

FR80 Family
32-BIT MICROCONTROLLER

MB91F662

SK-FR80-120PMC-USB “bits pot black”

USB board

User's Manual

 1

Warranty and Disclaimer

The use of the deliverables (e.g. software, application examples, target boards, evaluation

boards, starter kits, schematics, engineering samples of IC’s etc.) is subject to the conditions of

Fujitsu Microelectronics Europe GmbH (“FME”) as set out in (i) the terms of the License

Agreement and/or the Sale and Purchase Agreement under which agreements the Product has

been delivered, (ii) the technical descriptions and (iii) all accompanying written materials.

Please note that the deliverables are intended for and must only be used in an evaluation

laboratory environment.

The software deliverables are provided without charge and therefore provided on an as-is basis.

The software deliverables are to be used exclusively in connection with FME products.

Regarding hardware deliverables, FME warrants that they will be free from defects in material

and workmanship under use and service as specified in the accompanying written materials for a

duration of 1 year from the date of receipt by the customer.

Should a hardware deliverable turn out to be defect, FME’s entire liability and the customer’s

exclusive remedy shall be, at FME´s sole discretion, either return of the purchase price and the

license fee, or replacement of the hardware deliverable or parts thereof, if the deliverable is

returned to FME in original packing and without further defects resulting from the customer’s use

or the transport. However, this warranty is excluded if the defect has resulted from an accident

not attributable to FME, or abuse or misapplication attributable to the customer or any other third

party not relating to FME or to unauthorised decompiling and/or reverse engineering and/or

disassembling.

FME does not warrant that the deliverables does not infringe any third party intellectual property

right (IPR). In the event that the deliverables infringe a third party IPR it is the sole responsibility

of the customer to obtain necessary licenses to continue the usage of the deliverable.

In the event the software deliverables include the use of open source components, the provisions

of the governing open source license agreement shall apply with respect to such software

deliverables.

To the maximum extent permitted by applicable law FME disclaims all other warranties, whether

express or implied, in particular, but not limited to, warranties of merchantability and fitness for a

particular purpose for which the deliverables are not designated.

To the maximum extent permitted by applicable law, FME’s liability is restricted to intention and

gross negligence. FME is not liable for consequential damages.

Should one of the above stipulations be or become invalid and/or unenforceable, the remaining

stipulations shall stay in full effect.

The contents of this document are subject to change without a prior notice, thus contact FME

about the latest one.

 2

Revision History
Revisions Date Description

Version 1.0 2009/06/30 First issue

 3

Table of Contents

Warranty and Disclaimer .. 1
Revision History... 2
Table of Contents... 3
1 Preparations... 9

1.1 Checking package contents... 9
1.2 Other items required .. 10
1.3 Required software.. 10
1.4 External appearance of the starter kit board and major components........................ 11
1.5 Starter kit parts ... 13
1.6 Power supply methods... 16

2 Setting up the PC... 18
2.1 Installing the integrated development environment SOFTUNE (bits pot dedicated

version) 19
2.2 Installing the USB driver .. 25

3 Launching SOFTUNE and using the monitor debugger.. 32
3.1 Launching SOFTUNE .. 32
3.2 Setting and launching the monitor debugger ... 37
3.3 Using the monitor debugger... 44
3.4 Exiting monitor debug .. 51

4 What is a USB?.. 52
4.1 What is a USB?.. 52
4.2 Features of the USB .. 52
4.3 Connection formats.. 53
4.4 Plug .. 54
4.5 Transfer rate... 55
4.6 Transfer rate detection ... 55
4.7 Transfer methods ... 56
4.8 Configuration of a device ... 57
4.9 Enumeration... 58
4.10 Device class ... 61

 4

5 Let's make a USB mouse .. 62
5.1 Overview of the USB sample program .. 62
5.2 Overview of USB communications flow ... 65

5.2.1 Overview of USB communications flow... 65
5.2.2 Device request (PC -> Starter kit).. 69
5.2.3 Descriptor (PC <- Starter kit) ... 72

5.3 Sample program sequence.. 76
5.3.1 Main routine ... 77
5.3.2 USB initialization process .. 79
5.3.3 USB interrupt processing... 80
5.3.4 EP0 data receive process.. 82
5.3.5 Setup command receive process .. 83
5.3.6 Switch operation detection process... 85
5.3.7 HID data notification process... 88

6 Humidity sensor ... 89
6.1 What is humidity?... 89
6.2 What is a humidity sensor?.. 89

7 Let's make a hygrometer ... 92
7.1 Overview of the sample program... 92
7.2 Details on the humidity sensor... 94

7.2.1 Wiring the humidity sensor .. 94
7.2.2 Driving the humidity sensor ... 95
7.2.3 Humidity sensor characteristics... 96

7.3 Sample program operating details ... 98
7.3.1 Main routine ... 98
7.3.2 A/D converter interrupt processing .. 100
7.3.3 Humidity calculation process ... 101

8 What is an FRAM?... 102
9 Let's make a counter.. 105

9.1 Overview of the sample program... 105
9.2 Details on the FRAM MB85RS256... 108
9.3 Explanation of the sample program ..111

9.3.1 Main routine ... 112
10 USB Host function (mass storage SW-sample) ... 115

10.1 Overview of the sample program... 115
10.2 Detailed sample program description .. 118

 5

10.3 Additional option: Using terminal program for interaction.. 119
Appendix.. 121

1 Creating projects/sample programs as new projects... 121
1.1 Sample project configuration ... 121
1.2 Explanation of the program.. 122
1.3 SOFTUNE settings .. 125

2 Verifying COM ports... 130
2.1 For Windows XP .. 130

3 Installation and usage of the PC writer .. 132
4 Monitor debugger... 141

4.1 Explanation of the monitor debugger... 141
4.2 Resources used by monitor debugger... 142
4.3 Memory map with monitor debugger installed ... 143
4.4 Monitor debugger limitations.. 144
4.5 Stand-alone operation of the sample program... 145

 6

Introduction

Thank you for purchasing bits pot black (hereafter, starter kit).

This starter kit is a USB microcontroller training kit equipped with Fujitsu's microcontroller

MB91F662 (certified USB*). This starter kit provides an easy-to-understand training system for

USB microcontrollers, and is intended for students who need to know "What is a USB?", "How is

it used?", and "What is it used for?"

The starter kit includes development tools for flash microcontrollers so that students with a basic

understanding of the C language can rewrite programs to make the microcontroller perform

various tasks. Sample programs for a hygrometer and FRAM, provide the student with ample

amusement while learning how to use these functions. We hope this text will serve as a primer

for future developers of systems based on the USB.

* USB certification

Product Name: MB91660series MB91F662 Host/Peripheral Silicon

Product Test ID: 40000619

 7

Part and material suppliers
This board was made possible through the cooperation of these suppliers.

We express our sincere appreciation for their help.

In addition, many individuals provided tremendous help in the planning and realization of this

board.

To all of you, we express our sincere appreciation for your help.

Murata Manufacturing Co., Ltd.

Provided free of charge: SMD Piezoelectric sounder: PKLCS1212E40A1

 Monolithic Ceramic Capacitors: GCM Series

GCM188R11E104KA42D (0.1uF), GCM1552C1H180JZ0D (18pF) ,

GCM31CR71E475KA40L (4.7uF), GCM32ER71E106KA42L(10uF),

GCM155R11A473KA01D (47000pF), GCM1552C1H471JA0D (470pF),

GCM1552C1H470JA0D (47pF), GCM155R11E103KA01D (10000pF),

GCM155R11E223KA01D (22000pF)

INTERFACE Co., Ltd.

Provided free of charge: USB control firmware

KYOWA ELECTRONIC INSTRUMENTS CO., LTD.

Provided at a nominal cost: Strain gauge: KFG-5-350-C1-11L1M2R

＠＠＠

TDK Corporation

Provided free of charge: Chip NTC Thermistor: NTCG164BH103J

 Chip beads: MPZ2012S300AT

＠＠＠

 HOKURIKU ELECTRIC INDUSTRY CO., LTD.

Provided free of charge: Humidity sensor: HIS06

 8

＠＠＠

 Fujitsu Microelectronics Limited

Provided free of charge: Microcontroller MB91F662

 Sensor Conditioner IC MB42M131

FRAM MB85RS256

Power Voltage Monitoring IC with Watchdog Timer MB3793-30A

 Integrated Development Environment SOFTUNE Workbench

 Sample programs

 9

1 Preparations
1.1 Checking package contents

Make sure your package contains all items listed in Table 1.1-1, Starter kit package contents.

Figure 1.1-1 shows a photo of the contents.

Table 1.1-1 Starter kit package contents

 Name Qty. Specifications/Remarks

(1) Main board 1 FUJITSU 32-bit Microcontroller, MB91F662

(certified USB) and peripherals mounted

(2) USB A to Mini-B cable 1

Figure 1.1-1 Starter kit contents (photo)

(1) Main board

(2)

USB A⇔Mini-B cable

 10

1.2 Other items required

 Please have ready these additional items not included with the starter kit, as listed in Table

1.2-1.

Table 1.2-1 List of additional items required

 Name Qty. Specifications/Remarks

1 PC 1 OS: Windows XP or Windows VISTA

Requires two or more USB ports.

2 Software － See "1.3 Required software".

3 USB A to B cable 1 Used to test USB mouse operation (included with

sample software).

4 USB mass storage

device (memory stick)

1 Used to test USB mass storage sample (included with

sample software).

1.3 Required software

 The software required in order to operate the starter kit are listed in Table 1.2-1. Go to the online

software purchasing website for bits pot black and download the required software.

Table 1.3-1 Required software

 Name Specifications/Remarks

1 SOFTUNE Dedicated version for bits pot

2 PC writer Dedicated version for bits pot

3 Sample programs

 (See list on following page.)

- 7-segment LED lighting test (Refer to Chapter 2)

- USB mouse (Refer to Chapter 5)

- Humidity sensor (Refer to Chapter 7)

- FRAM SPI (Refer to Chapter 9)

- Skeleton for creating new programs (Refer to Appendix)

- USB Host sample (Refer to Chapter 10)

 11

1.4 External appearance of the starter kit board and major components

Figure 1.4-1 shows the external appearance of the starter kit board, and Table 1.4-1 lists the

major components.

Figure 1.4-1 External appearance of the starter kit board

(2) FRAM

(1) Main MCU

(5) 7-segment LED

(14) 4 MHz

oscillator

(11) USB Mini-B connector

(9) Slider SW

 (for analog input)
(4) Terminal block

(3) Humidity sensor
(12) USB

B connector

(6) Pushbutton SW (7) Pushbutton SW

(8) Pushbutton SW

(10) Slider SW

(13) USB

Ａ connector

 12

Table 1.4-1 Major components on the starter kit board

 Component Description Reference

(1) Main MCU FUJITSU 32-bit Microcontroller

MB91F662 (certified USB)

―

(2) FRAM FUJITSU MB85RS256 Chapters 10, 11

(3) Humidity sensor Measures humidity. Chapter 9

(4) Terminal block Connects to plastic board (mounted with strain

gauge) to make an electronic scale.

Chapter 7

(5) 7-segment LED Displays the operating results of sample

programs.

Chapter 2, etc.

