LM3350
Switched Capacitor Voltage Converter

General Description
The LM3350 is a CMOS charge-pump voltage converter which efficiently provides a 3.3V to 5V step-up, or 5V to 3.3V step-down. The LM3350 uses four small, low cost capacitors to provide the voltage conversion. It eliminates the cost, size and radiated EMI related to inductor based circuits, or the power loss of a linear regulator. Operating power conversion efficiency greater than 90% provides ideal performance for battery powered portable systems.

The architecture provides a fixed voltage conversion ratio of 3/2 or 2/3. Thus it can be used for other DC-DC conversions as well.

Key Specifications
- 800 kHz switch frequency allows use of very small, inexpensive capacitors.
- 4.2Ω typical step-up output impedance
- 1.8Ω typical step-down output impedance
- 90% typical power conversion efficiency at 50 mA
- 250 nA typical shutdown current

Features
- Conversion of 3.3V to 5V, or 5V to 3.3V
- Small Mini SO-8 package
- No inductor required

Applications
- Any mixed 5V and 3.3V system
- Laptop computers and PDAs
- Handheld instrumentation
- PCMCIA cards

Basic Operating Circuits

Connection Diagram
Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

- Maximum Input Voltage, Step-Down 5.5V
- Maximum Input Voltage, Step-Up 3.65V
- Power Dissipation (P_D) \(T_A=25^\circ C\) 500 mW (Note 2)
- \(\theta_J\) (Note 2) 250˚C/W
- T_J Max (Note 2) 150˚C
- Storage Temperature −65˚C to +150˚C
- Lead Temperature (Soldering, 10 secs) 260˚C
- ESD Susceptibility (Note 3) 2kV
- Not short circuit protected.

Operating Conditions (Note 1)

Ambient Temperature Range −40˚C to + 85˚C

Electrical Characteristics

3/2 Step-Up Voltage Converter

Specifications in standard type face are for $T_J = 25^\circ C$, and those with **boldface type** apply over full operating temperature range. Unless otherwise specified, $V_{in} = 3.3V$, $V_{Enable} = 3.3V$, $I_{load} = 50mA$.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Typ (Note 4)</th>
<th>Limits (Note 5)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{out_{NL}}$</td>
<td>Output Voltage at No Load</td>
<td>C_1, C_2, C_{ps} and C_{out}: 0.33µF, esr ≤ 0.33 Ω at 1MHz, $I_{load} = 0A$</td>
<td>5.0</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>$V_{out_{FL}}$</td>
<td>Output Voltage at 50 mA</td>
<td>C_1, C_2, C_{ps} and C_{out}: 0.33µF, esr ≤ 0.33 Ω at 1MHz, $I_{load} = 50mA$</td>
<td>4.7</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{in}</td>
<td>Input Supply Voltage Range</td>
<td></td>
<td>3.3</td>
<td>2.5</td>
<td>3.65</td>
</tr>
<tr>
<td>I_{Q1}</td>
<td>Quiescent Current</td>
<td>Shutdown Mode, $V_{Enable} = 0V$, $I_{load} = 0A$; Current into pin V_{low}</td>
<td>0.025</td>
<td>3</td>
<td>µA</td>
</tr>
<tr>
<td>I_{Q2}</td>
<td>Quiescent Current</td>
<td>Normal Mode, $I_{load} = 0A$; Current into pin V_{low}</td>
<td>3.75</td>
<td>5</td>
<td>mA</td>
</tr>
<tr>
<td>Z_{out}</td>
<td>Output Source Impedance</td>
<td>$I_{load} = 50mA$</td>
<td>4.2</td>
<td>6.25</td>
<td>Ω</td>
</tr>
<tr>
<td>f_{SW}</td>
<td>Switching Frequency</td>
<td>(Note 6)</td>
<td>800</td>
<td>500</td>
<td>1100</td>
</tr>
<tr>
<td>V_{Enable}</td>
<td>Enable Threshold Voltage</td>
<td></td>
<td>1.7</td>
<td>1.0</td>
<td>2.5</td>
</tr>
<tr>
<td>I_{Enable}</td>
<td>Leakage Current</td>
<td>Current into ENABLE pin; ENABLE = 5V and all other pins at ground</td>
<td>0.025</td>
<td>1</td>
<td>µA</td>
</tr>
<tr>
<td>P_{η}</td>
<td>Power Efficiency</td>
<td></td>
<td>90</td>
<td></td>
<td>%</td>
</tr>
</tbody>
</table>

