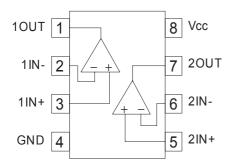

TROPHY SERIES

Universal Standard Ground Sense Op-Amp. LM358 family, LM324 family, LM2904 family, LM2902 family

Description

The Universal Standard family LM358/324 and LM2904/2902 monolithic ICs integrate two independent op-amp circuits and phase compensation capacitors on a single chip, feature high gain and low power consumption, and possess an operating voltage range between 3[V]and 32[V] (single power supply.)

☆Under development


Characteristics

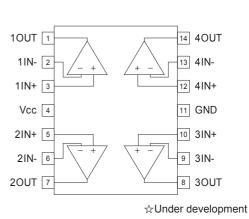
 Operating temperature range Commercial Grade LM358/324 family: 0[°C] to +70[°C] Extended Industrial Grade LM2904/2902 family: -40[°C] to +125[°C]
Wide granting undergrad

2) Wide operating voltage range +3[V] to +32[V] (single supply) ± 1.5 [V] to ± 16 [V] (dual supply)

- 3) Low supply current
- 4) Common-mode input voltage range, including ground
- 5) Differential input voltage range equal to maximum rated supply voltage
- 6) High large signal voltage gain
- 7) Wide output voltage range

Pin Assignment

SOIC8


LM358DR LM2904DR LM2904VQDR

TSSOP8

LM358PWR LM2904PWR LM2904VQPWR

MSOP8/VSSOP8

LM358DGKR LM2904DGKR

SOIC14

LM324DR LM324KDR LM2902DR LM2902KDR LM2902KVQDR

TSSOP14

LM324PWR LM2902PWR LM2902KPWR LM2902KVQPWR

May.2008

Absolute Maximum Ratings (Ta=25[°C])

Deventer	Querrahad	Rating									
Parameter	Symbol	LM358 family	b LM324 family	LM2904 family	tM2902 family ☆	LM2904V family	tM2902V family ☆	Unit			
Supply Voltage	Vcc-GND	+;	32	+;	26	+;	V				
Operating Temperature Range	Topr	0 to	+70		-40 to +125						
Storage Temperature Range	Tstg			-65 t	o +150			°			
Input Common-mode Voltage	VICM	-0.3 t	o +32	-0.3 t	o +26	-0.3 t	o +32	V			
Maximum Junction Temperature	Tjmax	150									
							☆Under develo	pment			

Electric Characteristics

OLM358,LM324 family (Unless otherwise specified, Vcc=+5[V])