(6) Pushbutton SW Used to control the USB mouse operation. Chapter 5

(7) Pushbutton SW Used to control the USB mouse operation.

Used to reset the electronic scale.

Used to control the counter value and operation.

Chapter 5

Chapter 7

Chapters 10, 11

(8) Pushbutton SW Used during debug. Chapter 2

(9) Slider SW

(For analog input)

Used to control the USB mouse operation. Chapter 5

(10) Slider SW Controls mode selection of the main

microcontroller.

Chapter 2

Appendix

(11) USB Mini-B

connector

Connects the PC and main microcontroller with

the USB B to Mini-B cable. Used for debugging

serial communications.

Chapter 2

(12) USB B connector Used to control the USB mouse operation. Chapter 5

(13) USB A connector Used when operating the microcontroller as a

host. This usage is not described in this manual.

―

(14) 4 MHz oscillator Generates the main clock for the sample

programs.

―

 13

1.5 Starter kit parts

 Table 1.5-1 lists the parts in the starter kit.

Table 1.5-1 Starter kit parts

Part number Name Model Manufacturer

C1,C2,C4,C6,C9,

C10,C12,C13,

C18,C19,C37,

C36,C56,C58,

C60,C61

Monolithic ceramic capacitor 0.1uF GCM188R11E104KA42D
Murata Manufacturing

Co., Ltd.

C3,C5 Monolithic ceramic capacitor 18pF GCM1552C1H180JZ0D
Murata Manufacturing

Co., Ltd.

C7,C11,C54,C55 Monolithic ceramic capacitor 4.7uF GCM31CR71E475KA40L
Murata Manufacturing

Co., Ltd.

C17,C32,C33 Monolithic ceramic capacitor 10uF GCM32ER71E106KA42L
Murata Manufacturing

Co., Ltd.

C14,C15,C16 Monolithic ceramic capacitor 47000pF GCM155R11A473KA01D
Murata Manufacturing

Co., Ltd.

C20,C21,C22,

C23,C24,C25,

C26,C27,R87,R88

Monolithic ceramic capacitor 470pF GCM1552C1H471JA0D
Murata Manufacturing

Co., Ltd.

C28,C29 Monolithic ceramic capacitor 47pF GCM1552C1H470JA0D
Murata Manufacturing

Co., Ltd.

C35 Monolithic ceramic capacitor 10000pF GCM155R11E103KA01D
Murata Manufacturing

Co., Ltd.

C57 Monolithic ceramic capacitor 22000 pF GCM155R11E223KA01D
Murata Manufacturing

Co., Ltd.

C59 Monolithic ceramic capacitor 150uF F911A157MNC Nichicon

D2,D3,D4,D5,D6,D7 LED SML-210LT ROHM

D10,D11 Diode 1SR154 ROHM

L1,L3,L4 Chip beads MPZ2012S300AT TDK Corporation

 14

Part number Name Model Manufacturer

P_SW1,P_SW2,

P_SW3,P_SW4,

P_SW5,P_SW6,

P_SW7,P_SW8,

P_SW9,P_SW10

Push switch B3S-1000 OMRON Corporation

Q1 Digital transistor DTA114TUA ROHM

R1,R3,R4,R5,R7,R8,

R27,R28,R29,R30,

R31,R32,R33,R34,

R42,R44,R45,R49,

R70,R76,R89

Chip resistor 10 KΩ MCR03EZPF103 ROHM

R9,R10,R17,R78,

R79,R84,R85,

R86,R87,R88

Chip resistor 0Ω MCR03EZPJ000 ROHM

R11,R13,R15,R26,R77 Chip resistor 330Ω MCR03EZPD331 ROHM

R12,R14,R16 Chip resistor 20Ω MCR03EZPD200 ROHM

R18,R21,R22,R23,

R25,R39,R72,R75
Chip resistor 2 KΩ MCR03EZPJ202 ROHM

R19,R24 Chip network resistor 18 KΩ MNR18E0APJ182 ROHM

R20 Chip resistor 2 KΩ MCR03EZPF102 ROHM

R35 Chip resistor 47 KΩ MCR03EZPJ473 ROHM

R36,R37 Chip resistor 27Ω MCR03EZPJ270 ROHM

R38,R40 Chip resistor 15 KΩ MCR03EZPJ153 ROHM

R43 Chip resistor 100 KΩ MCR03EZPJ104 ROHM

R48 Chip resistor 1.5 KΩ MCR03EZPJ152 ROHM

R50 Chip resistor 220Ω MCR03EZPF221 ROHM

R51 Chip resistor 51 KΩ MCR03EZPF513 ROHM

R71 Chip resistor 24 KΩ MCR03EZPJ243 ROHM

R80,R83 Chip resistor 4.7 kΩ MCR03EZPF472 ROHM

R6,R52,R90 Chip resistor Reserved ― ―

SW1, SW2 Switch (1 pole) SS-12SDP2
Nihon Kaiheiki Industry

Co., Ltd.

SW3 Switch (2 pole) SS-22SDP2
Nihon Kaiheiki Industry

Co., Ltd.

SW6 Power selector switch (3 pole) MHS131 Fujisoku Corporation

TE1 Chip NTC thermistor NTCG164BH103J TDK Corporation

 15

Part number Name Model Manufacturer

U1 FRAM MB85RS256 FUJITSU

U2 Microcontroller MB91F662 FUJITSU

U3 Sensor conditioner IC MB42M131 FUJITSU

U4,U5 Through hole 0.8 dia. x 9 pitch:2.54 mm

U6 Terminal block PA001-2P AVC Corporation of Japan

U7,U9 7-SEG LED LA-301VB ROHM

U8 SMD piezoelectric sounder PKLCS1212E40A0-R1
Murata Manufacturing

Co., Ltd.

U10 Humidity sensor HIS-06
HOKURIKU ELECTRIC

INDUSTRY CO., LTD.

U11 USB_A connector DUSB-ARA42-T11A-FA DDK

U13 Regulator LT1963AEQ-3.3#TRPBF Linear Technology

U14 USB to serial converter FT232RL FTDI

U15 USB Mini-B connector 54819-0572 Molex

U16 USB_B connector DUSB-BRA42-T11-FA DDK

U18
Power Voltage Monitoring IC with

Watchdog Timer
MB3793-30A FUJITSU

U22 DC jack MJ-179P

U23 USB power switch LM3525-H National Semiconductor

VR1 Volume RD7097
ALPS ELECTRIC CO.,

LTD.

Y1 Crystal oscillator (4 MHz)
CX49GFWB04000H0PESZ

Z
KYOCERA Corporation

Accessory Rubber feed (rivet type) FF003-AR79 P3055 Koyo Fasteners

Accessory Strain gauge KFG-5-350-C1-11L1M2R

KYOWA ELECTRONIC

INSTRUMENTS CO.,

LTD.

Accessory USB cable USB_B to Mini-B

 16

1.6 Power supply methods

There are three methods for supplying power to the board, each selected using SW6 as shown

below. The Power LED lights up red when power is supplied.

 Power supply Silk printing on board Remarks

1 USB Mini-B

connector

USB Mini-B Draws bus power from the PC via the USB

A to Mini-B cable.

2 USB B connector USB FUNC Draws bus power from the PC via the USB

A to USB B cable.

3 External power

supply (5V)

External Draws power from an AC adapter. (AC

adapter not included with kit.)

< Typical AC adapter models>

Model No: GF12-US0520

I/P: 100-240V 50/60Hz 0.3A

O/P: DC 5V 2.0A

 17

!! Caution !!

• Do not change the power supply selector switch while the microcontroller is operating.

• Never change the power supply selector to External when the external power supply (5V) is

not supplying power.

• Do not change the power supply selector switch to USB FUNC when the USB B connector

is disconnected.

• Do not change the power supply selector switch to USB Mini-B when the USB Mini-B

connector is disconnected.

1. via USB Mini-B connector

3. External power supply (5V)

2. via USB B connector

Power supply selector SW

Lights up when power is ON

 18

2 Setting up the PC

Install the software required to operate this starter kit to your PC.

 Be sure to download the required software before starting the installation process.

The setup procedures are as follows.

Setup procedures:

- Installation of the integrated development environment SOFTUNE (bits pot dedicated version)

(Refer to Section 2.1)

- Installation of USB drivers (Refer to Section 2.2)

 19

2.1 Installing the integrated development environment SOFTUNE (bits pot dedicated version)

What is SOFTUNE?

SOFTUNE is the integrated development environment (IDE) for developing programs and

evaluating FUJITSU Microcontrollers. Developing programs for microcontrollers commonly used

in embedded devices is a repetitive cycle of coding the source, building the executable, checking

program operation (debug), and reflecting the debug results into the source code again. The

SOFTUNE IDE is a tool designed to support the development process by integrating these tasks

into a seamless systematic flow.

!! Caution !!

If the product version of SOFTUNE V6 is already installed on your PC, uninstall it and then

re-install the SOFTUNE version dedicated for bits pot.

The installation procedures for SOFTUNE (bits pot dedicated version) are described below.

Please notice that you have to register first (free of charge) to get the password which is

necessary for installation. Please see chapter “The development Software” in the Readme

document for registration information.

Unpack the downloaded files "FR_ProPack_Rev600010-BV.zip(*)" to a folder on your PC.

After the files are unpacked, double-click on "setup.exe". The setup window welcome screen

appears. Follow the instructions in the window to begin the installation.

(*) bits_pot_black/software/SOFTUNE/FR_ProPack_Rev600010-BV-ComExpansion.zip

(This explanation is described using Windows XP screens.)

Click "OK".

 20

Click "Next".

Click "Next".

 21

If you agree with the usage license, click "Yes".

Click "Next".

 22

Click "Next". Leave the destination folder at the default, "C:¥Softune6".

Confirm the components selected for installation. "Customize Bar" is not checked by default so

place a check in it.

 23

Verify the details of the installation are acceptable.

If there are no problems, click "Next".

Wait for the installation to complete.

 24

Click the "Finish" button to complete the installation of SOFTUNE.

 25

2.2 Installing the USB driver

The starter kit is equipped with a USB-to-serial converter IC (made by FTDI) between the USB

Mini-B connector and microcontroller. This USB driver must be downloaded from the FTDI

website. The driver can be also found on the CD-ROM in folder CD:/USB-Driver/CDM 2.04.16

WHQL_Certified.zip. Please check FTDI website for latest release.

Download the driver software to a folder on your PC from the URL listed below beforehand.

FTDI (Future Technology Devices International Ltd.)

Virtual COM Port Drivers

http://www.ftdichip.com/Drivers/VCP.htm

The driver can be downloaded from here.

The version number as of September 2008 is "2.04.06".

http://www.ftdichip.com/Drivers/VCP.htm�

 26

Once the driver has been downloaded and unpacked, the starter kit is ready to be connected

to the PC using the supplied USB cable. However, before doing so, check the switch settings on

the board. Figure 2.2-1 and Table 2.2-1 show the switch settings to use when installing the USB

driver.

 Figure 2.2-1 Switch settings when installing the USB driver

Table 2.2-1 Switch settings when installing the USB driver

 Silk printing on board Setting Remarks

(1) SW6 USB Mini-B Enables communications using USB Mini-B.

(2) SW1 RUN Specifies user execution mode.

(3) SW2 Debug Specifies debug mode.

