FAIRCHILD

SEMICONDUCTOR

February 1984 Revised July 1999

MM74HCT240 • MM74HCT244 Inverting Octal 3-STATE Buffer • Octal 3-STATE Buffer

General Description

The MM74HCT240 and MM74HCT244 3-STATE buffers utilize advanced silicon-gate CMOS technology and are general purpose high speed inverting and non-inverting buffers. They possess high drive current outputs which enable high speed operation even when driving large bus capacitances. These circuits achieve speeds comparable to low power Schottky devices, while retaining the low power consumption of CMOS. All three devices are TTL input compatible and have a fanout of 15 LS-TTL equivalent inputs.

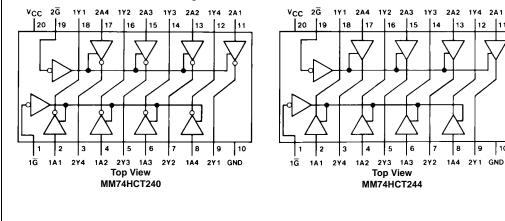
MM74HCT devices are intended to interface between TTL and NMOS components and standard CMOS devices. These parts are also plug-in replacements for LS-TTL devices and can be used to reduce power consumption in existing designs.

The MM74HCT240 is an inverting buffer and the MM74HCT244 is a non-inverting buffer. Each device has two active low enables (1G and 2G), and each enable independently controls 4 buffers.

All inputs are protected from damage due to static discharge by diodes to V_{CC} and Ground.

Features

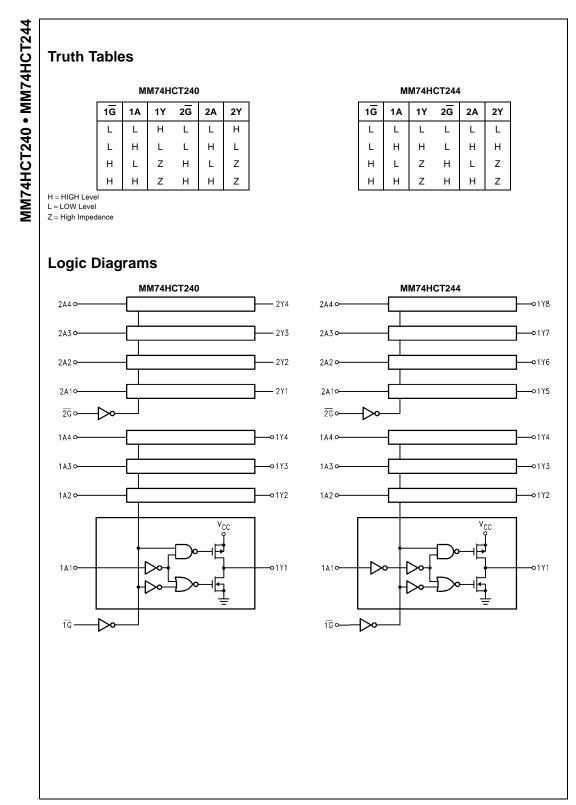
- TTL input compatible
- Typical propagation delay: 14 ns
- 3-STATE outputs for connection to system buses
- Low quiescent current: 80 μA
- High output drive current: 6 mA (min)


Ordering Code:

_				
Order Number	Package Number	Package Description		
MM74HCT240WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide		
MM74HCT240SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide		
MM74HCT240MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide		
MM74HCT240N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide		
MM74HCT244WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide		
MM74HCT244SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide		
MM74HCT244MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide		
MM74HCT244N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide		
Devices also available in Tape and Peol. Specify by appending the suffix latter "X" to the ordering code				

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagrams


Pin Assignments for DIP, SOIC, SOP and TSSOP

© 1999 Fairchild Semiconductor Corporation DS005365 www.fairchildsemi.com

111

10

Absolute Maximum Ratings(Note 1)

(Note 2)

Recommended Operating Conditions

()	
Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	-1.5 to V _{CC} $+1.5$ V
DC Output Voltage (V _{OUT})	–0.5 to V_CC +0.5V
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±35 mA
DC V _{CC} or GND Current, per pin (I _{CC})	±70 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

	Min	Max	Units	
Supply Voltage (V _{CC})	4.5	5.5	V	
DC Input or Output Voltage	0	V_{CC}	V	
(V _{IN} , V _{OUT})				
Operating Temperature Range (T_A)	-40	+85	°C	
Input Rise or Fall Times				
(t _r , t _f)		500	ns	
Note 1: Absolute Maximum Ratings are those age to the device may occur.	values b	eyond whi	ch dam-	
Note 2: Unless otherwise specified all voltages are referenced to ground.				

Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C.

