CD4046BC Micropower Phase-Locked Loop

General Description

FAIRCHILD

The CD4046BC micropower phase-locked loop (PLL) consists of a low power, linear, voltage-controlled oscillator (VCO), a source follower, a zener diode, and two phase comparators. The two phase comparators have a common signal input and a common comparator input. The signal input can be directly coupled for a large voltage signal, or capacitively coupled to the self-biasing amplifier at the signal input for a small voltage signal.

Phase comparator I, an exclusive OR gate, provides a digital error signal (phase comp. I Out) and maintains 90° phase shifts at the VCO center frequency. Between signal input and comparator input (both at 50% duty cycle), it may lock onto the signal input frequencies that are close to harmonics of the VCO center frequency.

Phase comparator II is an edge-controlled digital memory network. It provides a digital error signal (phase comp. II Out) and lock-in signal (phase pulses) to indicate a locked condition and maintains a 0° phase shift between signal input and comparator input.

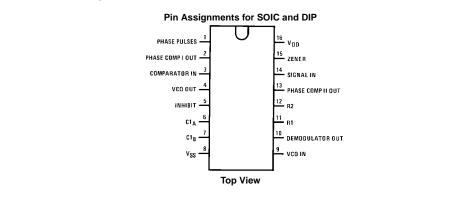
The linear voltage-controlled oscillator (VCO) produces an output signal (VCO Out) whose frequency is determined by the voltage at the VCO_{IN} input, and the capacitor and resistors connected to pin C1_A, C1_B, R1 and R2.

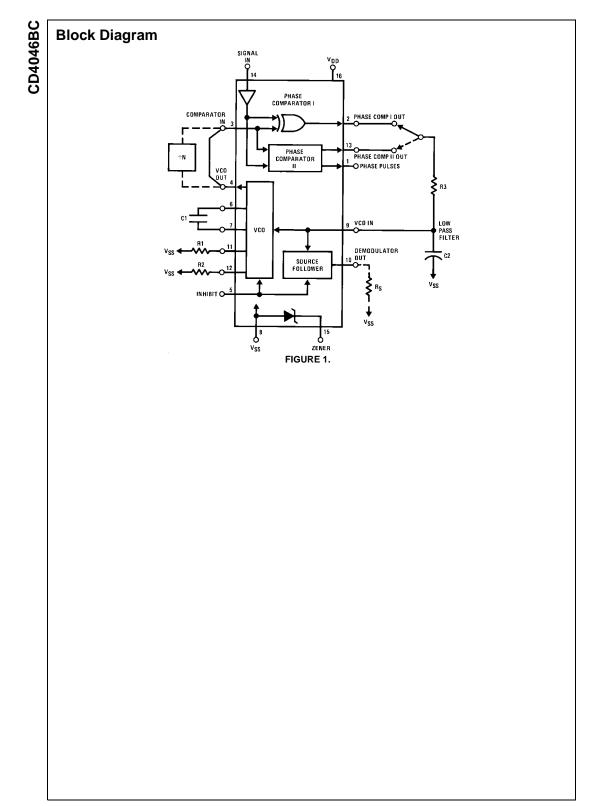
The source follower output of the VCO_{IN} (demodulator Out) is used with an external resistor of 10 k Ω or more.

The INHIBIT input, when high, disables the VCO and source follower to minimize standby power consumption. The zener diode is provided for power supply regulation, if necessary.

Features

- Wide supply voltage range: 3.0V to 18V
- Low dynamic power consumption: 70 μ W (typ.) at f_o = 10 kHz, V_{DD} = 5V
- VCO frequency: 1.3 MHz (typ.) at V_{DD} = 10V
- \blacksquare Low frequency drift: 0.06%/°C at V_DD = 10V with temperature
- High VCO linearity: 1% (typ.)