(4) SW3 FUNC Specifies USB function mode.

(1) Set to "USB Mini-B".
(2) Set MODE0 to "RUN".

(3) Set MODE1 to "Debug".

(4) Set to "FUNC".

 27

After setting the switches on the board, connect the PC and board using the USB A to Mini-B

cable supplied with the starter kit.

When you connect the board to the PC, the PC will recognize the new hardware and display

messages prompting you to install the driver. Follow these steps to install the driver.

Do not connect the cable to

"USB FUNC" or "USB HOST".

To USB Mini-B connector

 28

This procedure will explain how to install the driver software previously downloaded instead of

connecting to Windows Update.

Select "Install from a list or specific location (Advanced)", and click "Next".

Click "Browse" and specify the folder "CDM 2.04.06 WHQL Certified" downloaded earlier, then

click "Next".

 29

Wait for the "USB Serial Converter" installation to complete.

Click "Finish" to complete the installation of "USB Serial Converter".

 30

Next, install the "USB Serial Port".

Select "Install from a list or specific location (Advanced)", and click "Next".

Click "Browse" and specify the folder "CDM 2.04.06 WHQL Certified" downloaded earlier, then

click "Next".

 31

Wait for the "USB Serial Port" installation to complete.

Click "Finish" to complete the installation of "USB Serial Port".

This completes the installation of the USB driver.

 32

3 Launching SOFTUNE and using the monitor debugger

3.1 Launching SOFTUNE

After installing SOFTUNE and the USB driver, launch SOFTUNE by clicking Windows [Start] -

[All Programs] - [SOFTUNE V6] - [FR Family SOFTUNE Workbench].

Figure 3.1-1 shows the screen layout when SOFTUNE starts up.

Figure 3.1-1 Screen layout at SOFTUNE startup

The SOFTUNE window is comprised of a menu bar, tool bar, project window, edit window,

output window, and status bar.

Project

window

Edit window

Output window

Status bar

Tool bar
Menu bar

 33

Menu bar Contains menu items for the SOFTUNE application.

Tool bar The tool bar has groups of buttons for frequently used

commands. You can move the tool bar anywhere on the screen

by clicking inside the group frame with the left mouse button and

dragging it.

Project window Displays a tree view of the name of the currently open project

and the files registered to the project.

Edit window This is the window used to display and edit source files.

Output window This window shows version information and error messages

generated by the compiler during the make and build process.

Status bar The status bar shows the current status of SOFTUNE.

!! HINT !!

You can move the position of the tool bars and resize windows freely to match your

preferences.

Project

window
Edit window

Output window

Grab the edge of the tool bar to move it.

 34

Unpack the downloaded sample programs. Samples programs can be found on CD-ROM at

CD:/Examples/sample_program_e.zip. Please see also Readme document chapter „Tools and

Software Examples“ for details.

Open "sample.wsp (*)". From the "File (F)" menu, click "Open (O)", select "Workspace/project

file", then select "sample.wsp" and click OK.

(*) bits_pot_black/sample_program/project/sample.wsp

!! HINT !!

You can also open a workspace file by dragging and dropping the "sample.wsp" file from

Explorer onto the SOFTUNE window.

When "sample.wsp" opens, a tree view showing the registered projects in the sample programs

appears in the project window. Table 3.1-1 shows the projects in the workspace.

Figure 3.1-2 Contents of "sample.wsp"

Table 3.1-1 List of projects in sample.wsp

Project name Description Reference

io_mb91660 CPU register definitions file ―

sample_LED 7-segment LED program Chapter 2 (this chapter)

sample_skeleton For creating new programs Appendix

sample_USB USB mouse Chapter 5

sample_humidity Hygrometer Chapter 9

sample_strain_gauge Electronic scale Chapter 7

sample_FRAM_SPI Counter using FRAM Chapter 11

 35

In order to confirm everything has been setup properly, we will use the sample program

"sample_LED" to flash the letters "FJ" on the 7-segment LED on the starter kit board.

Make sure "sample_LED.abs – “sample_LED.prj”[Debug]” is set as the active project and

appears in bold type.

!! Caution !!

The active project is the target project for the compiler and debugging. To execute other

sample programs explained after this Chapter, make sure the project is set as the active

project.

To set a project as the active project, right-click on the project in the project window and click

"Set as Active Project". The active project appears in bold type.

Click the + next to "Source Files" and check the registered files. Double-click the file name to

view it in the edit window

 36

Next, we will compile the program.

Click the "Build" button to compile, and verify there were no errors in the compilation results in

the output window.

If the compilation was successful, proceed to setup and launch the monitor debugger.

"Build" button

 37

3.2 Setting and launching the monitor debugger

Explanation of the monitor debugger

The monitor debugger allows developers to debug the program loaded on a production

microcontroller with built-in FLASH memory. Installing a monitor program with the application

program provides access to debug functions. (Read also the monitor debugger explanation

given in the Appendix at the end of the manual.)

Click the + next to "Debug" to setup the monitor debugger. Right-click on "sample_LED.sup"

and select "Change settings" to launch the setup wizard for the debugger.

 38

The setup wizard for the debugger starts up.

Click "Next".

Select "Monitor Debugger" for debugger type.

Click "Next".

 39

Select "RS" as the Type and specify the COM port the board is connected to. Leave the baud

rate at "256000".

Click "Next".

Refer to Appendix 2 in this manual to

verify COM ports.

 40

Click "Next".

Make sure the option "Auto load when starting debug." has a check in it, and that the batch file

for "Before" is set to "FshLdWrt.prc".

 "FshLdWrt.prc" is a batch file for writing user programs to the FLASH memory on the board.

Check the settings and click "Finish" to complete the setup wizard.

 41

Before launching the debugger, check the switch settings on the board and the connection with

the PC. If the settings and connections are correct, press the Reset switch.

!! Caution !!

Be sure to always press the Reset switch before launching the monitor debugger. This applies

to other sample programs as well.

Figure 3.2-1 Connections when launching the monitor debugger

Table 3.2-1 Switch settings when launching the monitor debugger

Silk printing on board Setting Remarks

SW6 USB Mini-B Enables USB Mini-B.

SW1 RUN Operates the microcontroller in user mode.

SW2 Debug Operates the microcontroller in debug mode.

SW3 FUNC Uses the microcontroller's USB FUNCTION.

Do not connect the cable to

"USB FUNC" or "USB HOST".

To USB Mini-B connector

Always press the Reset SW

before launching the debugger.

 42

 From the SOFTUNE "Debug" menu, select "Start debug".

If the settings were made correctly, the batch file for "Before " in the setup wizard will run.

When the dialog bar is showing, the program is being downloaded to the FLASH memory on the

microcontroller. Do not disconnect the USB cable from the board or the PC during the download.

 43

If the debugger does not launch

Check the following.

1. Board settings.

• Is the USB cable properly connected to the board and PC?

• Are the switches on the board set properly?

2. Setup wizard settings.

• Are the COM port and baud rate settings correct?

3. If both 1 and 2 are correct but the debugger still does not launch, the monitor program may

be corrupt. Refer to Appendix 3 to write the monitor program using the PC Writer, and then

launch the debugger.

 44

3.3 Using the monitor debugger

The debugger will launch when the download to the FLASH memory on the microcontroller

completes. The debugger should be pointing to the starting address of the user program.

 45

Run the program by clicking the "Run continuously" button in the upper left of the SOFTUNE

window.

 46

 Execution is successful if the letters "FJ" appear flashing on the 7-segment LED.

 47

To stop program execution, press the "DEBUG STOP" button on the board. The flashing "FJ" will

stop when the DEBUG STOP button is depressed. Depending on the timing, the program may

stop with FJ still showing.

To resume program execution, click "Run Continuously" in the upper left of the SOFTUNE

window.

In addition to running continuously, SOFTUNE also allows "Step Execution" and "Run to Cursor".

The basic functions in SOFTUNE are listed below.

Program stops by pressing

DEBUG STOP

 48

 Function Description

(1) Run Continuously Executes program continuously from the current position in the

program counter (PC).

(2) Step In Executes the step and moves the PC to the address of the next

instruction and stops.

(3) Step Over Executes the step and moves the PC to the beginning of the next

instruction and stops.

(4) Step Out Executes to the end of the current function, returns to the caller

function, moves the PC to the address of the next instruction, and

stops.

(1),(2),(3),(4) (5),(6) (7)

(8),(9)

(10)

 49

(5) Make Compiles/assembles only the source files that have changed. Then,

links all objects and libraries to generate the target program.

(6) Build Compiles/assembles all source files registered in the project, whether

they have changed or not, then links all objects and libraries to

generate the target file.

(7) Customize Bar This function allows you to register a shortcut to a batch file, or a

Workbench menu item, that can be used while the debugger is

running.

This starter kit comes with a batch file that "returns to the starting

address of the user program". You can register and use this function

by registering start.prc by referring to "(4) Customize Bar" under

"Appendix 1. Creating projects/sample programs as new projects".

(8) Run to Cursor

Executes the instructions up to the address where the cursor is,

moves the PC to the address of the cursor, and stops.

(9) Break Point Places an x mark where you wish to stop the program.

(10) Mix display Right-click on the program showing in the debug window and select

"Mixed display" from the popup menu. A check next to "Mixed display"

will show the source code in both C language and reverse assembler

code.

- Stop To stop a continuously running program, press the "DEBUG STOP"

button on the board.

 50

(11) Memory window Shows the memory contents during debug. If the window is not

showing, click "View" - "Memory" to show it.

(12) Register window Shows the register contents during debug. If the window is not

showing, click "View" - "Register" to show it.

(13) Watch window Displays a tree view of the specified variable values. If the

window is not showing, click "View" - "Watch" to show it. There

are four types of watch windows available. The windows can be

shown or hidden by categorizing and registering variables to

each window.

(11) (12) (13)

 51

3.4 Exiting monitor debug

To end debugging, always stop the program execution by pressing the DEBUG STOP button

on the board . Then, click "Debug" - "End Debug".

Refer to the monitor debugger limitations provided in the Appendix.

 52

4 What is a USB?

4.1 What is a USB?

USB stands for Universal Serial Bus.

In 1993, engineers from Compaq, Intel, Microsoft, and NEC gathered and jointly developed a

peripherals interface for next-generation PCs. This led to their release of the first USB 1.0

specifications (standards) in 1996. USB 1.1 was released in 1998 and USB 2.0 was released in

2000. For many years, the RS-232C and printer ports served as the main interface for

connecting peripherals to a PC. The problem with these legacy interfaces was that they were

limited to low transfer rates, allowed only one device to be connected per port, and thus required

an increase in ports to connect more devices.

This lead to an extensive array of connectors occupying the rear panels of PCs, including

separate ports for the keyboard, mouse, and display. The USB was developed to consolidate

these interfaces into a single connector that would allow connection of various peripherals.

4.2 Features of the USB

 The USB has these features.

1. Ease of use

USB supports Plug-and-play and Hot Swapping, and Bus Power, making it easy to expand

PC peripherals and communicate between embedded devices.

Plug-and-play refers to the mechanism for automatically recognizing a device and installing

the proper driver when it is plugged in to the PC.

Hot Swapping is a general reference to the ability of plugging or unplugging devices with the

PC power still on. That is, the PC power does not have to be turned off or rebooted during or

after the device is plugged or unplugged.