Electrical Characteristics

2/3 Step-Down Voltage Converter

Specifications in standard type face are for $T_J = 25^\circ C$, and those with **boldface type** apply over full operating temperature range. Unless otherwise specified, $V_{high} = 5V$, $V_{Enable} = 5V$, $I_{load} = 50mA$.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Typ (Note 4)</th>
<th>Limits (Note 5)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{out_{NL}}$</td>
<td>Output Voltage at No Load</td>
<td>C_1, C_2, C_{ps} and C_{out}: 0.33µF, esr ≤ 0.33 Ω at 1MHz, $I_{load} = 0A$</td>
<td>3.3</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>$V_{out_{FL}}$</td>
<td>Output Voltage at 50 mA</td>
<td>C_1, C_2, C_{ps} and C_{out}: 0.33µF, esr ≤ 0.33Ω at 1MHz, $I_{load} = 50mA$</td>
<td>3.2</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{in}</td>
<td>Input Supply Voltage Range</td>
<td></td>
<td>5</td>
<td>2.2</td>
<td>5.5</td>
</tr>
<tr>
<td>I_{Q1}</td>
<td>Quiescent Current</td>
<td>Shutdown Mode, $V_{Enable} = 0V$, $I_{load} = 0A$; Current into pin V_{high}</td>
<td>0.25</td>
<td>3</td>
<td>µA</td>
</tr>
</tbody>
</table>
Electrical Characteristics

2/3 Step-Down Voltage Converter (Continued)

Specifications in standard type face are for $T_J = 25^\circ C$, and those with boldface type apply over full operating temperature range. Unless otherwise specified, $V_{\text{high}} = 5V$, $V_{\text{Enable}} = 5V$, $I_{\text{load}} = 50mA$.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Typ (Note 4)</th>
<th>Limits (Note 5)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{Q2}</td>
<td>Quiescent Current</td>
<td>Normal Mode, $I_{\text{load}} = 0A$; Current into pin V_{high}</td>
<td>2.5</td>
<td>3.3</td>
<td>mA (Max)</td>
</tr>
<tr>
<td>Z_{out}</td>
<td>Output Source Impedance</td>
<td>$I_{\text{load}} = 50mA$</td>
<td>1.8</td>
<td>3</td>
<td>Ω (Max)</td>
</tr>
<tr>
<td>f_{SW}</td>
<td>Switching Frequency</td>
<td>(Note 6)</td>
<td>800 kHz</td>
<td>500 kHz (Min)</td>
<td>1100 kHz (Max)</td>
</tr>
<tr>
<td>V_{Enable}</td>
<td>Enable Threshold Voltage</td>
<td></td>
<td>1.7 V (Min)</td>
<td>2.5 V (Max)</td>
<td></td>
</tr>
<tr>
<td>I_{Enable}</td>
<td>Leakage Current</td>
<td>Current into ENABLE pin; ENABLE = 9V and all other pins at ground</td>
<td>0.025</td>
<td>1</td>
<td>μA (Max)</td>
</tr>
<tr>
<td>P_{η}</td>
<td>Power Efficiency</td>
<td></td>
<td>90</td>
<td></td>
<td>$%$</td>
</tr>
</tbody>
</table>

Note 1: Absolute maximum ratings indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 2: For operation at elevated temperatures, LM3350 must be derated based on package thermal resistance of θ_{ja} and $T_{J \text{ max}}$, $T_{J} = T_{A} + \theta_{ja}P_{D}$.

Note 3: The human body model is a 100 pF capacitor discharged through a 1.5 kΩ resistor into each pin.

Note 4: Typical numbers are at 25$^\circ$C and represent the most likely parametric norm.

Note 5: Limits are 100% production tested at 25$^\circ$C. Limits over the operating temperature range are guaranteed through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate National’s Averaging Outgoing Quality Level (AOQL).

Note 6: The internal oscillator runs at 1.6 MHz, the output switches operate at one half of the oscillator frequency, $f_{OSC} = 2f_{SW}$.