Applications


- FM demodulator and modulator
- Frequency synthesis and multiplication
- Frequency discrimination
- Data synchronization and conditioning
- Voltage-to-frequency conversion
- Tone decoding
- FSK modulation
- Motor speed control

Ordering Code:

Order Number	Package Number	Package Description					
CD4046BCM	M16A	16-Lead Small Outline integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body					
CD4046BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide					
Devices also available	Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.						

Connection Diagram

Absolute Maximum Ratings(Note 1)

(Note 2)	• • •
DC Supply Voltage (V _{DD})	-0.5 to $+18$ V _{DC}
Input Voltage (V _{IN})	–0.5 to V_DD +0.5 V_DC
Storage Temperature Range (T _S)	-65°C to +150°C
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C

Recommended Operating Conditions (Note 2)

DC Supply Voltage (V_{DD})

Input Voltage (V_{IN})

3 to 15 V_{DC} 0 to V_{DD} V_{DC}

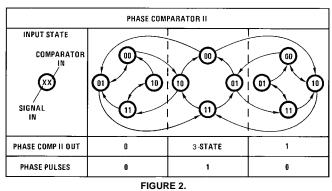
mended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation. Note 2: $V_{SS} = 0V$ unless otherwise specified.

DC Electrical Characteristics (Note 2)

Symbol Parameter		Conditions		D°C		+25°C		+85°C		Units
Symbol	Parameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device Current	$Pin 5 = V_{DD,} Pin 14 = V_{DD,}$								
		Pin 3, 9 = V _{SS}								
		$V_{DD} = 5V$		20		0.005	20		150	μA
		$V_{DD} = 10V$		40		0.01	40		300	μΑ
		$V_{DD} = 15V$		80		0.015	80		600	μA
		Pin 5 = V _{DD} , Pin 14 = Open,								
		Pin 3, 9 = V _{SS}								
		$V_{DD} = 5V$		70		5	55		205	μΑ
		$V_{DD} = 10V$		530		20	410		710	μA
		$V_{DD} = 15V$		1500		50	1200		1800	μA
V _{OL} LOW Level Output Voltage	LOW Level Output Voltage	$V_{DD} = 5V$		0.05		0	0.05		0.05	V
		$V_{DD} = 10V$		0.05		0	0.05		0.05	V
		$V_{DD} = 15V$		0.05		0	0.05		0.05	V
V _{OH} HIGH Level 0	HIGH Level Output Voltage	$V_{DD} = 5V$	4.95		4.95	5		4.95		V
		$V_{DD} = 10V$	9.95		9.95	10		9.95		V
		$V_{DD} = 15V$	14.95		14.95	15		14.95		V
V _{IL}	LOW Level Input Voltage	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$		1.5		2.25	1.5		1.5	V
	Comparator and Signal In	$V_{DD} = 10V, V_{O} = 1V \text{ or } 9V$		3.0		4.5	3.0		3.0	V
		$V_{DD} = 15V, V_O = 1.5V \text{ or } 13.5V$		4.0		6.25	4.0		4.0	V
V _{IH}	HIGH Level Input Voltage	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$	3.5		3.5	2.75		3.5		V
	Comparator and Signal In	$V_{DD} = 10V, V_{O} = 1V \text{ or } 9V$	7.0		7.0	5.5		7.0		V
		$V_{DD} = 15V, V_O = 1.5V \text{ or } 13.5V$	11.0		11.0	8.25		11.0		V
I _{OL}	LOW Level Output Current	$V_{DD} = 5V, V_{O} = 0.4V$	0.52		0.44	0.88		0.36		mA
	(Note 4)	$V_{DD} = 10V, V_{O} = 0.5V$	1.3		1.1	2.25		0.9		mA
		$V_{DD} = 15V, V_{O} = 1.5V$	3.6		3.0	8.8		2.4		mA
I _{OH}	HIGH Level Output Current	$V_{DD} = 5V, V_{O} = 4.6V$	-0.52		-0.44	-0.88		-0.36		mA
	(Note 4)	$V_{DD} = 10V, V_{O} = 9.5V$	-1.3		-1.1	-2.25		-0.9		mA
		$V_{DD} = 15V, V_{O} = 13.5V$	-3.6		-3.0	-8.8		-2.4		mA
I _{IN}	Input Current	All Inputs Except Signal Input								
		$V_{DD} = 15V, V_{IN} = 0V$		-0.3		-10 ⁻⁵	-0.3		-1.0	μA
		$V_{DD} = 15V, V_{IN} = 15V$		0.3		10 ⁻⁵	0.3		1.0	μA
CIN	Input Capacitance	Any Input (Note 3)					7.5			pF
P _T	Total Power Dissipation	$f_0 = 10 \text{ kHz}, \text{ R1} = 1 \text{ M}\Omega,$	1							
		$\text{R2}=\infty,\varsigma XO_{IN}=\varsigma_{\Delta\Delta}/2$	1							
		$V_{DD} = 5V$	1			0.07				mW
		$V_{DD} = 10V$	1			0.6				mW
		$V_{DD} = 15V$				2.4				mW