Bus Power refers to the standard for supplying from the PC via the cable. (The opposite of

this is referred to as "Self-powered".)

2. Single master system

USB follows the single master system for transferring data.

We will explain using the PC as an example. The peripherals to a PC are controlled by the PC

(host), and data is exchanged between the peripheral and the host. Peripherals cannot transfer

data directly to another host. Furthermore, a peripheral cannot request a data transfer to the host.

The peripheral must perform data transfers at the request of the host. Because there is only one

host in each of these examples, the system is called a single master system.

 53

Today, printers and digital cameras are also equipped with USB, not just the PC.

These devices can transfer data between themselves without going through a host PC using a

hosting function called USB Mini-Host.

The MB91F662 installed on this board is equipped with the Mini-Host function.

3. Signal lines

USB cables are inexpensive to make, using only two signal lines and two power lines.

The two signal lines carry 3.3 V differential signals (D+ and D-). The two power lines are

labeled Vbus (5V), and GND. Connected devices can draw up to 500 mA of power, allowing

manufacturers to develop devices that do not require external power supplies.

(This board can supply power from the USB.)

Plug types are discussed in Section 4.4.

4.3 Connection formats

The three functions explained here form a USB system.

<Host>

PCs are equipped with the host function as shown in Figure 4.3-1.

The number of devices (or functions), including the hub, that can be connected to a single host

is 127. (The hub is treated as a function.)

<Hub>

The hub is used mainly to increase the number of ports. With PCs, some monitors and

keyboards are equipped with USB hubs.

<Function>

Functions are provided on the peripheral. In a PC, the keyboard and mouse are functions.

 The host and function are connected in a so-called star topology, which means simply that

functions are directly connected to the host via a hub for communicating on a 1:1 basis.

 54

Figure 4.3-1 USB Connection Example

4.4 Plug

Each end of the USB has a plug with a different shape. One end is called the A plug, the other

the B plug. A smaller connector is used on embedded devices and is called a Mini-A plug and

Mini-B plug, to distinguish from the standard plug size. The cable supplied with this board has an

A plug and a Mini-B plug.

The USB device on a host is always equipped with an A plug. The plugs are shaped differently

to prevent incorrect insertion.

Figure 4.4-1 USB connector shapes used on this board

Figure 4.4-2 Relation between connections and connectors

PC

（Host）

Keyboard

Mouse

Hub

Printer

Web camera

Digital camera

USB memory

Hub

A plug B plug Mini-B plug

Host
A

A

A

B Function

B Function

B Hub A

 A B Function

B Function

 55

4.5 Transfer rate

USB transfer rates are standardized as shown below.

Table 4.5-1. USB Transfer rates

 Low Speed Full Speed High Speed

USB 1.0/1.1 1.5 Mbps 12 Mbps -

USB 2.0 1.5 Mbps 12 Mbps 480 Mbps

The MB91F662 supports only Full Speed.

4.6 Transfer rate detection

The USB standard requires that USB devices allow for the automatic detection of their data

transfer rate when connected to the host by using a pull-up resistor.

- A Full Speed device pulls up the D+ signal line with a 1.5 kΩ (R2) resistor.

- A Full Speed device pulls up the D- signal line with a 1.5 kΩ (R2) resistor.

(Transfer rate types will be discussed later.)

After the USB device is connected, the host detects whether it is the D+ signal line or D- signal

line that is pulled up, and selects its data transfer rate accordingly.

 Additionally, cable lengths are standardized to a maximum of 5 meters for Full Speed rates, and

a maximum of 3 meters for Low Speed rates.

Figure 4.6-1 Differences in connection based on transfer rates

 56

4.7 Transfer methods

 Several transfer methods are specified for the USB.

Table 4.7-1 below summarizes the USB transfer methods.

Table 4.7-1 USB transfer methods

 Isochronous transfer Interrupt transfer Bulk transfer Control transfer

Typical

application

This is the most
preferred transfer method
for the USB. This transfer
method has a guaranteed
bandwidth and is used
where real-time transfers
are required, such as audio
equipment, telephones,
etc.

A feature of this
method is that the
delay time is
guaranteed, thus
requiring quick
responses. Keyboards,
game pads or consoles
use this transfer
method.

This method is
used with devices
that transfer large
volumes of data,
such as printers,
scanner, digital
cameras.

This method is
used to send and
receive
configurations and
messages from the
USB device.

< Transfer rates>

12 Mbps

(Full Speed)
Supported Supported Supported Supported

1.5 Mbps

(Low Speed)
Not supported Supported Not supported Supported

< Data transfer volume per packet>

12 Mbps

(Full Speed)
1 to 1023 bytes 1 to 64 bytes 1 to 64 bytes 1 to 64 bytes

1.5 Mbps

(Low Speed)
Not supported 1 to 8 bytes Not supported 1 to 8 bytes

< Transfer direction>

Host ->

Function
Supported

Function ->

Host
Supported

Retry request

for data errors
None Yes

 57

4.8 Configuration of a device

The host communicates by specifying addresses and endpoint numbers that it assigns to each

USB device.

When the USB device is connected, the host assigns a unique address to each function and

hub. At the beginning of the connection, the device is always assigned to address "0". Thereafter,

the host assigns an address from 1 to 127. Each function and hub has several buffers for

transferring data over the USB called endpoints. A full speed device can have up to 16 endpoints,

while a low speed device can have up to three. Each endpoint is defined with an endpoint

number, transfer direction, transfer method, and maximum packet size. Each definition uses a

specific endpoint. All USB devices must have endpoint 0 to support control transfers.

Figure 4.8-1 Addresses and endpoint numbers

 58

4.9 Enumeration

Enumeration refers to the process that begins by the host recognizing the device connected to

the bus, specifying an address, and fixating the descriptor information received from the device.

The USB device uses the descriptor to inform the host of its attributes. There are several types of

descriptors that the host can request. In turn, the device returns information that describes itself

to the host. The USB device is ready to be used by the host when it has been assigned an

address and its configuration has been recognized. (Refer to Figure 6 below)

Figure 4.9-1 Enumeration

 59

USB transmissions are managed by dividing time into frames that repeat every 1 ms, and

allocating small portions of this transmission time to each device within each frame. The host

starts a frame by sending the SOF packet every 1 ms. This is followed by a token packet sent

from the host, which informs the device of the transfer type, device address, and end point.

Devices may respond to the data and handshake packet only if they have been addressed.

The ACK packet is issued when the data transfer completes, while the NAK packet is issued

when no endpoints are available (requesting the host to resend). STALL is issued when the

endpoint cannot be used.

Figure 4.9-2 Frames

 60

The packets shown in Figure 4.9-3 are combined to form a frame for transferring over the USB.

Each packet will be explained.

All packets begin with a SYNC field. This is an 8-bit field used to synchronize the input data and

local clock on the input circuit. The SYNC field is used only for synchronizing. The frame starting

packet contains an SOF (Start of Frame) field after the SYNC field.

SOF is a type of PID (Packet ID), but used only for the frame starting packet. The Frame

Number field is for counting the number of frames.

The CRC (Cyclic Redundancy Check) field is used to detect transmission errors.

An EOP (End of Packet) is sent at the end of each packet.

In the token packet, the PID is followed by a 7-bit address and 4-bit endpoint number, plus a

5-bit CRC for detecting transmission errors.

In the data packet, the PID is followed by a 16-bit CRC for detecting transmission errors.

The side that receives the data sends a handshake packet.

Figure 4.9-3 USB packet format

 61

Table 4.9-1 shows the PID types (which indicates the status of the packet being sent) defined

for USB.

Table 4.9-1 PID types

PID type PID name PID[3:0] Description

OUT 0001b
Notification from the host to the function that it is about to send

data.

IN 1001b
Notification from the function to the host that it is about to send

data.

SOF 0101b Notifies the start of a frame.

Token

SETUP 1101b Notification for starting control transfer.

DATA0 0011b Data packet (even)
Data

DATA1 1011b Data packet (odd)

ACK 0010b Notification that the data packet was successfully received.

NAK 1010b
Notification that the data packet was not received successfully,

or is unable to communicate. Handshake

STALL 1110b
Notification that the specified endpoint has an error, and that

action is required of the host.

Special* PRE 1100b Notification that the host is about to start Low Speed transfer.

 * Not supported by the MB91F662.

4.10 Device class

 In the USB standard, devices that have common functionality, and that are capable of using the

same driver are defined as a device class. Examples of device classes are printers, monitors,

hubs, memory devices (HAD and USB memory devices). Mice and keyboards are defined as an

HID (Human Interface Device) even though they don't have the same number of keys, because

they have the same functionality. This allows developers to develop new devices for a given

device class without developing a new device driver.

 62

5 Let's make a USB mouse

This sample program will provide USB communications that a USB mouse uses (HID class) by

utilizing the USB function controller in the microcontroller (MB91F662) installed on the starter kit.

When the starter kit board is connected to the PC, the PC will recognize the board as a USB

mouse (HID class). Operating the pushbutton switches and slider switch on the board will

simulate the operation of a mouse.

5.1 Overview of the USB sample program

This sample program simulates a USB mouse (HID device) on the MB91F662. Figure 5.1-1

shows the operation and details of the sample program. When the starter kit board running the

sample program is connected to the PC, the PC recognizes the MB91F662 on the board as a

USB mouse (HID device). After the PC completes the connection and recognition process, the

pushbuttons on the board can be used to move the cursor or perform click operations on the

PC screen. The slider switch on the board can be used to scroll windows on the PC. The

program periodically scans the pushbuttons and slider switch to detect these status changes.

 63

<Sample program target project>

sample_USB.abs - “sample_USB.prj” [Debug]

< Sample program execution procedures>

1. Set the switches on the board to execute the program in debug mode, then connect the

starter kit to the PC using the USB cable.

2. Press the reset switch.

3. Launch the monitor debugger and execute the USB sample program.

4. The PC will recognize the board as an HID class device.

5. Operate the pushbutton switches and slider switch to control the cursor and scroll bar

on the PC.

Left button click

Cursor movement

Window scroll

Right button click

For debug communications

Uses USB-Function

Uses USB-Vbus

 64

Part name Silk printing on

board

Description

Pushbutton SW P_SW3 Moves PC cursor left

Pushbutton SW P_SW4 Moves PC cursor up

Pushbutton SW P_SW5 Moves PC cursor right

Pushbutton SW P_SW6 Moves PC cursor down

Pushbutton SW P_SW7 Left button click

Pushbutton SW P_SW8 Right button click

Slider SW VR1 Slide volume left to scroll up, slide to right to scroll down

USB port USB FUNC Uses USB-Function, USB-Vbus pins (PH3)

Figure 5.1-1 Operation and details of the USB sample program

 65

5.2 Overview of USB communications flow

This section explains the USB communications flow performed by the sample program. Details

on the USB communications protocol have been omitted. Refer to the USB and HID class

specifications for details.

5.2.1 Overview of USB communications flow

This sample program provides communications with the PC (USB host) as shown in the

following flow diagrams. Figures 5.2.1-1 and 5.2.1-2 show the configuration process when

the USB is connected. Figure 5.2.1-3 shows an overview of the communications flow after

the USB connection is completed. The -> arrow indicates data is being sent from the PC to

the starter kit (USB Function), and the <- arrow indicates data is being sent from the starter

kit to the PC. The contents of the data will be explained in the next section.