		Tomporaturo			Lir	nit						
Parameter	Symbol	Temperature	LI	M358 fam	ily	LM	324 famil	y☆	Unit	Condition	Fig.No	
		range	Min.	Тур.	Max.	Min.	Тур.	Max.				
Input Offset Voltage (*1)	VIO	25°C	_	3	7	_	3	7	mV	VO=1.4[V] VIC=VICR(min)	2	
	VIO	Full range	—	_	9	-	—	9	mv	Vcc=5[V] to 30[V]	2	
Input Offset Voltage Drift	αVIO	_		7	-	_	_	_	μV/℃	_	-	
Input Offset Current (*1)	IIO	25℃	—	2	50	-	2	50	nA	VO=1.4[V]	2	
,		Full range	_	I	150	—	-	150	ПА	VO-1.4[V]	2	
Input Offset Current Drift	αllO	—		10	-	_	—	-	pA/℃	_	-	
Input Bias Current (*1)	IIB	25℃	—	20	250	-	20	250	nA	VO=1.4[V]	2	
	ПВ	Full range	_	_	500	_	_	500	па	VO=1.4[V]	2	
Input Common-mode Voltage Range	VICR	25℃	0	_	Vcc-1.5	-	—	Vcc-1.5	v	Vcc=5[V] to 30[V]	2	
	VICK	Full range	0	_	Vcc-2.0	-	—	Vcc-2.0	v		2	
High Level Output Voltage	VOH	25℃	Vcc-1.5	I	-	Vcc-1.5	-	-	v	$RL \ge 2[k\Omega]$	- 3	
	VOIT	Full range	27	28	-	27	28	-	v	Vcc=30[V],RL≧10[kΩ]		
Low Level Output Voltage	VOL	Full range	—	5	20	-	5	20	mV	RL≦10[kΩ]	2	
Large Signal Voltage Gain	AVD	25℃	25	100	_	25	100	_	V/mV	Vcc=15[V] VO=1[V] to 11[V] RL≧2[kΩ]	2	
Common-mode Rejection Ratio	CMRR	25℃	65	80	_	65	80	_	dB	Vcc=5[V] to 30[V], VIC=VICR(min)	2	
Supply-Voltage rejection ratio	KSVR	25°C	65	100	_	65	100	-	dB	Vcc=5[V] to 30[V]	2	
Cross-talk Attenuation	VO1/VO2	25℃	_	120	_	_	120	_	dB	f=1[kHz] to 20[kHz]	5	
Output Current (*2)		25℃	20	30	_	20	30	_		Vcc=15[V],VO=0[V]		
	Source	Full range	10	_	-	10	_	-	mA	VID=1[V]		
		25°C	10	20	_	10	20	_		Vcc=15[V],VO=0[V]	3	
	Sink	Full range	2	_	_	2	_	_	mA	VID=-1[V]		
		25℃	12	30	_	12	30	_	μA	VO=200[mV],VID=-1[V]		
Supply Current (All Amps)		Full range	_	0.7	1.2	-	0.7	1.2		VO=2.5[V],No Load		
(/ ((/ ((/ ((/ ())))))))))))))))))))	ICC	Full range	_	1	2	_	1.4	3	mA	Vcc=30[V],VO=0.5[V] No Load	- 3	
Slew Rate at Unity-Gain	SR	25℃	_	0.3	_	_	0.5	_	V/µs	RL=1[MΩ],CL=30[pF] VI=±10[V] Vcc=15[V],GND=-15[V] (reference to Fig1)	3	
Unity Gain Bandwidth	B1	25℃	_	0.7	_	_	1.2	_	MHz	RL=1[MΩ],CL=20[pF] Vcc=15[V],GND=-15[V] (reference to Fig1)	3	
Equivalent Input Noise Voltage	Vn	25℃		40	-	_	35	_	nV∕√Hz	Vcc=15[V],GND=-15[V] RS=100[Ω],VI=0[V] f=1[kHz](reference to Fig2)	3	

(*1) Absolute value

(*2) Under high temperature, consider the power dissipation of IC when selecting the output current.
When the output terminal is continuously shorted, the output current reduces the temperature inside the IC by flushing.

OLM2904,LM2902 family (Unless otherwise specified, Vcc=+5[V])