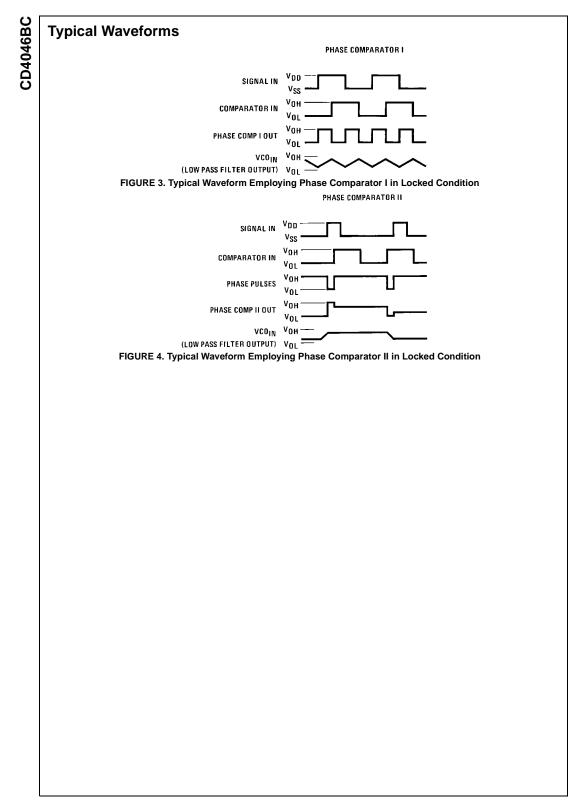
Note 3: Capacitance is guaranteed by periodic testing.

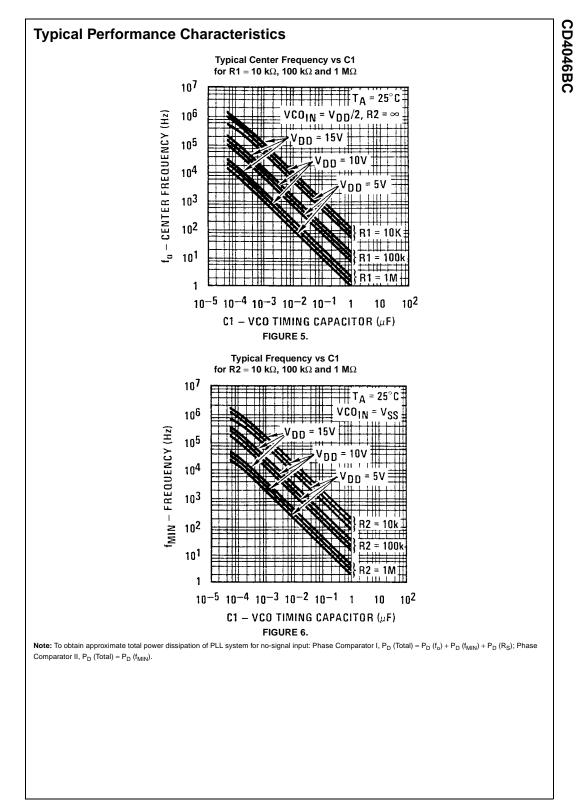
Note 4: ${\rm I}_{\rm OH}$ and ${\rm I}_{\rm OL}$ are tested one output at a time.