Typical Performance Characteristics

- V_{out} vs I_{load} (Step-Up)
- P_{η} vs I_{load} (Step-Up)
- Output Source Impedance vs Temperature (Step-Up)
Typical Performance Characteristics (Continued)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cap1+</td>
<td>Positive terminal for the first charge pump capacitor.</td>
</tr>
<tr>
<td>2</td>
<td>Cap1−</td>
<td>Negative terminal for the first charge pump capacitor.</td>
</tr>
<tr>
<td>3</td>
<td>Cap2+</td>
<td>Positive terminal for the second charge pump capacitor.</td>
</tr>
<tr>
<td>4</td>
<td>Cap2−</td>
<td>Negative terminal for the second charge pump capacitor.</td>
</tr>
<tr>
<td>5</td>
<td>V_{low}</td>
<td>In Step-Up mode, this will be the input terminal. In Step-Down mode, this will be the output terminal.</td>
</tr>
<tr>
<td>6</td>
<td>Gnd</td>
<td>Ground</td>
</tr>
<tr>
<td>7</td>
<td>V_{high}</td>
<td>In Step-Down mode, this will be the input terminal. In Step-Up mode, this will be the output terminal.</td>
</tr>
<tr>
<td>8</td>
<td>Enable</td>
<td>Active high CMOS logic level Enable Input. Connect to Voltage Input terminal to enable the IC. Connect to Ground (Pin 6) to disable.</td>
</tr>
</tbody>
</table>

Detailed Operation

OPERATING PRINCIPLE
The LM3350 is a charge-pump voltage converter that provides a voltage conversion ratio of 3/2 in step-up mode and a conversion ratio of 2/3 in the step-down mode. Thus it can be used in the step-down mode to provide a 3.3V output from a regulated 5V input or in the step-up mode to provide a 5V output from a regulated 3.3V input. Other values of input voltages can be used as long as they are within the limits.

The LM3350 contains an array of CMOS switches which are operated in a certain sequence to provide the step-up or step-down of the input supply. An internal RC oscillator provides the timing signals.

Energy transfer and storage are provided by four inexpensive ceramic capacitors. The selection of these capacitors is explained in the Capacitor Selection section under Application Information.
Detailed Operation (Continued)

STEP-UP APPLICATIONS NEED AN EXTRA DIODE

The LM3350 is biased from pin V_{high}. Thus for step-up applications, an external Schottky diode (D1) is needed to supply power to V_{high} during startup (See Figure 2). Note that during shutdown, this diode will provide a DC path from V_{in} to V_{out}. The load may therefore continue to draw current from the input voltage source. This Schottky diode is not required for step-down applications (See Figure 3).

SHUTDOWN MODE

When ENABLE is a logic low (ground), the LM3350 enters a low power shutdown mode. In this mode, all circuitry is disabled and therefore, all switching action stops. During shutdown, the current consumption drops to 250 nA (typical). When ENABLE is a logic high, (i.e. 3.3V for step-up mode and 5.0V for step-down mode), the LM3350 returns to normal operation.

Application Information

CAPACITOR SELECTION

The LM3350 requires four capacitors: an input bypass capacitor (connected between V_{in} and ground), an output hold capacitor (connected between V_{out} and ground), and two sampling capacitors (C1 and C2 in Figures 2, 3). 0.33 µF (±20%) ceramic chip type capacitors are recommended for all four capacitors. The usable operating frequency should be greater than 5 MHz for all capacitors.

The input bypass capacitor (C_{in}) is the least critical. Its value should be at least that of the sampling capacitors.

While the recommended sampling capacitor values are 0.33 µF, other values may be selected. Values other than 0.33 µF affect maximum output current rating and efficiency. Figure 1 shows typical output impedance (Z_{out}) versus capacitor value.

The output hold capacitor value determines the output ripple. Increasing the value of the hold capacitor decreases the ripple. The value of this capacitor (C_{out}) can be calculated (approximately) based on the output ripple (∆V_{out}) requirements from:

\[
C_{\text{OUT}} = \frac{I_{\text{LOAD}}}{\Delta V_{\text{OUT}} f_0}
\]

where I_{load} is the load current and f_0 is the oscillator frequency.

In order to ensure superior performance over the entire operating temperature range, capacitors made of X7R dielectric material are suggested. However, capacitors made of other dielectric materials that still meet the ±20% specification over the entire temperature range can also be used.

PRECAUTIONS

The LM3350 is not short circuit protected.
Typical Application Circuits

Layout Information

LAYOUT CONSIDERATIONS

The LM3350’s high switching frequency (800 kHz) makes a good layout important. Figure 4 illustrates a typical layout. It is important to keep the distance short between the four capacitors and the IC. Wide traces and grounding are also recommended. These steps will minimize trace inductance and high frequency ringing. Of the four capacitors, \(C_{\text{high}} \) and \(C_{\text{low}} \) have the highest value of \(\frac{dV}{dt} \). It is therefore most important to keep them close to the IC. The ground lead that \(C_{\text{high}} \) and \(C_{\text{low}} \) share should also be kept wide and short.

The location of the diode (D1) used in the step-up configuration is not critical. This diode is only used during the initial turn on of the IC. D1 is not needed in step-down applications.
FIGURE 4. Typical Layout
LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.