of the LM4700 is equal to the following:

\[
P_{D\text{MAX}} = \frac{(T_{J\text{MAX}} - T_{\text{AMB}})\theta_{JA}}{\theta_{SA}}
\]

(2)

where \(T_{J\text{MAX}} = 150 \text{ C} \), \(T_{\text{AMB}} \) is the system ambient temperature and \(\theta_{JA} = \theta_{JC} + \theta_{CS} + \theta_{SA} \).

Once the maximum package power dissipation has been calculated using equation (1), the maximum thermal resistance, \(\theta_{SA} \) (in °C/W) for a heat sink can be calculated. This calculation is made using equation (5) which is derived by solving for \(\theta_{SA} \) in equation (2).

\[
\theta_{SA} = \frac{(T_{J\text{MAX}} - T_{\text{AMB}})P_{D\text{MAX}}(\theta_{JC} + \theta_{CS})}{P_{D\text{MAX}}} - P_{D\text{MAX}}
\]

(3)

Again it must be noted that the value of \(\theta_{SA} \) is dependent upon the system designer’s amplifier requirements. If the ambient temperature that the audio amplifier is to be working under is higher than 25°C, then the thermal resistance for the heat sink, given all other things are equal, will need to be smaller.
Application Information (Continued)

The LM4700 possesses a mute and standby function with internal logic gates that are half-supply referenced. Thus, to enable either the mute or standby function, the voltage at these pins must be a minimum of 2.5V above half-supply. In single-supply systems, devices such as microprocessors and simple logic circuits used to control the mute and standby functions, are usually referenced to ground, not half-supply. Thus, to use these devices to control the logic circuitry of the LM4700, a “level shifter”, like the one shown in Figure 5, must be employed. A level shifter is not needed in a split-supply configuration since ground is also half-supply.

When the voltage at the Logic Input node is 0V, the 2N3904 is “off” and thus resistor R_C pulls up mute or standby input to the supply. This enables the mute or standby function. When the Logic Input is 5V, the 2N3904 is “on” and consequently, the voltage at the collector is essentially 0V. This will disable the mute or standby function, and thus the amplifier will be in its normal mode of operation. R_{SHIFT}, along with C_{SHIFT}, creates an RC time constant that reduces transients when the mute or standby functions are enabled or disabled. Additionally, R_{SHIFT} limits the current supplied by the internal logic gates of the LM4700 which insures device reliability. Refer to the Mute Mode and Standby Mode sections in the Application Information section for a more detailed description of these functions.

CLICKS AND POPS

In the typical application of the LM4700 as a split-supply audio power amplifier, the IC exhibits excellent “click” and “pop” performance when utilizing the mute and standby functions. In addition, the device employs Under-Voltage Protection, which eliminates unwanted power-up and power-down transients. The basis for these functions are stable and constant half-supply potential. In a single-supply application, ground is the stable half-supply potential. But in a single-supply application, the half-supply needs to charge up just like the supply rail, V_{CC}.

This makes the task of attaining a clickless and popless turn-on more challenging. Any uneven charging of the amplifier inputs will result in output clicks and pops due to the differential input topology of the LM4700.

To achieve a transient free power-up and power-down, the voltage seen at the input terminals should be ideally the same. Such a signal will be common-mode in nature, and will be rejected by the LM4700. In Figure 3, the resistor R_{INP} serves to keep the inputs at the same potential by limiting the voltage difference possible between the two nodes. This should significantly reduce any type of turn-on pop, due to an uneven charging of the amplifier inputs. This charging is based upon a specific application loading and thus, the system designer may need to adjust these values for optimum performance.

As shown in Figure 3, the resistors labeled R_{BI} help bias up the LM4700 off the half-supply node at the emitter of the 2N3904. But due to the input and output coupling capacitors in the circuit, along with the negative feedback, there are two different values of R_{BI}, namely 10 kΩ and 200 kΩ. These resistors bring up the inputs at the same rate resulting in a popless turn-on. Adjusting these resistors values slightly may reduce pops resulting from power supplies that ramp extremely quick or exhibit overshoot during system turn-on.