 66

Figure5.2.1-1 USB (mouse) communications flow (Configuration 1)

PC (USB host)
Starter kit (USB Function)

[EP0]

Get Descriptor (Device) request

Device Descriptor response

Issue bus reset signal

Get Descriptor (Device) request

Device Descriptor response

USB connection (bus connection)

Set Address request

The USB sample program recognizes the USB connection
using the V-bus connection terminal (PH3).

0 byte data response

The MB91F662 USB function controller responds to the
SET_ADDRESS request automatically at the hardware
level.

 67

Figure5.2.1-2 USB (mouse) communications flow (Configuration 2)

Set Configuration request

Get Descriptor (Report) request

Report Descriptor response

Get Descriptor (Configuration) request

Configuration Descriptor response
Interface Descriptor response
HID Class Descriptor response
Endpoint Descriptor response

Set Idle request

PC (USB host) Starter kit (USB Function)

[EP0]

The MB91F662 USB function controller responds to the

SET_CONFIGURATION request automatically at the

hardware level.

0 byte data response

0 byte data response

 68

Figure5.2.1-3 USB (mouse) communications flow (After configuration)

Notification of Report data

Notification of Report data

:

:

:

:

PC (USB host) Starter kit (USB Function)

[EP1]

Configuration completed (recognizes
board as a USB mouse)

:

:

:

:

Notification of Report data

:

:

The PC (USB host) periodically issues interrupt (IN)

transfer requests. If the status of the USB device

has changed (mouse pointer information, etc.), the

USB device responds with Report data.

 69

5.2.2 Device request (PC -> Starter kit)

In this sample program, the data received by the starter kit is called a device request. The

format of data in a device request is standardized. The device requests received by the

starter kit are shown below.

Table 5.2.2-1 Device request (GET_DESCRIPTOR (Device))

Byte Item Description Value

1 bmRequestType Type of request

(Transfer direction: Device -> host / type: standard/ receive:

device : 80h)

80h

1 bRequest Request (GET_DESCRIPTOR: 06h) 06h

00h 2 wValue Requested descriptor type and index value

(Descriptor type (device): 01h) 01h

00h 2 wIndex 0 or language ID

00h

XXh 2 wLength Number of bytes for requested descriptor (YYXXh)

YYh

Table 5.2.2-2 Device request (SET_ADDRESS)

Byte Item Description Value

1 BmRequestType Type of request

(Transfer direction: Host -> device/ type: standard/ receive:

device : 00h)

00h

1 Brequest Request (SET_ADDRESS: 05h) 05h

XXh 2 WValue Device address (address: YYXXh)

YYh

00h 2 WIndex 0

00h

00h 2 WLength 0

00h

 70

Table 5.2.2-3 Device request (GET_DESCRIPTOR (Configuration))

Byte Item Description Value

1 BmRequestType Type of request

(Transfer direction: Device -> host / type: standard/ receive:

device : 80h)

80h

1 Brequest Request (GET_DESCRIPTOR: 06h) 06h

00h 2 WValue Requested descriptor type and index value

(Descriptor type (configuration): 02h) 02h

00h 2 Windex 0 or language ID

00h

XXh 2 WLength Number of bytes for requested descriptor (YYXXh)

YYh

Table 5.2.2-4 Device request (SET_CONFIGURATION)

Byte Item Description Value

1 BmRequestType Type of request

(Transfer direction: Host -> device/ type: standard/ receive:

device : 00h)

00h

1 Brequest Request (SET_CONFIGURATION: 09h) 09h

XXh 2 WValue Configuration value (: YYXXh)

YYh

00h 2 Windex 0

00h

00h 2 WLength 0

00h

 71

Table 5.2.2-5 Device request (SET_IDLE)

Byte Item Description Value

1 BmRequestType Type of request

(Transfer direction: Host -> device / type: class/ receive:

interface : 21h)

21h

1 Brequest Request (SET_IDLE: 0Ah) 0Ah

00h 2 WValue 0

00h

00h 2 WIndex 0

00h

00h 2 WLength 0

00h

Table 5.2.2-6 Device request (GET_DESCRIPTOR (Report))

Byte Item Description Value

1 BmRequestType Type of request

(Transfer direction: Device -> host / type: standard/ receive:

interface: 81h)

81h

1 Brequest Request (GET_DESCRIPTOR: 06h) 06h

00h 2 Wvalue Requested descriptor type and index value

(Descriptor type (report): 22h) 22h

00h 2 Windex 0 or language ID

00h

XXh 2 WLength Number of bytes for requested descriptor (YYXXh)

YYh

 72

5.2.3 Descriptor (PC <- Starter kit)

In this sample program, the data returned from the starter kit to the PC (USB host) is called

a descriptor. A descriptor contains information about the device, such as characteristics and

attributes. The format of data in a descriptor is standardized. The descriptors returned from

the starter kit to the PC (USB host) are shown below.

Table 5.2.3-1 Device Descriptor

Byte Item Description Value

1 bLength Descriptor size (12h) 12h

1 bDescriptorType Descriptor type (10h) 01h

01h 2 bcdUSB USB version (Rev. 1.01)

01h

1 bDeviceClass Class code (00h: no class) 00h

1 bDeviceSubClass Subclass code 00h

1 bDeviceProtocol Protocol code (00h: unique protocol unused) 00h

1 bMaxPacketSize0 Max. packet size for endpoint 0 40h

C5h 2 idVendor Vendor ID (04C5h: Fujitsu)

04h

19h 2 idProduct Product ID (2019h: USB starter kit)

20h

FFh 2 bcdDevice Device version

FFh

1 iManufacture Index of a string descriptor that represents the manufacturer 00h

1 iProduct Index of a string descriptor that represents the product 00h

1 iSerialNumber Index of a string descriptor that represents the serial number 00h

1 bNumConfigurations Number of configurations supported 01h

 73

Table 5.2.3-2 Configuration Descriptor

Byte Item Description Value

1 bLength Descriptor size (09h) 09h

1 bDescriptorType Descriptor type (configuration: 02h) 02h

22h 2 wTotalLength Descriptor size returned for this configuration

(Total size including configuration, interface, HID class, and

endpoint descriptor)
00h

1 bNumInterfaces Number of interfaces supported 01h

1 bConfigurationValue Parameter to pass to Set_Configuration, which is used to select

this descriptor

01h

1 iConfiguration Index of a string descriptor that represents this configuration 00h

1 bmAttributes Device power supply (08h: use bus power) 80h

1 bMaxPower Max. bus current consumption (32h: 100 mA) 32h

Table 5.2.3-3 Interface Descriptor

Byte Item Description Value

1 bLength Descriptor size (09h) 09h

1 bDescriptorType Descriptor type (interface: 04h) 04h

1 bInterfaceNumber 0-based index value used to identify the interface supported by this

configuration

00h

1 bAlternateSetting Value used to select an alternate setting for the interface 00h

1 bNumEndpoints Number of endpoints used by this interface 01h

1 bInterfaceClass Class code (03h: HID class) 03h

1 bInterfaceSubClass Subclass code (01h: supports boot protocol) 01h

1 bInterfaceProtocol Protocol code (02h: mouse) 02h

1 iInterface Index of a string descriptor that represents this interface 00h

 74

Table 5.2.3-4 HID Class Descriptor

Byte Item Description Value

1 bLength Descriptor size (09h) 09h

1 bDescriptorType Descriptor type (HID descriptor: 21h) 21h

01h 2 bcdHID HID class version (Ver. 1.01 -> 01h01h)

01h

1 bCountryCode Country identification code (00h: no identification) 00h

1 bNumDescriptors Number of class descriptors 01h

1 bDescriptorType Class descriptor type (22h: HID report) 22h

34h 2 wDescriptorLength Remote descriptor size

00h

Table 5.2.3-5 Endpoint Descriptor

Byte Item Description Value

1 bLength Descriptor size (07h) 07h

1 bDescriptorType Descriptor type (endpoint: 05h) 05h

1 bEndpointAddress Endpoint address (81h: IN direction/EP1) 81h

1 bmAttributes Endpoint attribute (03h: interrupt transfer) 03h

04h 2 wMaxPacketSize Max. packet size for endpoint

00h

1 bInterval Polling interval for endpoint (64h: 100 ms) 64h

 75

 Table 5.2.3-6 Report Descriptor 1

Byte Item Description Value

05h 2 UsagePage Page usage (Generic Desktop Control)

01h

09h 2 Usage Item usage (Mouse)

02h

A1h 2 Collection Collection item tag (Application)

01h

09h 2 UsagePage Page usage (Pointer)

01h

A1h 2 Collection Collection item tag (Physical)

00h

05h 2 UsagePage Page usage (Button)

09h

19h 2 UsageMinimum Minimum number of items used (1)

01h

29h 2 UsageMaximum Maximum number of items used (3)

03h

15h 2 LogicalMinimum Minimum value the item can report (0)

00h

25h 2 LogicalMaximum Maximum value the item can report (1)

01h

75h 2 ReportSize Data field size to be reported (1 bit)

01h

95h 2 ReportCount Number of data fields to be reported (3)

03h

81h 2 Input Input item tag (Data, Variable, Absolute)

02h

75h 2 ReportSize Data field size to be reported (1 bit)

01h

95h 2 ReportCount Number of data fields to be reported (1)

01h

 76

Table 5.2.3-7 Report Descriptor 2

Byte Item Description Value

81h 2 Input Input item tag (Data, Variable, Absolute)

01h

05h 2 UsagePage Page usage (Generic Desktop Control)

01h

09h 2 Usage Item usage (X direction)

30h

09h 2 Usage Item usage (Y direction)

31h

09h 2 Usage Item usage (Wheel)

38h

15h 2 LogicalMinimum Minimum value the item can report (-127)

81h

25h 2 LogicalMaximum Maximum value the item can report (127)

7Fh

75n 2 ReportSize Data field size to be reported (8 bit)

08h

95h 2 ReportCount Number of data fields to be reported (3)

03h

81h 2 Input Input item tag (Data, Variable, Relative)

06h

1 EndCollection EndCollection C0h

1 EndCollection EndCollection C0h

Table 5.2.3-8 HID Device Report Data

Byte Item Description Value

1 Button status Click status of right or left button 0 to 3

1 X axis travel Mouse movement in X axis (horizontal) -127 to 127

1 Y axis travel Mouse movement in Y axis (vertical) -127 to 127

1 Wheel Scroll wheel movement -127 to 127

5.3 Sample program sequence

This section describes the operation of the sample program.

 77

5.3.1 Main routine

The operation of the main routine is shown below. Note that the following conditions are

assumed when operating this sample program.

<MB91F662 operating conditions>

 FLASH access settings

 FLASH access size setting: 32 bits (no changes to default value)

 FLASH wait setting: 1 wait

 MCU clock setting (set in the monitor debugger/no setting necessary)

 CLKB (CPU): 32 MHz (External clock 4 MHz x PLL-8 multiplier setting)

 CLKP (peripheral): 32 MHz (External clock 4 MHz x PLL-8 multiplier setting)

USB CLK: 48 MHz (external clock 4 MHz x PLL-24 multiplier x 2 frequency divider

setting)

 78

Figure 5.3.1-1 Operating flow of the main routine (main.c, usb_mouse_ctrl.c)

*1 This sample program assumes a startup routine will be executed before the main routine. Note,

however, the details of the startup routine are omitted in this document.