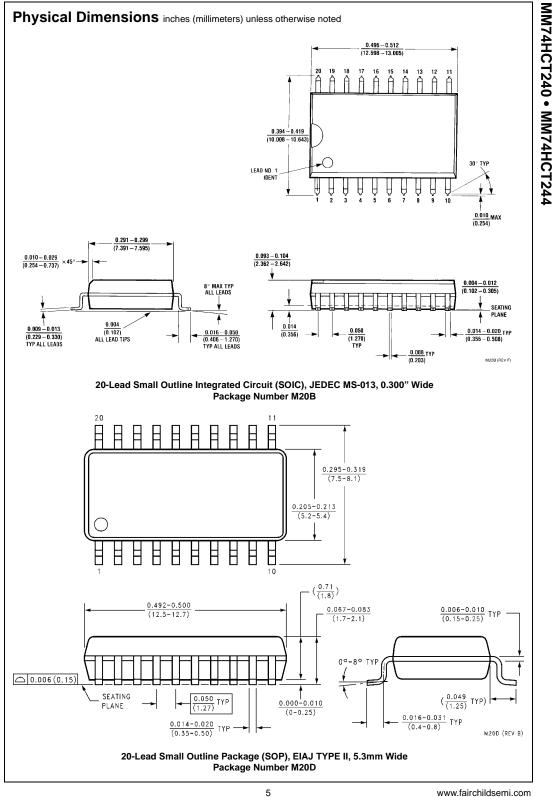
DC Electrical Characteristics

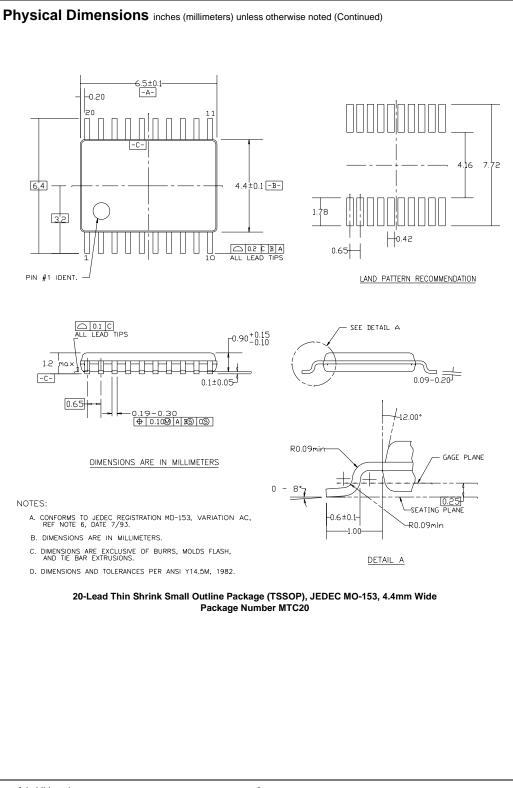
$V_{CC}\,{=}\,5V\,{\pm}10\%$ (unless otherwise specified) $T_A = -40$ to 85°C $T_A = -55^\circ$ to 125°C $T_A = 25^{\circ}C$ Symbol Parameter Conditions Units Guaranteed Limits Тур VIH Minimum HIGH Level 2.0 2.0 2.0 ٧ Input Voltage Maximum LOW Level 0.8 0.8 V_{IL} 0.8 V Input Voltage V_{OH} Minimum HIGH Level $V_{IN-EE} = V_{IH} \text{ or } V_{IL}$ Output Voltage $|I_{OUT}| = 20 \ \mu A$ Vcc V_{CC}-0.1 V_{CC}-0.1 V_{CC}-0.1 V V $|I_{OUT}| = 6.0 \text{ mA}, V_{CC} = 4.5 \text{V}$ 3.98 3.84 3.7 4.2 $|I_{OUT}| = 7.2 \text{ mA}, V_{CC} = 5.5 \text{V}$ 5.2 4.98 4.84 4.7 V Maximum LOW Level V_{OL} $V_{IN} = V_{IH} \text{ or } V_{IL}$ Voltage $|I_{OUT}| = 20 \ \mu A$ 0 0.1 0.1 0.1 V $|I_{OUT}| = 6.0 \text{ mA}, V_{CC} = 4.5 \text{V}$ 0.2 0.26 0.33 0.4 ۷ $|I_{OUT}| = 7.2 \text{ mA}, V_{CC} = 5.5 \text{V}$ 0.2 0.33 V 0.26 0.4 $V_{IN} = V_{CC}$ or GND, ±0.05 ±0.5 μΑ Maximum Input ±1.0 I_{IN} Current V_{IH} or V_{IL} Maximum 3-STATE $V_{OUT} = V_{CC}$ or GND ±0.25 ±2.5 ±10 μΑ I_{OZ} Output Leakage $\overline{G} = V_{IH}$ Current $G = V_{IL}$ $V_{IN} = V_{CC} \text{ or } GND$ Maximum Quiescent 4.0 40 160 I_{CC} μΑ Supply Current $I_{OUT} = 0 \ \mu A$ $V_{\mbox{IN}}\,{=}\,2.4\,\mbox{V}$ or 0.5V (Note 4) 0.6 1.0 1.3 1.5 mA