AUDI0 POWER AMPLIFIER DESIGN

Design a 25W/8Ω Audio Amplifier

Given:

- Power Output: 25 Wrms
- Load Impedance: 8Ω
- Input Level: 1 Wrms(max)
- Input Impedance: 47 kΩ
- Bandwidth: 20 Hz to 20 kHz ± 0.25 dB

A designer must first determine the power supply requirements in terms of both voltage and current needed to obtain the specified output power. V_{OPEAK} can be determined from equation (4) and I_{OPEAK} from equation (5).

$$V_{OPEAK} = \sqrt{2R_{L}P_{O}}$$ \hspace{1cm} \text{(4)}

$$I_{OPEAK} = \frac{\sqrt{2P_{O}}}{R_{L}}$$ \hspace{1cm} \text{(5)}

To determine the maximum supply voltage, the following conditions must be considered. Add the dropout voltage to the peak output swing V_{OPEAK}, to get the supply rail at a current of I_{OPEAK}. The regulation of the supply determines the unloaded voltage which is usually about 15% higher. The supply voltage will also rise 10% during high line conditions. Therefore the maximum supply voltage is obtained from the following equation:

$$V_{supply} = \pm (V_{OPEAK} + V_{OD}) (1 + \text{Regulation}) \hspace{1cm} \text{(1.1)}$$

For 25W of output power into an 8Ω load, the required V_{OPEAK} is 20V. A minimum supply rail of ±25V results from adding V_{OPEAK} and V_{OD}. With regulation, the maximum supplies are ±31.7V and the required I_{OPEAK} is 2.5A from equation (5). At this point it is a good idea to check the Power Output vs Supply Voltage to ensure that the required output power is obtainable from the device while maintaining low THD+N. In addition, the designer should verify that with the required power supply voltage and load impedance, that the required heatsink value θ_{JA} is feasible given system cost and size constraints. Once the heatsink issues have been addressed, the required gain can be determined from equation (6).

$$A_{V} \geq \sqrt{\frac{P_{O}R_{L}}{V_{IN}}} = \frac{V_{ORMS}}{V_{INRMS}}$$ \hspace{1cm} \text{(6)}

From equation (6), the minimum A_{V} is $A_{V} \geq 14.14$. By selecting a gain of 21, and with a feedback resistor, $R_{F} = 20$ kΩ, the value of R_{I} follows from equation (7).

$$R_{I} = R_{F} (A_{V} - 1)$$ \hspace{1cm} \text{(7)}

Thus with $R_{I} = 1$ kΩ a non-inverting gain of 21 will result. Since the desired input impedance was 47 kΩ, a value of 47 kΩ was selected for R_{INP}. The final design step is to address the bandwidth requirements which must be stated as a pair of –3 dB frequency points. Five times away from a –3 dB point is 0.17 dB down from passband response which is bet-
Application Information (Continued)

ter than the required ±0.25 dB specified. This fact results in a low and high frequency pole of 4 Hz and 100 kHz respectively. As stated in the External Components section, R_I in conjunction with C_I create a high-pass filter.

$$C_I \geq \frac{1}{(2\pi \times 1 \text{k\Omega} \times 4 \text{ Hz})} = 39.8 \text{ \mu F}; \text{ use } 39 \text{ \mu F}.$$

The high frequency pole is determined by the product of the desired high frequency pole, f_H, and the gain, A_V. With a $A_V = 21$ and $f_H = 100 \text{ kHz}$, the resulting GBWP of 2.1 MHz is less than the minimum GBWP of 5 MHz for the LM4700. This will ensure that the high frequency response of the amplifier will be no worse than 0.17 dB down at 20 kHz which is well within the bandwidth requirements of the design.
Physical Dimensions inches (millimeters) unless otherwise noted

LIFE SUPPORT POLICY
NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.