*2 Details explained in Section 5.3.6.

Start *1

Flash wait setting (1 wait)

Initialize I/O port

- SW port: input

- Slider SW port: Use A/D (ch 15)

- USB port: use USB

Initialize A/D converter

(use ch0, conversion time: 32.625 us, interrupt

unused)

USB (Function) initialization process

SW operation detection process *2

Set USB clock

Enable interrupt

 79

5.3.2 USB initialization process

The figure below shows the details of the USB initialization process.

Figure 5.3.2-1 Operating flow of the USB initialization process (usb_mouse_ctrl.c)

Start

Release bus reset (RST=0)

Clear EP0/EP1 receive buffer

V-BUS detected?

Set V-BUS detection pin (PH3)

USB operation enabled (USBEN=1)

Bus reset (RST=1)

USB register initial settings

- Bus power supply (PWC=0)

- EP0 setting (64 bytes)

- EP1 setting (INT-IN transfer/ 64 bytes)

Enable USB Function interrupt

End

Connect to HOST (HCONX = 0)

Yes

No

 80

5.3.3 USB interrupt processing

The figure below shows the details of the USB interrupt processing. The USB function in

the MB91F662 processes status interrupts and interrupts EP1 to EP5. However, this sample

program uses only the status interrupt.

After connecting to the PC, the status interrupt routine in the USB function will process

responses to requests from the PC (USB host) to EP0.

Figure 5.3.3-1 Status interrupt 1 (usb_mouse_ctrl.c)

Yes

EP0 data received? No

Status interrupt processing

No

Setup command receive process

Yes

EP0 data receive process

No

Suspend interrupt?

Clear SUSP flag

Yes

① * If the power must be suspended, processing is performed to

move into standby mode in addition to clearing the SUSP flag.

SETUP interrupt received?

 81

Figure 5.3.3-2 Status interrupt 2 (usb_mouse_ctrl.c)

①

No

Suspend interrupt?

Clear SOF flag

Yes

No

SOF interrupt?

Clear SOF flag

Yes

No

Bus reset interrupt?

Clear BRST flag

Yes

End

 82

5.3.4 EP0 data receive process

The figure below shows the details for the EP0 data receive process.

Figure 5.3.4-1 EP0 data receive process (usb_mouse_ctrl.c)

EP0 data receive process

Get length of received data bytes

Get received data

(read from EP0DT register)

Clear DRQ0 flag

End

 83

5.3.5 Setup command receive process

The figure below shows the details for the EP0 Setup command receive process. The

Setup command receive process also handles responses for the received Setup command.

Figure 5.4.5-1 Setup command receive process 1 (usb_mouse_ctrl.c)

Setup command receive process

Get received data byte length

Get receive data

(read from EP0DT register)

Clear SETP flag

Clear DRQ0 flag

No

SET IDLE received?

Clear DRQI flag

Yes

① ②

 84

Figure 5.3.5-2 Setup command receive processing 2 (usb_mouse_ctrl.c)

①

No

Clear DRQI flag

Yes GET DESCRIPTOR (device)

received?
Return Device Descriptor

(write to EP1DT register)

No

Clear DRQI flag

Yes GET DESCRIPTOR (config)

received?
Return Configuration Descriptor

(write to EP1DT register)

No

Clear DRQI flag

Yes GET DESCRIPTOR (report)

received?
Return Report Descriptor

(write to EP1DT register)

End

②

 85

5.3.6 Switch operation detection process

The figures below show the details of the switch (pushbuttons and slider) operation

detection process. The device issues an HID data notification to the PC when it detects

switch operation. The sample program ignores simultaneous operation of multiple switches.

Figure 5.3.6-1 Switch operation detection process 1 (main.c)

Start

Get SW input status

SW4 (up) input?

Update mouse travel (X=5, Y=0)

SW6 (down) input?

Update mouse travel (X=-5, Y=0)

SW5 (right) input?

Update mouse travel (X=0, Y=-5)

SW3 (left) input?

Update mouse travel (X=0, Y=5)

①

Yes

Yes

Yes

Yes

No

No

No

No

Clear mouse travel (X=0, Y=0)

 86

Figure 5.3.6-2 Switch operation detection process 2 (main.c)

No

①

Update click information (Bottom = 01h)

Yes

No

Yes

②

Update click information (Bottom = 02h) Update click information (Bottom = 00h)

 SW9 (left click) input?

 SW10 (left click) input?

 87

Figure 5.3.6-3 Switch operation detection process 3 (main.c)

End

HID data notification process

②

No Update scroll data (wheel = 50)

Yes ad_data > ad_data_old？

No
Update scroll data (wheel = -50)

Yes ad_data > ad_data_old？

Update scroll data (wheel = 0)

A/D conversion start (AD-ch15)

Yes

No

Get A/D conversion value

(ad_data=(A/D conversion value & 0x03E0) >> 23)

ad_data_old = ad_data

ad_data_old = ad_data

 A/D conversion complete?

 88

5.3.7 HID data notification process

The figure below shows the details of the HID data notification process.

Figure 5.3.7-1 HID data notification process (usb_mouse_ctrl.c)

Start

IN requested to EP1?
DRQ=1?

End

No

No

Yes

Yes

Write HID data to be notified to PC (Host) in the

EP1DT register (button information, X/Y travel,

wheel movement)

Clear IN request flag to EP1 (DRQ=0)

HID data updates? No

Yes

 Configuration completed?

 89

6 Humidity sensor

6.1 What is humidity?

In the winter, our hands and skin tend to dry, and our throats easily become sore.
Conversely, in areas where rain season occurs, the humidity tends to cause discomfort.
And those who hang dry their laundry no doubt pay attention to the humidity level in
weather reports.

Humidity represents the ratio of moisture in the air. The history of hygrometers used

to measure humidity is said to have started with the hair hygrometer, which utilizes the
elasticity of hair. Today, in addition to hair hygrometers, inexpensive wet and dry bulb
hygrometers are available and used in common households.

Humidity is often referred to in units of "relative humidity" (units: %RH), which is

defined as the ratio of water vapor pressure in air at a prescribed temperature, to the
saturated vapor pressure at the same temperature, expressed as a percentage.
Weather forecasts usually mention "percentage" alone, but the abbreviation for relative
humidity is implied.

Other units used to refer to humidity include, wet-bulb temperature (units: °C), dew
point temperature (units: °C), and water vapor content (units: ppmV for ratio by volume,
and ppmW for volume by weight).

This text will express humidity in terms of relative humidity (%).

6.2 What is a humidity sensor?

The humidity sensor was developed as a replacement for the hygrometer. Humidity

sensors are used in air-conditioner temperature controls for offices and factories.
Recent air conditioners for homes with dehumidifier and humidifier functions also make
use of humidity sensors. Some microwave ovens use humidity sensors to control
cooking temperature and time by detecting the amount of water vapor emitted from the
heated food.

A humidity sensor uses the change in electrical properties caused by absorbing and

releasing moisture in the air. Because the sensor is constantly exposed to air, it is easily
affected by changes in its own materials caused by substances in the air, sometimes

 90

leading to performance loss. The material used in the sensor to detect humidity defines
its type, such as high-molecular, metallic oxide, or electrolytic.

We will explain the most common type of humidity sensor, the high-molecular sensor.

The high-molecular film absorbs and releases moisture, thus creating a change in its
permittivity which is used to measure the relative humidity in air.

One way of making this sensor is to place the high-molecular material between two
electrodes, much like a capacitor. The permittivity change in the high-molecular film
creates a measureable change in the capacitor's capacity. The electrodes are made of
an extremely thin metal film that permits the passage of moisture as it is absorbed or
released by the high-molecular film. A high-molecular humidity sensor can be of the
capacity changing or resistance changing type. The explanation thus far is for a capacity
changing type. The resistance changing type is made by affixing moisture sensitive
material on a comb-like electrode and is simpler in construction than the capacity type.
An added benefit of the resistance type is that it is not affected by the capacity of the
wire leads, allowing wiring lengths to be as long as necessary.

 Figure 8.2-1 Structure of a humidity sensor

The starter kit board has a humidity sensor device (HOKURIKU ELECTRIC

Electrode

High-molecular

material

(moisture sensitive

material)

Electrode (comb-like)

Substrate Substrate

Capacity type Resistance type

High-molecular

material

(moisture sensitive

material)

 91

INDUSTRY CO., LTD) mounted to it. This is a resistance changing humidity sensor that
uses a moisture sensitive polymer. This device must be driven by an alternating voltage
as a constantly applied direct voltage can affect the device's properties.

In the next Chapter, we will explain the hygrometer program and power driving
method as well as some cautionary notes.

 92

7 Let's make a hygrometer

This sample program will create a hygrometer using the AD converter and base timer (PPG) in

the microcontroller (MB91F662) installed on the starter kit, and the humidity sensor also mounted

on the starter kit.

7.1 Overview of the sample program

This sample program measures humidity using the AD converter and base timer (PPG) in

the microcontroller (MB91F662), and the humidity sensor mounted on the starter kit. The

measured result is displayed on the 7-SEG LED on the starter kit. Figure 9.1-1 shows the

operation and details of the sample program.

 93

<Sample program target project>

sample_humidity.abs - “sample_humidity.prj” [Debug]

< Sample program execution procedures>

1. Connect the starter kit to the PC with the USB cable.

2. Run the humidity sensor sample program.

3. The humidity is displayed in the 7-SEG LED.

Part name Silk printing on

board

Description

Humidity sensor HUMIDITY Detects humidity.

7-segment LED 7-SEG LED Displays humidity.

Figure 9.1-1 Operation and details of the humidity sensor sample program

Humidity

readout

You can view how the humidity

changes by touching the sensor.

 94

7.2 Details on the humidity sensor

7.2.1 Wiring the humidity sensor

The humidity sensor on the starter kit board is wired as shown below.

Figure 9.2.1-1 Schematics of humidity sensor

PPG0

output port

PPG1

output port

A/D9

input port

Humidity sensor

Resistor 47 kΩ (Rs)

MB91F662

3.3V(Vin)

 95

7.2.2 Driving the humidity sensor

The humidity sensor must be driven as follows.

Figure 9.2.2-1 Driving the humidity sensor

PPG0 output waveform

PPG1 output waveform

1kHz (Duty:50%)

A/D conversion

A/D conversion timing (PPG2)

Start A/D on lead edge of PPG2

＋3.3V

0V

＋3.3V

0V

1/2 to 2/3 of the timing when PPG0 is high

 96

(1) Based on a setting in the MB91F662, PPG0 will output a pulse waveform at 1 kHz, 50%

duty. PPG1 will output the phase-inverted waveform of PPG0.

This will produce an alternating current of ±3.3 volts at the equivalent of 1 kHz between

the output pins of PPG0 and PPG1.

(2) The leading edge of PPG2 will trigger the A/D conversion.

The lead edge of PPG2 occurs when PPG0 is in its high phase, and allows reading of

the A/D input waveform when it is stable and near peak. This timing is about 1/2 to 2/3

the way along the pulse width of PPG0.