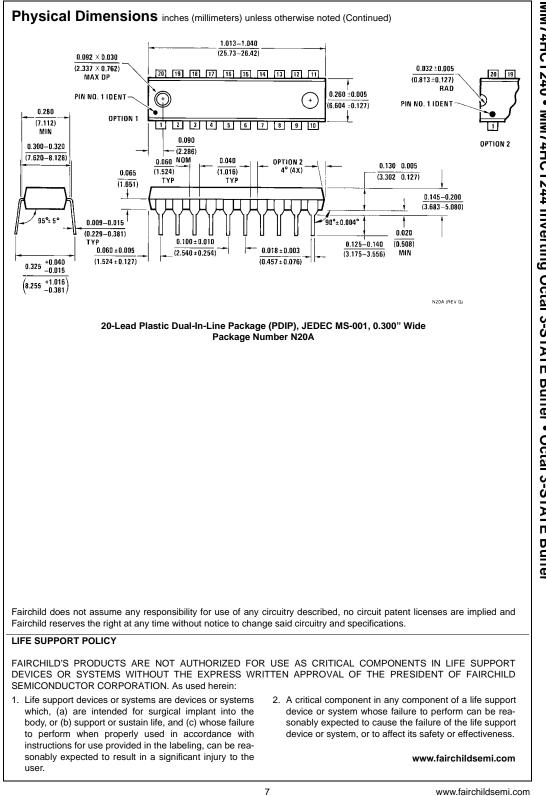
Note 4: Measured per input. All other inputs at V_{CC} or GND.

AC Electrical Characteristics

MM74HCT240, I	MM74HCT244 $V_{CC} = 5.0V$, $t_r = t_f = 6$ ns, T	$T_A = 25^{\circ}C$ (unless otherwise specified)			
Symbol	Parameter	Conditions	Тур	Guaranteed	


Symbol	Parameter	Conditions	Тур	Guaranteed Limits	Units
t _{PHL} , t _{PLH}	Maximum Output	C _L = 45 pF	14	18	ns
	Propagation Delay				
t _{PZL} , t _{PZH}	Maximum Output	C _L = 45 pF	20	30	ns
	Enable Time	$R_L = 1 \ k\Omega$			
t _{PLZ} , t _{PHZ}	Maximum Output	C _L = 5 pF	16	25	ns
	Disable Time	$R_L = 1 \ k\Omega$			


AC Electrical Characteristics


MM74HCT240, MM74HCT244 V_{CC} = 5.0V \pm 10%, t_f = t_f = 6 ns (unless otherwise specified)

Symbol	Parameter	Conditions		$T_A = 25^{\circ}C$		$T_A=-40$ to $85^\circ C$	$T_A{=}{-}55^\circ$ to $125^\circ C$	Units	
Symbol		Conditions	,	Тур		Guaranteed Limits			
t _{PHL} , t _{PLH}	Maximum Output	C _L = 50 pF		14	20	25	30	ns	
	Propagation Delay	C _L = 150 pF		20	28	35	42	ns	
t _{PZH} , t _{PZL}	Maximum Output	$R_L = 1 k\Omega$ $C_L =$	= 50 pF	21	30	38	45	ns	
	Enable Time	C _L =	= 150 pF	26	42	53	63	ns	
t _{PHZ} , t _{PLZ}	Maximum Output	$R_L = 1 \ k\Omega$		16	25	32	38	ns	
	Disable Time	$C_L = 50 \text{ pF}$							
t _{THL} , t _{TLH}	Maximum Output	C _L = 50 pF		6	12	15	18	ns	
	Rise and Fall Time								
CIN	Maximum Input			10	15	15	15	pF	
	Capacitance								
COUT	Maximum Output			15	20	20	20	pF	
	Capacitance								
C _{PD}	Power Dissipation	(per buffer)							
	Capacitance (Note 5)	$\overline{G} = V_{CC}, G = GND$		5				pF	
		$\overline{G} = GND, G = V_{CC}$		90				pF	

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC} 2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} f + I_{CC}$.

MM74HCT240 • MM74HCT244 Inverting Octal 3-STATE Buffer • Octal 3-STATE Buffer