			Temperature			Lir	nit					
Parameter		Symbol		LN	12904 fan	nily	LM2	2902 fami	ly☆	Unit	Condition	Fig.N
			range	Min.	Тур.	Max.	Min.	Тур.	Max.			
Input Offset Voltage (*3)		1/10	25℃	_	3	7	_	3	7		VO=1.4[V],VIC=VICR(min)	_
		VIO	Full range	-	_	10	—	—	10	mV	Vcc=5[V] to MAX(*8)	2
Input Offset Voltage Drif	t	αVIO	_	-	7	-	-	7	-	μV/℃	-	_
Input Offset Current (*3)	LM2904		25℃	-	2	50	—	2	50			
	(*5)	110	Full range	_	_	300	-	_	300	-		~
	LM2904V LM2902V	IIO	25℃	-	2	50	-	2	50	nA	VO=1.4[V]	2
	(*5)		Full range	_	_	150	—	_	150			
Input Offset Current Drif		αllO	_	_	10	_	_	10	_	pA/℃	_	_
Input Bias C			25℃	_	20	250	-	20	250			_
		IIB	Full range	_	_	500	_	-	500	nA	VO=1.4[V]	2
Input Comm Voltage Ran		1/100	25℃	_	_	Vcc-1.5	-	-	Vcc-1.5			_
voltage r tai	ige	VICR	Full range	_	_	Vcc-2.0	-	_	Vcc-2.0	V	Vcc=5[V] to MAX(*8)	2
High Level Output Volta	ace		25℃	Vcc-1.5	_	_	Vcc-1.5	_	_		RL≧10[kΩ]	
	LM2904 LM2902 (*5)	VOH	Full range	23	24	_	23	24	_	V	Vcc=MAX(*8),RL≧10[kΩ]	3
	LM2904V LM2902V (*5)		Full range	27	28	_	27	_	_		Vcc=MAX(*8),RL≧10[kΩ]	
Low Level Output Volta		VOL	Full range	_	5	20	—	5	20	mV	RL≦10[kΩ]	3
Large Signa Voltage Gai		AVD	25℃	25	100	_	25	100	_	V/mV	Vcc=15[V],VO=1[V] to 11[V] RL≧2[kΩ]	2
Common- mode Rejection	LM2904 LM2902 (*5)	CMRR	25℃	50	80	_	50	80	_	dB	Vcc=5[V] to MAX(*8)	2
Ratio	LM2904V LM2902V (*5)	OMIT	25℃	65	80	-	60	80	_	dB	VIC=VICR(min)	-
Supply Voltage Rejection Ratio	LM2904 LM2904V M2902 (*5) LM2902V	KSVR	25°C	65	100	-	50 60	100	_	dB	Vcc=5[V] to MAX(*8)	2
Cross-talk A	(*5) Ittenuation	V01/V02	25℃	_	120	_	_	120	_	dB	f=1[kHz] to 20[kHz]	5
Output Curr	ent (*4)	=	25℃	20	30	_	20	30	60		Vcc=15[V],VO=0[V]	-
·		Source	Full range	10	_	_	10	_	_	mA	VID=1[V]	
			25℃	10	20	_	10	20	_			-
		Sink	Full range	2	_	_	2	_	_	mA	Vcc=15[V],VO=0[V] VID=-1[V]	3
	LM2904 LM2902 (*5)	1-	25°C		30	_	_	30	_	μA		3
	LM2904V LM2902V (*5)	lo	25°C	12	40	_	12	40	_	μA	VO=200[mV],VID=-1[V]	
Supply Curr (All Amps)	ent	ICC	Full range	—	0.7	1.2	—	0.7	1.2	mA	VO=2.5[V],No Load	3
· · · /		icc	Full range	—	1	2	_	1.4	3	ШA	Vcc=MAX(*8),VO=0.5[V] No Load	3
Slew Rate a Unity Gain	t	SR	25℃	_	0.3	-	_	0.5	_	V/µs	RL=1[MΩ],CL=30[pF], VI=±10[V] Vcc=15[V],GND=-15[V] (reference to Fig1)	3
Unity-Gain E	Bandwidth	B1	25℃	_	0.7	_	_	1.2	_	MHz	RL=1[MΩ],CL=20[pF] Vcc=15[V],GND=-15[V] (reference to Fig1)	3
Equivalent Input Noise Voltage Vr		Vn	25℃	_	40	_	_	35	_	nV∕√Hz	Vcc=15[V],GND=-15[V] RS=100[Ω]VI=0[V] f=1[kHz], (reference to Fig2)	3

(*4) Under high temperature, consider the power dissipation of the IC when selecting the output current.

When the output terminal is continuously shorted the output current is reduced to lower the temperature inside the IC.
(*5) The maximum supply voltage is 26V for the LM2904DR, LM2904PW, LM2904PWR, and LM2904DQKR The maximum supply voltage is 32V for the LM2904VQDR and LM2904VQPWR

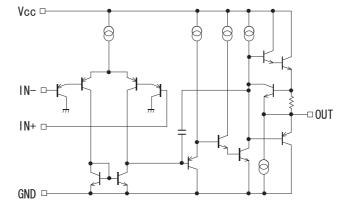


Fig.1 Circuit Diagram (each Op-Amp)

Measurement circuit 1 NULL Method measurement condition

										Vcc	,GND,	EK,VIC	R Unit:[V]	
Measurement item	VF	S1	S2	S3	LM358/LM324 family				LM2904/LM2902 family				- Calculation	
medsurement item	VF	51	52	- 33	Vcc	GND	EK	VICR	Vcc	GND	EK	VICR	Calculation	
Input Offset Voltage	VF1	ON	ON	OFF	5 to 30	0	- 1.4	0	5 to 30	0	- 1.4	0	1	
Input Offset Current	VF2	OFF	OFF	OFF	5	0	- 1.4	0	5	0	- 1.4	0	2	
Input Bias Current	VF3	OFF	ON	OFF	5	0	- 1.4	0	5	0	- 1.4	0	- 3	
	VF4	ON	OFF	OIT	5	0	- 1.4	0	5	0	- 1.4	0	5	
Large Signal Voltage Gain	VF5	ON	ON	ON	15	0	- 1.4	0	15	0	- 1.4	0	4	
	VF6	ON	ON	ON	15	0	-11.4	0	15	0	-11.4	0	4	
Common-mode Rejection Ratio	VF7	ON	ON	ON OFF	5	0	- 1.4	0	5	0	- 1.4	0	- 5	
	VF8	ON	ON ON O		5	0	- 1.4	3.5	5	0	- 1.4	3.5	5	
Supply Voltage Rejection Ratio	VF9	ON	ON	OFF	5	0	- 1.4	0	5	0	- 1.4	0	6	
	VF10	UN	ON	011	30	0	- 1.4	0	30	0	- 1.4	0		