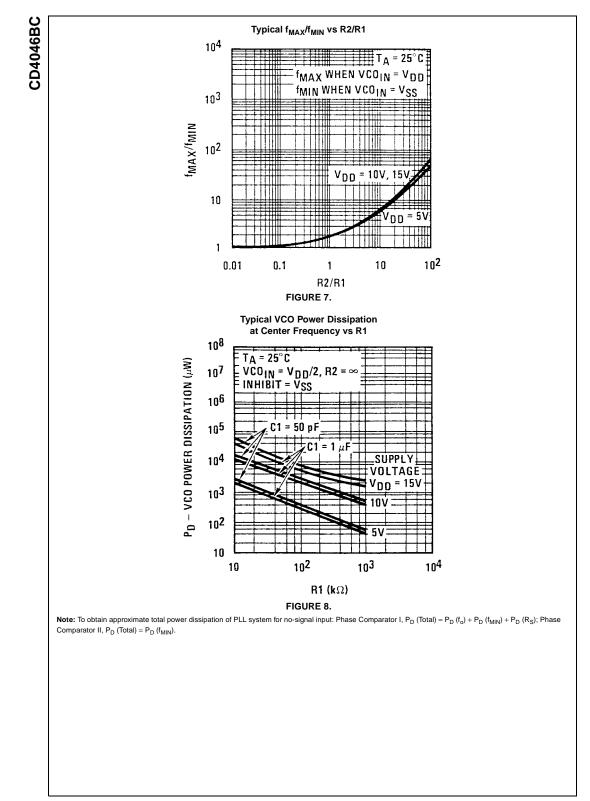

$T_{A} = 25^{\circ}$ C, $C_{L} = 50 \text{ pF}$							
Symbol	Parameter	Conditions	Min	Тур	Max	Un	
VCO SECT	TION		•				
I _{DD}	Operating Current	$f_o = 10 \text{ kHz}, \text{ R1} = 1 \text{ M}\Omega,$					
		$R2 = \infty$, $\zeta XO_{IN} = \zeta_{\Delta\Delta}/2$					
		$V_{DD} = 5V$		20		μA	
		$V_{DD} = 10V$		90		μA	
		$V_{DD} = 15V$		200		μA	
f _{MAX}	Maximum Operating Frequency	$C1 = 50 \text{ pF}, \text{ R1} = 10 \text{ k}\Omega,$					
		$R2=\infty,\varsigma XO_{IN}=\varsigma_{\Delta\Delta}$					
		$V_{DD} = 5V$	0.4	0.8		MH	
		$V_{DD} = 10V$	0.6	1.2		MH	
		$V_{DD} = 15V$	1.0	1.6		MH	
	Linearity	VCO _{IN} = 2.5V ±0.3V,					
		$R1 \geq 10 \ k\Omega, \ V_{DD} = 5 V$		1		%	
		$VCO_{IN} = 5V \pm 2.5V,$					
		$R1 \geq 400 \ k\Omega, \ V_{DD} = 10V$		1		%	
		$VCO_{IN} = 7.5V \pm 5V,$					
		$R1 \geq 1~M\Omega,~V_{DD} = 15V$		1		%	
	Temperature-Frequency Stability	%/°C $\approx 1/\phi$. $\zeta_{\Delta\Delta}$					
	No Frequency Offset, $f_{MIN} = 0$	R2 = ∞					
		$V_{DD} = 5V$		0.12-0.24		%/	
		$V_{DD} = 10V$		0.04-0.08		%/	
		$V_{DD} = 15V$		0.015-0.03		%/	
	Frequency Offset, $f_{MIN} \neq 0$	$V_{DD} = 5V$		0.06-0.12		%/	
		$V_{DD} = 10V$		0.05-0.1		%/	
		$V_{DD} = 15V$		0.03-0.06		%/	
VCOIN	Input Resistance	$V_{DD} = 5V$		10 ⁶		M	
		$V_{DD} = 10V$		10 ⁶		M	
		$V_{DD} = 15V$		10 ⁶		M	
VCO	Output Duty Cycle	$V_{DD} = 5V$		50		%	
		$V_{DD} = 10V$		50		%	
		$V_{DD} = 15V$		50		%	
t _{THL}	VCO Output Transition Time	$V_{DD} = 5V$		90	200	n	
t _{THL}		$V_{DD} = 10V$		50	100	n	
		$V_{DD} = 15V$		45	80	n	
PHASE CO	MPARATORS SECTION						
R _{IN}	Input Resistance						
	Signal Input	$V_{DD} = 5V$	1	3		M	
		$V_{DD} = 10V$	0.2	0.7		M	
		$V_{DD} = 15V$	0.1	0.3		M	
	Comparator Input	$V_{DD} = 5V$		10 ⁶		M	
		$V_{DD} = 10V$		10 ⁶		M	
		$V_{DD} = 15V$		10 ⁶		M	
	AC-Coupled Signal Input Voltage Sensitivity	$C_{SERIES} = 1000 \text{ pF}$					
	Conditivity	f = 50 kHz					
		$V_{DD} = 5V$		200	400	m	
		$V_{DD} = 10V$		400	800	۳۱	
	1	$V_{DD} = 15V$		700	1400	۳	