7.2.3 Humidity sensor characteristics

The voltage dividing characteristics of the humidity sensor on the starter kit are shown

below.

Figure 9.2.3-1 Voltage dividing characteristics of the humidity sensor 1

Voltage dividing characteristic V is calculated as V = Vin x Rs / (Rs + RH) where Vi is the input

voltage, RH is the impedance characteristic of the humidity sensor device, and Rs is the voltage

dividing resistance.

In the above formula, input voltage Vin = 3.3V, and dividing resistance Rs = 47 kΩ.

Voltage dividing characteristics data

Relative humidity (%RH)

Voltage dividing characteristics (V))

 97

 This sample program is designed for a fixed temperature of 22°C.

 The voltage dividing characteristics at 22°C is given below.

Table 9.2.3-2 Humidity sensor voltage dividing characteristics table 2

 * The figures in bold are the values used in this sample program.

Contact HOKURIKU ELECTRIC INDUSTRY CO., LTD., for the characteristics at temperatures

other than 22°C.

<Contact>

Sales support division, Head office, HOKURIKU ELECTRIC INDUSTRY CO., LTD.

E-mail: info-sales＠hdk.co.jp

Relative

humidity

(%RH)

Voltage

dividing

characteristics

(V)

Relative

humidity

(%RH)

Voltage

dividing

characteristics

(V)

Relative

humidity

(%RH)

Voltage

dividing

characteristics

(V)

Relative

humidity

(%RH)

Voltage

dividing

characteristics

(V)

90 3.17 70 2.80 50 1.47 30 0.16

89 3.16 69 2.76 49 1.38 29 0.13

88 3.15 68 2.72 48 1.28 28 0.11

87 3.14 67 2.68 47 1.19 27 0.09

86 3.13 66 2.64 46 1.10 26 0.07

85 3.12 65 2.59 45 1.02 25 0.06

84 3.11 64 2.54 44 0.93 24 0.05

83 3.10 63 2.49 43 0.85 23 0.04

82 3.08 62 2.44 42 0.77 22 0.03

81 3.06 61 2.38 41 0.70 21 0.02

80 3.05 60 2.32 40 0.62 20 0.02

79 3.03 59 2.55 39 0.56 19

78 3.01 58 2.18 38 0.50 18

77 2.99 57 2.10 37 0.44 17

76 2.97 56 2.02 36 0.39 16

75 2.95 55 1.94 35 0.34 15

74 2.92 54 1.85 34 0.30 14

73 2.89 53 1.76 33 0.26 13

72 2.86 52 1.66 32 0.22 12

71 2.83 51 1.57 31 0.19 11

mailto:info-sales＠hdk.co.jp�

 98

7.3 Sample program operating details

This section describes the operating details of the sample program.

7.3.1 Main routine

The operating conditions (setting conditions) for the peripheral functions of the MB91F662

used in this sample program are outlined below. The figure below shows the details of the

main routine.

<MB91F662 setting conditions>

 FLASH access settings

 FLASH access size setting: 32 bits (no changes to default value)

 FLASH wait setting: 1 wait

 MCU clock setting (set in the monitor debugger/no setting necessary)

 CLKB (CPU): 32 MHz (External clock 4 MHz x PLL-8 multiplier setting)

CLKP (peripheral): 32 MHz (External clock 4 MHz x PLL-8 multiplier setting)

 99

Figure 9.3-1 shows the flow of the main routine. This sample program measures time using the

interrupt of reload timer ch0. Processing for humidity calculation and LED display alternate every

two seconds so that changes can be observed in the LED display.

Figure 9.3.1-1 Operating flow of main routine

* This sample program assumes a startup routine will be executed before the main routine. Note, the

details of the startup routine are omitted in this document.

Start

Set Flash wait

- Initialize PPG ch0, ch1, ch2

(enable interrupt for PPG ch2)

- Initialize A/D converter

 (enable interrupt, use FIFO)

- Initialize reload timer ch 0 (enable interrupt)

Calculate humidity

Enable interrupt

Enable operation of PPG ch0, ch1

2 sec elapsed?

Yes

No

7-SEG LED display process

Adjust PPG ch2 timing

Enable operation of PPG ch2

 100

7.3.2 A/D converter interrupt processing

When 10 converted data values are written to the FIFO buffer, an A/D interrupt is

generated so that interrupt processing can take place. The interrupt processing routine

fetches 10 A/D conversions from the FIFO buffer, and averages them. This is treated as the

acquired value (value used to determine humidity) from the humidity sensor. The figure

below shows the details of the A/D converter interrupt processing routine.

Figure 9.3.2-1 A/D converter interrupt processing

A/D converter interrupt processing

- Stop A/D converter

- Clear interrupt causing bit

Get 10 A/D conversion results from FIFO

Calculate average (ad_average) from A/D

conversion results

Clear FIFO

End

 101

7.3.3 Humidity calculation process

The figure below shows the details of the humidity calculation process. The voltage divisor

is obtained by multiplying the A/D conversion average by 0.00322 (= 3.3 volts / 210), because

the A/D converter has 10 bits of resolution. The humidity is found by looking up the voltage

divisor in Table 9.2.3-2, Humidity sensor voltage dividing characteristics table 2

Figure 9.3.3-1 Hygrometer calculation process

Humidity calculation process

End

Calculate voltage divisor.

(= ad_average x 0.00322)

Obtain humidity by looking up the voltage divisor in the

humidity sensor voltage division characteristics table.

 102

8 What is an FRAM?

Do you know what FRAM is?

 Although many types of memory devices are available today, they are largely separated into

two groups.

(1) memory that loses its contents when power is lost (volatile)

: SRAM, SDRAM, etc.

(2) memory that retains its contents even when power is lost (non-volatile)

: EEPROM, FLASH memory

FRAM (Ferroelectric Random Access Memory) is non-volatile like (2) and can be used as

random access memory like (1). The FRAM market has expanded over the last few years with

applications that require security and authentication as in ID cards, and as a replacement for

EEPROM. Given the way in which information has become so easily accessible on the Internet,

it is not an overstatement to claim that FRAM has become an indispensable device for realizing

security and authentication functions.

Figure 10.1-1: FRAM characteristics

 103

The characteristics of the FRAM are the very reason they are ideal for security-dependant

applications such as those in the figure below (train and bus passes, electronic money,

membership cards used to record profiles and preferences in addition to member information,

etc.). The following are typical examples.

- Unlike FLASH/EEPROM memory, FRAM does not require special command sequences such

as used for deleting data

 (Data can be read and written just like RAM by specifying an address.

Data can be overwritten in units of bytes.)

- FRAM provides improved tamper-proofing of electronic key data for authentication

 (Compared to FLASH and EEPROM, data on FRAM is difficult to read even when subject to

physical analysis)

 - Authentication key data can be updated frequently and randomly.

 - Requires less writing time after the FRAM power is switched from ON to OFF.

 (The high-speed writing capability of the FRAM allows writing immediately after the power is

turned ON/OFF)

Figure 10.1-2. IC card applications such as electronic money

 To learn more about FRAM,

 104

Visit the Fujitsu website listed below.

http://jp.fujitsu.com/microelectronics/

 The starter board is equipped with a stand-alone FRAM MB85RS256.

 In the next Chapter, we will explain a program that accesses the FRAM using microcontroller

communications.

 105

9 Let's make a counter

This sample program explains how to make a simple counter using FRAM. The counter

functionality is achieved by using the SPI communications function on the multifunction serial

interface (MFS), on the microcontroller (MB91F662) on this starter kit, to access the stand-alone

FRAM MB85RS256 (256 kbit).

9.1 Overview of the sample program

This sample program creates a counter using the FRAM and the functions of the serial

interface on the MB91F662. The FRAM is used to store counter data, while the pushbutton

switches are used to increment and clear the count, and toggle the 7-SEG LED display ON or

OFF.

Because the count is stored in FRAM, even if the power is turned off during operation by

disconnecting the USB cable, the counter will resume counting, when power is restored, exactly

from where it left off before losing power.

Figure 11.1-1 shows the operation and details of the sample program.

 106

<Sample program target project>

sample_FRAM_SPI.abs - “sample_FRAM_SPI.prj” [Debug]

< Sample program execution procedures>

1. Connect the starter kit to the PC with the USB cable.

2. Run the FRAM sample program.

3. Pressing the pushbutton switch increments the count. (The count is retained even after

power is turned OFF.)

Increment data
Toggles 7-SEG LED display

ON/OFF

For debug

Clear data

Counter readout

 107

Part name Silk printing on

board

Description

FRAM FRAM Stores data.

Pushbutton SW P_SW7 Increments data by 1.

Pushbutton SW P_SW8 Clears data.

Pushbutton SW P_SW10 Toggles 7-SEG LED display ON/OFF.

LED Flashes while program is running.

7-segment LED 7-SEG LED Displays counter value.

Figure 11.1-1 Operation and details of the FRAM sample program

 108

9.2 Details on the FRAM MB85RS256

The MB85RS256 is a stand-alone FRAM device with a 256-Kbit capacity that supports the SPI

interface. The features are listed below.

<Features>

- Bit configuration: 32,768 words x 8 bits

- Operating power supply voltage: 3.0 V to 3.6 V

- Operating frequency: 15 MHz (Max)

- Serial Peripheral Interface: SPI

- Operating temperature range: -20°C to 85°C

- Data retention: 10 years (+ 55°C)

- Read-write cycles: 1010 cycles/bit (min)

- Package: 8-pin plastic SOP (FPT-8P-M02)

<Connections>

 Figure 11-2 shows a sample method of connection with the microcontroller (MCU).

Figure 11.2-1. FRAM connection with the microcontroller (MCU)

<OP-CODE>

The MB85RS256 accepts six commands specified in op-code. These commands are used to

access the FRAM. The commands are listed below.

Table 11.2-1 MB85RS256

Code name Description Op-code (Hex) (binary)

WREN Set Write Enable Latch 0x06 （0000110B）

WRDI Reset Write Enable Latch 0x04 （0000100B）

RDSR Read Status Register 0x05 （0000101B）

WRSR Write Status Register 0x01 （0000001B）

READ Read Memory Code 0x03 （0000011B）

WRITE Write Memory Code 0x02 （0000010B）

SCK

SI

SO

CS(GPIO)

HOLD(GPIO)

SCK

SI

SO

CS

HOLD

MCU

FRAM

 109

The commands listed above are input to the FRAM synchronized with the clock (SCK) after

the trailing edge of the CS signal.

 Reading is done by inputting the READ command followed by a 16-bit address. In response,

MB85RS256 outputs the 8-bit data synchronized with the clock. Thereafter, the address can be

incremented automatically to read 8 more bits of data repeatedly by inputting 8 clock pulses

before raising the CS signal.

 Figure 11.2-2. Example of waveform when reading

CS

SCK

SI

SO

Clock (8 cycles)

Command 0x03 Address (16-bit)

Data (8-bit) Data (8-bit)

Address can be incremented automatically to

read another byte of data by inputting 8 cycles

of SCK before raising CS.

 110

Writing is done by inputting the WRITE command followed by a 16-bit address, followed the

data to write in 8-bit units synchronized to the clock bit. Thereafter, the address can be

incremented automatically to continuously write 8 more bits of data by inputting data for every 8

clock pulses before raising the CS signal.