- Calculation -

1.Input Offset Voltage (VIO)

$$Vio = \frac{|VF1|}{1+ Rf/Rs} [V]$$

2. Input offset current (IIO)

$$lio = \frac{|VF2 - VF1|}{Ri(1 + Rf / Rs)} [A]$$

3.Input Bias Current (IIB)

$$Ib = \frac{|VF4 - VF3|}{2 \times Ri(1 + Rf / Rs)} [A]$$

4.Large Signal Voltage Gain (AVD)

$$AV = 20 \times Log \frac{10 \times (1 + Rf/Rs)}{|VF6 - VF5|} [dB]$$

5.Common-mode rejection ratio (CMRR)

$$CMRR = 20 \times Log \frac{3.5 \times (1 + Rf/Rs)}{|VF8-VF7|} [dB]$$

6.Supply Voltage rejection ratio (KSVR)

$$PSRR = 20 \times Log \quad \frac{\triangle Vcc \times (1+Rf/Rs)}{VF10 - VF9} \ [dB]$$

∆Vcc=25V

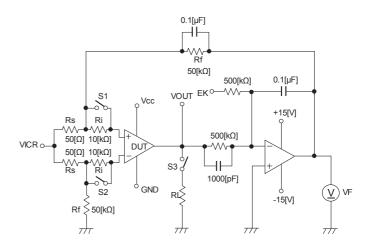


Fig.2 Measurement Circuit 1 (each Op-Amp)

TROPHY SERIES LM2904/2902/358/324 family

Measurement Circuit 2: Switch Condition

SW No.	SW														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Supply Current	OFF	OFF	OFF	ON	OFF	OFF	ON	OFF							
High Level Output Voltage	OFF	OFF	ON	OFF	OFF	OFF	ON	OFF	OFF	ON	OFF	OFF	OFF	ON	OFF
Low Level Output Voltage	OFF	OFF	ON	OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF	OFF	OFF	ON	OFF
Output Source Current	OFF	OFF	ON	OFF	OFF	OFF	ON	OFF	ON						
Output Sink Current	OFF	OFF	ON	OFF	OFF	OFF	ON	OFF	ON						
Slew Rate	OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF	ON	ON	ON	OFF	OFF	OFF	OFF
Unity-gain Bandwidth Product	OFF	ON	OFF	OFF	OFF	ON	ON	OFF	OFF	ON	ON	OFF	OFF	OFF	OFF
Equivalent Input Noise Voltage	ON	OFF	OFF	OFF	ON	OFF	ON	OFF	OFF	OFF	OFF	ON	OFF	OFF	OFF

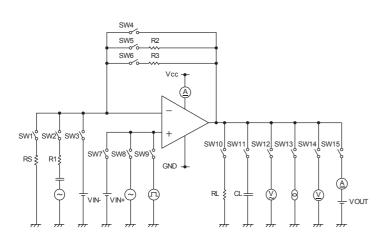


Fig.3 Measurement Circuit 2 (each Op-Amp)

Measurement Circuit 3: Cross-talk Attenuation

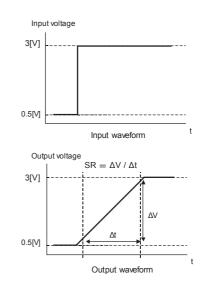
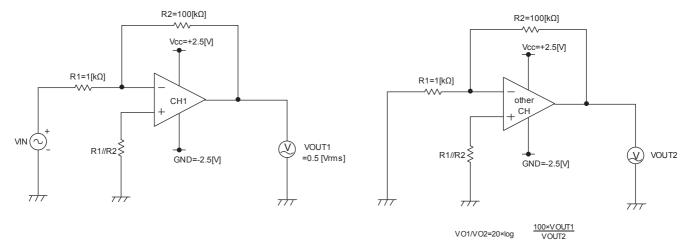



Fig.4 Slew Rate Input Waveform

Description of Electrical Characteristics

Described below are descriptions of the relevant electrical terms

Please note that item names, symbols and their meaning may differ form those on another manufacturer's documents.