Symbol	Parameter	Conditions	Min	Тур	Max	Units
DEMODULATO	DR OUTPUT			1	1	
	ffset Voltage	$RS \ge 10 \ k\Omega, \ V_{DD} = 5V$		1.50	2.2	V
VDEM		$RS \geq 10 \ k\Omega, \ V_{DD} = 10V$		1.50	2.2	v
		$RS \geq 50 \ k\Omega, \ V_{DD} = 15V$		1.50	2.2	V
Lir	nearity	$RS \ge 50 \ k\Omega$				
		$VCO_{IN}=2.5V~\pm0.3V,~V_{DD}=5V$		0.1		%
		$VCO_{IN} = 5V \pm 2.5V$, $V_{DD} = 10V$		0.6		%
		$VCO_{IN} = 7.5V \pm 5V, V_{DD} = 15V$		0.8		%

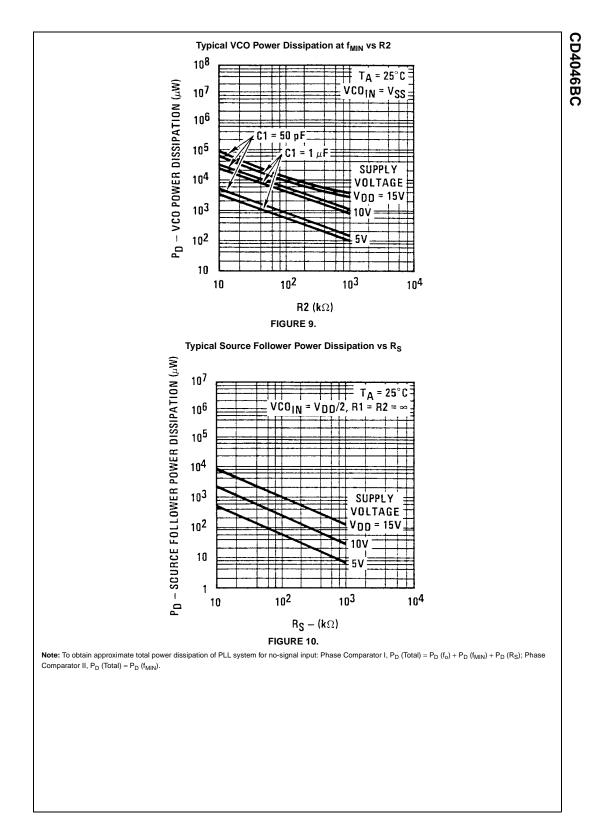
Note 5: AC Parameters are guaranteed by DC correlated testing.

