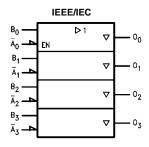


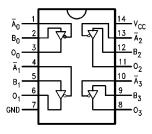
April 1988 Revised July 1999

74F125 Quad Buffer (3-STATE)

Features


■ High impedance base inputs for reduced loading

Ordering Code:


Order Number	nber Package Number Package Description				
74F125SC	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow			
74F125SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide			
74F125PC	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide			

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol

Connection Diagram

Unit Loading/Fan Out

Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}		
\overline{A}_n , B_n	Inputs	1.0/0.033	20 μΑ/–20 μΑ		
O _n	Outputs	600/106.6 (80)	-12 mA/64 mA (48 mA)		

Function Table

Inp	Output		
$\overline{\mathbf{A}}_{n}$	B _n	0	
L	L	L	
L	Н	Н	
Н	Χ	Z	

H = HIGH Voltage Level L = LOW Voltage Level Z = High Impedance X = Immaterial

Absolute Maximum Ratings(Note 1)

Storage Temperature $-65\,^{\circ}\text{C}$ to $+150\,^{\circ}\text{C}$

 $\begin{array}{lll} \mbox{Ambient Temperature under Bias} & -55\mbox{°C to } +125\mbox{°C} \\ \mbox{Junction Temperature under Bias} & -55\mbox{°C to } +150\mbox{°C} \\ \mbox{V}_{\mbox{CC}} \mbox{ Pin Potential to Ground Pin} & -0.5\mbox{V to } +7.0\mbox{V} \end{array}$

 $\begin{array}{lll} \mbox{Input Voltage (Note 2)} & -0.5 \mbox{V to } +7.0 \mbox{V} \\ \mbox{Input Current (Note 2)} & -30 \mbox{ mA to } +5.0 \mbox{ mA} \\ \end{array}$

Voltage Applied to Output

in HIGH State (with V_{CC} = 0V) Standard Output -0.5V to V_{CC}

3-STATE Output -0.5V to +5.5V

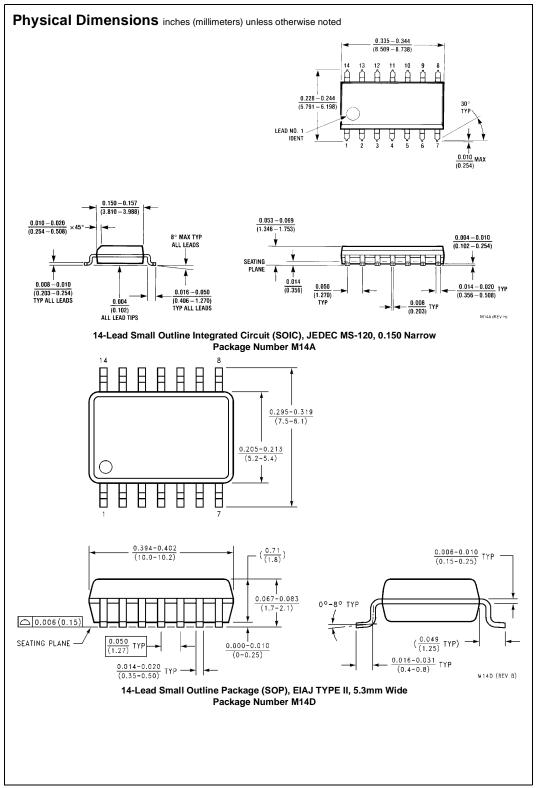
Current Applied to Output

in LOW State (Max) $$\operatorname{twice}$$ the rated $I_{\mbox{\scriptsize OL}}$ (mA)

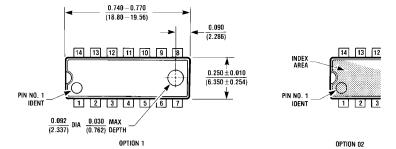
Recommended Operating Conditions

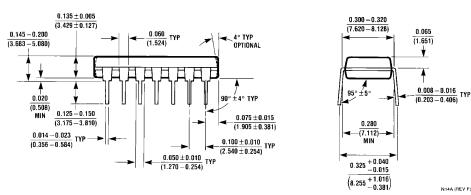
Free Air Ambient Temperature 0° C to $+70^{\circ}$ C Supply Voltage +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.


Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics


Symbol	Parameter		Min	Тур	Max	Units	V _{CC}	Conditions	
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal	
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA	
V _{OH}	Output HIGH	10% V _{CC}	2.4					$I_{OH} = -3 \text{ mA}$	
	Voltage	10% V _{CC}	2.0			v	Min	$I_{OH} = -12 \text{ mA}$	
		5% V _{CC}	2.7			V	IVIIII	$I_{OH} = -3 \text{ mA}$	
		5% V _{CC}	2.0					$I_{OH} = -15 \text{ mA}$	
V _{OL}	Output LOW	10% V _{CC}			0.55	V	Min	I _{OL} = 64 mA	
	Voltage				0.55	V	IVIIII	10L - 04 IIIA	
I _{IH}	Input HIGH Current				20	μΑ	Max	V _{IN} = 2.7V	
I _{BVI}	Input HIGH Current				100	μА	μΑ 0.0V V _{IN} = 7.0V		
	Breakdown Test				100	μΛ	0.0 V	VIN = 7.0 V	
I _{IL}	Input LOW Current				-20.0	μΑ	Max	V _{IN} = 0.5V	
I _{OZH}	Output Leakage Current				50	μΑ	Max	V _{OUT} = 2.7V	
I _{OZL}	Output Leakage Current				-50	μΑ	Max	V _{OUT} = 0.5V	
Ios	Output Short-Circuit Cur	rent	-100		-225	mA	Max	V _{OUT} = 0V	
I _{CEX}	Output HIGH Leakage C	Current			250	μΑ	Max	$V_{OUT} = V_{CC}$	
I _{ZZ}	Buss Drainage Test				500	μΑ	0.0V	V _{OUT} = 5.25V	
I _{CCH}	Power Supply Current			18.5	24.0	mA	Max	$V_O = HIGH$	
I _{CCL}	Power Supply Current			31.7	40.0	mA	Max	$V_O = LOW$	
I _{CCZ}	Power Supply Current			27.6	35.0	mA	Max	$V_O = HIGH Z$	


AC Electrical Characteristics

Symbol	Parameter		$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$			$T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$	
		Min	Тур	Max	Min	Max	1
t _{PLH}	Propagation Delay	2.0	4.0	6.0	2.0	6.5	ns
t _{PHL}		3.0	4.6	7.5	3.0	8.0	115
t _{PZH}	Output Enable Time	3.5	4.7	7.5	3.0	8.5	ns
t_{PZL}		3.5	5.3	8.0	3.5	9.0	115
t _{PHZ}	Output Disable Time	1.5	3.9	5.5	1.5	6.0	ns
t_{PLZ}		1.5	4.0	6.0	1.5	6.5	115

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N14A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com