1. Absolute maximum ratings

The absolute maximum ratings are values that should never be exceeded, since doing so may result in deterioration of characteristics or damage to the part itself as well as peripheral components.

1.1 Power supply voltage (Vcc/GND)

Expresses the maximum voltage that can be supplied between the positive and negative power supply terminals without causing deterioration of characteristics or destruction of the internal circuitry.

1.2 Differential input voltage (VID)

Indicates the maximum voltage that can be supplied between the non-inverting and inverting terminals without damaging the IC.

1.3 Input common-mode voltage range (VICR)

Signifies the maximum voltage that can be supplied to the non-inverting and inverting terminals without causing deterioration of the electrical characteristics or damage to the IC itself. Normal operation is not guaranteed within the input common-mode voltage range of the maximum ratings – use within the input common-mode voltage range of the electric characteristics instead.

1.4 Operating temperature range and storage temperature range (Topr, Tstg)

The operating temperature range indicates the temperature range within which the IC can operate. The higher the ambient temperature, the lower the power consumption of the IC. The storage temperature range denotes the range of temperatures the IC can be stored under without causing excessive deterioration of the electrical characteristics.

1.5 Power dissipation (Pd)

Indicates the power that can be consumed by a specific mounted board at ambient temperature (25°C). For packaged products, Pd is determined by the maximum junction temperature and the thermal resistance.

2. Electric characteristics

2.1 Input offset voltage (VIO)

Signifies the voltage difference between the non-inverting and inverting terminals. It can be thought of as the input voltage difference required for setting the output voltage to 0V.

2.2 Input offset voltage drift (α VIO)

Denotes the ratio of the input offset voltage fluctuation to the ambient temperature fluctuation.

2.3 Input offset current (IIO)

Indicates the difference of the input bias current between the non-inverting and inverting terminals.

- 2.4 Input offset current drift (α IIO) Signifies the ratio of the input offset current fluctuation to the ambient temperature fluctuation.
- 2.5 Input bias current (IIB)

Denotes the current that flows into or out of the input terminal, it is defined by the average of the input bias current at the non-inverting terminal and the input bias current at the inverting terminal.

2.6 Circuit current (ICC)

Indicates the current of the IC itself that flows under specific conditions and during no-load steady state.

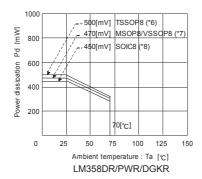
- 2.7 High level output voltage/low level output voltage (VOH/VOL) Signifying the voltage range that can be output by under specific load conditions, it is in general divided into high level output voltage and low level output voltage. High level output voltage indicates the upper limit of the output voltage, while low level output voltage the lower limit.
- 2.8 Differential voltage amplification (AVD)

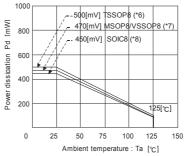
The amplifying rate (gain) of the output voltage against the voltage difference between non-inverting and inverting terminals, it is (normally) the amplifying rate (gain) with respect to DC voltage. AVD = (output voltage fluctuation) / (input offset fluctuation)

- 2.9 Input common-mode voltage range (VICR) Indicates the input voltage range under which the IC operates normally.
- 2.10 Common-mode rejection ratio (CMRR) Signifies the ratio of fluctuation of the input offset voltage when the in-phase input voltage is changed (DC fluctuation). CMRR = (change in input common-mode voltage) / (input offset fluctuation)
- 2.11 Power supply rejection ratio (KSVR) Denotes the ratio of fluctuation of the input offset voltage when the supply voltage is changed (DC fluctuation). KSVR = (change in power supply voltage) / (input offset fluctuation)
- 2.12 Output source current/ output sink current (IOH/IOL) The maximum current that can be output under specific output conditions, it is divided into output source current and output sink current. The output source current indicates the current flowing out of IC, and the output sink current the current flowing into the IC.

2.13 Cross talk attenuation (VO1/VO2)

Expresses the amount of fluctuation in the input offset voltage or output voltage with respect to the change in the output voltage of a driven channel.


2.14 Slew rate at unity gain (SR)


Indicates the time fluctuation ratio of the output voltage when an input step signal is supplied.

2.15 Unity gain bandwidth (B1)

The product of the specified signal frequency and the gain of the op-amp at such frequency, it gives the approximate value of the frequency where the gain of the op-amp is 1 (maximum frequency, unity gain frequency).