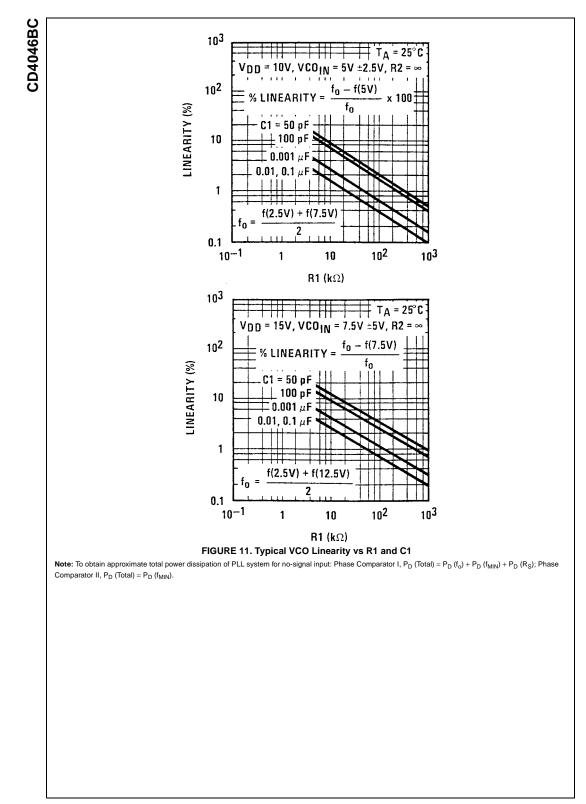

Phase Comparator State Diagrams





www.fairchildsemi.com


5



8

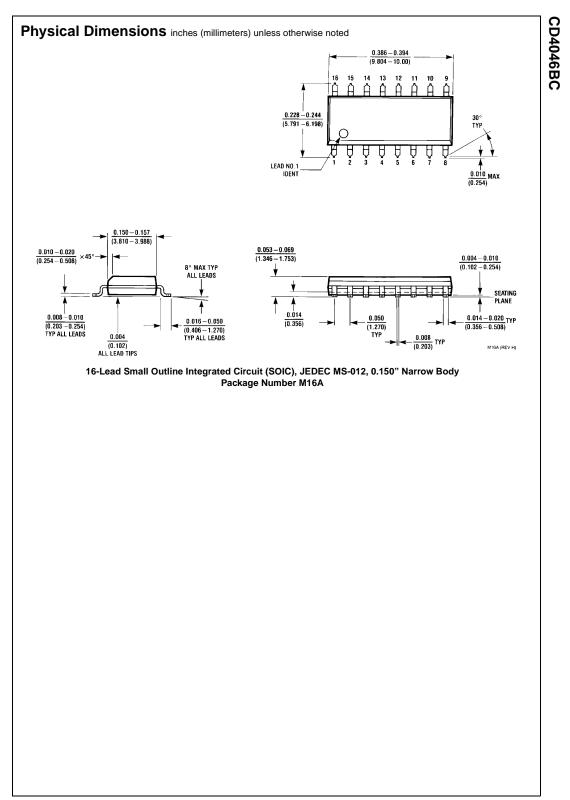
9

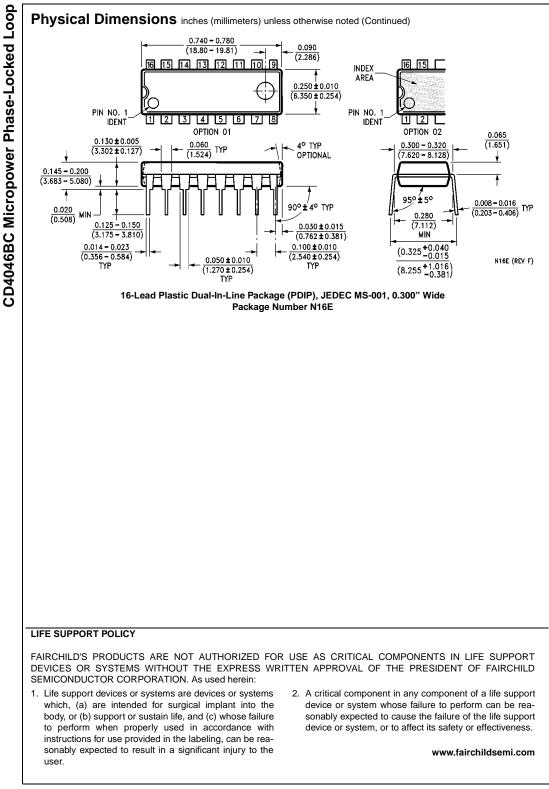
Design Information

This information is a guide for approximating the value of external components for the CD4046B in a phase-locked-loop system. The selected external components must be within the following ranges: R1, R2 \geq 10 kΩ, R_S \geq 10 kΩ, C1 \geq 50 pF.

In addition to the given design information, refer to Figure 5, Figure 6, Figure 7 for R1, R2 and C1 component selections.

CD4046BC


VCO Frequency	CO Without Offset $R2 = \infty$	VCO With Offset	VCO Without Offset		
^т ма	†		VCO Without Offset VCO With		
^т ма			R2 = ∞		
	fo 21L VDD/2 VDD VCO INPUT VOLTAGE		MBAX - 2 1 fo - 2 1 MBIN VBD/2 VDD VDD/2 VDD VDD VCD INPUT VOLTAGE VDD/2 VDD		
For No Signal Input	VCO in PLL system to center fro	VCO in PLL system will adjust to lowest operating frequency, f _{min}			
Frequency Lock			requency range	g nequency, imin	
Range, 2 f		=	_{nax} – f _{min}		
Frequency Capture	R3				
Range, 2 f _C		$2\mathrm{f_C}\approx\frac{1}{\pi}\sqrt{\frac{2\pi\mathrm{f_L}}{\tau\mathrm{l}}}$			
Loop Filter Component Selection		For 2 f _C , see Ref.	f _C =	= f _L	
Phase Angle Between	90° at center frequen	cy (f _o), approximating	Always ()° in lock	