Derating Curves

LM2904DR/PWR/DGKR/VQDR/VQPWR

Power Dissipation

Package	Pd[W]	<i>θ</i> ja [℃/W]
SOIC8 (*8)	450	3.6
TSSOP8 (*6)	500	4.0
MSOP8/VSSOP8 (*7)	470	3.76

θ ja = (Tj-Ta)/Pd[°C/W]

Fig.6 Derating Curves

Precautions

1) Unused circuits

- When there are unused circuits, it is recommended that they be connected as in Figure 7, setting the non-inverting input terminal to a potential within the in-phase input voltage range (VICR).
- 2) Input terminal voltage
- Applying GND + 32V to the input terminal is possible without causing deterioration of the electrical characteristics or destruction, irrespective of the supply voltage. However, this does not ensure normal circuit operation. Please note that the circuit operates normally only when the input voltage is within the common mode input voltage range of the electric characteristics.
- 3) Power supply (single / dual)

The op-amp operates when the voltage is applied between Vcc and GND. Therefore, the single supply op-amp can be used as a dual supply op-amp as well.

4) Power dissipation (Pd)

Using the unit in excess of the rated power dissipation may cause deterioration in electrical characteristics due to the rise of chip temperature, including reduced current capability. Therefore, please take into consideration the power dissipation (Pd) under the actual operating conditions and apply a sufficient margin in thermal design. Refer to the thermal derating curves for more information.

- 5) Short-circuits between pins and erroneous mounting
- Incorrect mounting may damage the IC. In addition, the presence of foreign substances between the outputs, the output and the power supply, or the output and GND may also result in IC destruction.

6) Operation in a strong electromagnetic field

- Operation in a strong electromagnetic field may cause malfunctions.
- 7) Radiation

This IC is not designed to withstand radiation.

8) IC handing

Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuation of the electrical characteristics due to piezoelectric (piezo) effects.

9) IC operation

The output stage of the IC is configured using Class C push-pull circuits. Therefore, when the load resistor is connected to the middle potential of Vcc and GND, crossover distortion occurs at the changeover between discharging and charging of the output current. Connecting a resistor between the output terminal and GND and increasing the bias current for Class A operation will suppress crossover distortion.

10) Board inspection

Connecting a capacitor to a pin with low impedance may stress the IC. Therefore, discharging the capacitor after every process is recommended. In addition, when attaching and detaching the jig during the inspection phase, ensure that the power is turned OFF before inspection and removal. Furthermore, please take measures against ESD in the assembly process as well as during transportation and storage.

11) Output capacitor

Discharge of the external output capacitor to Vcc is possible via internal parasitic elements when Vcc is shorted to GND, causing damage to the internal circuitry due to thermal stress. Therefore, when using this IC in circuits where oscillation due to output capacitive load does not occur, such as in voltage comparators, use an output capacitor with a capacitance less than 0.1 μ F.

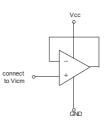
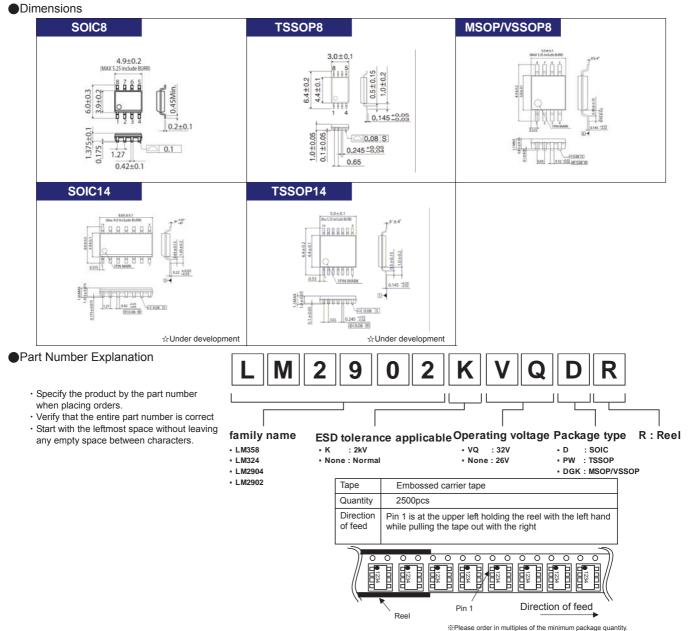



Fig.7 Disable circuit example

TROPHY SERIES LM2904/2902/358/324 family