Single and Comparator	0° and 180° at ends	s of lock range (2 f _L)			
Locks on Harmonics	Ye	es	N	0	
of Center Frequency					
Signal Input Noise	Hi	gh	Lo	W	
Rejection					


CD4046BC

	Using Phase	Comparator I	Using Phase Comparator II			
Characteristics	VCO Without Offset	VCO With Offset	VCO Without Offset	VCO With Offset		
	R2 = ∞		R2 = ∞			
VCO Component	Given: f _o .	Given: fo and fL.	Given: f _{max} .	Given: f _{min} and f _{max} .		
Selection	Use fo with	Calculate f _{min}	Calculate fo from	Use f _{min} with		
	Figure 5 to	from the equation	the equation	Figure 6 to		
	determine R1 and C1.	$f_{min} = f_o - f_L.$	$f_0 = \frac{f_{max}}{2}$.	to determine R2 and C1.		
		Use f _{min} with Figure 6 to		Calculate		
		determine R2 and C1.		f _{max} f _{min}		
			Use fo with Figure 5 to			
		Calculate	determine R1 and C1.	Use		
		f _{max}		f _{max}		
		f _{min}		f _{min} with Figure 7		
		from the equation		to determine ratio		
		$\frac{f_{max}}{f_{min}} = \frac{f_{0} + f_{L}}{f_{0} - f_{L}}.$		R2/R1 to obtain R1.		
		Use				
		fmax				
		f _{min} with Figure 7				
		to determine ratio R2/				
		R1 to obtain R1.				

References

G.S. Moschytz, "Miniaturized RC Filters Using Phase-Locked Loop", BSTJ, May, 1965. Floyd Gardner, "Phaselock Techniques", John Wiley & Sons, 1966.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.