 Before sending WRITE commands, writing must be enabled by issuing the WREN command.

Figure 11.2-3. Example of waveform when writing

CS

SCK

SI

SO

Clock (8 cycles)

Command 0x06 Address (16-bit)

Additional bytes of data can be written to the next

automatically incremented address by inputting 8 cycles of

SCK and 8 bits of data before raising CS.

Command 0x02 Data (8-bit)

 111

9.3 Explanation of the sample program

 This section explains the program for writing data to the FRAM using the SPI multifunction

serial interface on the MB91F662. Also refer to the actual sample program.

 This sample program is only intended for a simple operation check and thus does not use the

multifunction serial interrupt function. The interrupt function including error processing should be

used when considering a system design.

 This program was written based on the hardware connections shown in Figure 11.3-1.

Figure 11.3-1 Connections between the MB91F662 and MB85RS256

SCK9（P46）：7pin

SIN9（P45）：6pin

SOUT9（P44）：5pin

P43：4pin

P47：8pin

P42：3pin

SCK

SI

SO

CS

HOLD

WP

MB91F662（MCU） FRAM MB85RS256

 112

9.3.1 Main routine

The operation of the main routine is shown below. Note that the following conditions are

assumed when operating this sample program.

<MB91F662 setting conditions>

 FLASH access settings

FLASH access size setting: 32 bits (no changes to default value)

FLASH wait setting: 1 wait

 MCU clock setting (set in the monitor debugger/no setting necessary)

CLKB (CPU): 32 MHz (External clock 4 MHz x PLL-8 multiplier setting)

 CLKP (peripheral): 32 MHz (External clock 4 MHz x PLL-8 multiplier setting)

Figures 11.3.1-1 to 11.3.1-3 show the flow of the sample program.

Figure 11.3.1-1 Counter operation flow (main.c Extint.c, sio.tx.c, fram_init.c)

Start

Initialize PORT (LED output)

Set Flash wait

Set CPU interrupt level

Enable interrupt

Initialize external interrupt

Initialize MFS (SPI mode)

Initialize FRAM (set control signals,

issue WRSR command)

Invert LED

Software loop

(wait for SW input)

 113

Figure 11.3.1-2 Counter operation flow (Switch operation) (Extint.c, sio.tx.c)

Start interrupt routine

No

Yes

No

Yes

Read from FRAM address

0x0000

Set CPU interrupt level

(external interrupt level mask)

SW7 input?

Clear interrupt flag

LED_data < 99?

LED_data = LED_data +1

Issue WREN command to FRAM

Write LED_data to FRAM address

0x0000

LED_data = 0

Yes

SW8 input?

Clear interrupt flag

Issue WREN command to FRAM

Write 0x00 to FRAM address 0x0000

No

7-SEG LED output

Set CPU interrupt level

(enable external interrupt level)

End of interrupt routine

①

②

 114

Figure 11.3.1-3 Counter operation flow (Extint.c, sio.tx.c)

①

No

Yes

No

Yes

SW10 input?

Clear interrupt flag

Lighting = 0 ?

Issue WREN command to FRAM

Write Lighting to FRAM address

0x0001

Lighting = 1

Lighting = 0

②

 115

10 USB Host function (mass storage SW-sample)

This sample program explains how to use the USB Host functionality of MB91F662. A mass

storage device (e.g. memory stick) can be connected to the starterkit’s USB-Host connector and

access to the memory stick is shown by this sample program. The sample program shows the

implementation of a USB Mass Storage Class driver and gives an idea how to use the driver from

application software.

The software utilizes USB Host functionality of MB91F662 processor. The driver makes use of

the calls and interface provided by Thesycon’s™ Fujitsu USB Mini Host Application Package

“FUMA” that can be downloaded from the Thesycon’s website:

http://www.thesycon.de/eng/fuma.shtml

Also in this sample a FAT16 file system is used what can be downloaded from the developer’s

Website: http://elm-chan.org/fsw/ff/00index_e.html.

10.1 Overview of the sample program

The sample program uses USB Host functionality to get access to a mass storage device. The

pushbutton switches are used to make a file “fujitsu.txt” or folder “FUJITSU” on the connected

mass storage device and/or delete the created file or folder.

The 7-segment LED and LED D2, D3, D4, D5, D6 indicates the current system status. For more

detailed information about the different system status please see table 12.1.

http://www.thesycon.de/eng/fuma.shtml�
http://elm-chan.org/fsw/ff/00index_e.html�

 116

<Sample program target project>

sample_USB_mass_storage.abs - “sample_USB_mass_storage.prj” [Debug]

< Sample program execution procedures>

1. Set USB-switch (SW3) to “Host”

2. Connect the starter kit to the PC with the USB cable.

3. Reset starterkit

4. Run the USB mass storage sample program.

5. Plug the USB mass storage device (memory stick) to USB host connector

6. Use Pushbuttons for access to mass storage device.

CAUTION: Do not unplug the memory stick while monitor debugger is running.

Figure 12.1-1 Operation and details of the USB mass storage sample program

Make file: fujitsu.txt

For debug

Status indication

Delete file: fujitsu.txt

Delete folder: FUJITSU

Make folder: FUJITSU

USB Host connector

USB Switch set to “Host”

“USER_CN” connector

 117

Part name Silk printing on board Description

7-segment LED 7SEG LED Gives Status information:

“Go”: System is working properly

“Er”: An error occured

LED D6 OFF = no error; ON = error

LED D2 ON = “Ready” 1

LED D3 ON = “Connected USB-device found” 1

LED D4 ON = “Mass storage initialized” 1

LED D5 ON = “Current action finished” 1

LED D2 ON = “Mass storage initialized failed” 2

LED D2 and D3 ON = “Device class not supported” 2

LED D2, D3 and D4 ON = “USB Hub not supported” 2

Pushbutton SW P_SW7 Make file “fujitsu.txt”

Pushbutton SW P_SW8 Delete file “fujitsu.txt”

Pushbutton SW P_SW9 Make folder “FUJITSU”

Pushbutton SW P_SW10 Delete folder “FUJITSU”

USB Host connector USB HOST Connector to plug in the USB mass

storage device

1 7-segment = “Go” and D6 = OFF
2 7-segment = “Er” and D6 = ON

Table 12.1-1: Operation and details of the USB mass storage sample program

 118

10.2 Detailed sample program description

When the program has started properly D2 illuminates and indicates that the system is ready for

plugging in the mass storage device to the USB Host connector. After a memory stick was

plugged and was initialized properly D3 and D4 also illuminate.

Pressing the pushbutton SW7 makes the file “fujitsu.txt” on the memory stick. Pressing the

pushbutton SW9 makes the folder “FUJITSU”. The pushbuttons SW 8 and SW10 delete the file

or rather the folder. Almost all memory sticks have an integrated LED which indicates if the stick

is busy or not. Please wait after the execution of a make- or delete-command until the process is

finished before you start the next access to the memory stick.

Before unplugging the memory stick please press pushbutton “DEBUG STOP” to break the

current debugging session. Then end the debugging session in Softune Workbench.

Now unplug the memory stick from SK-FR80-120PMC-USB and plug it to a USB port of a

computer to check if the file and/or folder were made correctly.

Figure 12.2-1 Mass storage device with created file and folder

 119

10.3 Additional option: Using terminal program for interaction

The sample program provides also the possibility to do user interaction via a terminal program

which is running on a computer (e.g. SKwizard which can be found on this CD). To make this

work the sample program uses a further USART I/F for communication.

To connect this USART I/F with a computer the user has to build up a simple circuit which

contains a true RS-232 transceiver (e.g. maxim MAX3232) for converting the voltage levels of a

computer COM-port to the MCU USART voltage levels and vice versa. The MCU USART-pins

SOUT1 and SIN1 are routed to Pin 9 and Pin 10 of the connector USER_CN on the starterkit.

Pin 9, Pin 10 and also Pin 1(GND) of connector USER_CN have to be connected to the

transceiver device. The transceiver is also connected to TXD and RXD of the COM-port.

Please see also the schematic of the starterkit and datasheet of the transceiver device for more

details.

Figure 12.3-1 Principle circuit diagram for connecting the RS232 transceiver

SIN

RS232 / COM port

SOUT

GND

True RS232

Transceiver

TXD

RXD

USART I/F

 120

When the SK-FR80-120PMC-USB is connected properly to the computer, please start your

terminal program and do following settings: Number of COM-port which is connected to the

RS232 transceiver, 115.200 Baud and 8N1, then click the connect button.

Plug the mass storage device to USB Host connector of the starterkit and press reset - the

terminal program window will come up with the main menu which is shown in figure 12.3-2.

Figure 12.3-2 Terminal program after reset of SK-FR80-120PMC-USB

The sample program provides a menu-structure to do different operations on the mass storage

device. With the menu some more operations are possible than with the pushbuttons only. For

example the names of created folders or files can be chosen by the user and typed in by the

terminal program.

 121

Appendix
1 Creating projects/sample programs as new projects

This Appendix will explain the settings to be made in order to create and debug new projects

and sample programs using the monitor debugger. The "Sample_skeleton" project file supplied

with the sample programs will be used for this explanation.

1.1 Sample project configuration

 The "Sample_skeleton" folder is configured as shown below.

Figure 1 File organization in the sample project

Sample_skeleton

Debug

flash_erase_sec.bin

flash_write.bin

FshLdWrt.prc

main.c

Mon.h

sample_skeleton.dat

sample_skeleton.prj

start.prc

startup.asm

OPT*

sample_skeleton.sup

ABS

LST*

OBJ*

sample_skeleton.abs

sample_skeleton.mhx

sample_skeleton.bin

* Only files necessary for the explanation are shown here.

Files in the LST/OBJ/OPT folders have been omitted.

 122

 Launch SOFTUNE WORKBENCH, then from "File" - "Open Workspace" select sample.wsp in

the sample folder, or drag and drop the sample.wsp file onto the SOFTUNE workspace.

 Clicking the + button next to "sample_skeleton.abs" will reveal the registered files as shown

below. Right-click on sample_skeleton.abs and select "Set as Active Project".

1.2 Explanation of the program

(1) startup.asm

 This program contains code to set the stack pointer, define memory allocation, and initialize the

data area. (These parts of the code do not require changes and should be used as is.)

 123

(2) main.c

 The user program executes from the main () function.

 Type your program from the line after the comment /* user program */.

 Do not delete the code for internal FLASH memory access or the interrupt settings.

Set Flash wait

Set CPU interrupt servicing

level/ enable interrupt

User program goes here

Interrupt vector definitions for

monitor program

 124

 The monitor program is designed to allow communications with the PC at a peripheral clock

speed of 32 MHz.

Two header files are defined at the beginning of the program.

 _fr.h defines the I/O registers for MB91F662.

 (For details, refer to "ioregj.txt" in the sample program folder "IOH_MB91660_V01L02".)

 mon.h is required to use the monitor program.

 Interrupt vector definitions used by the monitor program are defined at the end of main.c. Do

not delete these definitions.

(3) FshLdWrt.prc / flash_write.bin / flash_erase_sec.bin

 Files with the .prc extension are referred to as "procedure files (or batch files)".

 These files can be invoked as "commands" while SOFTUNE is running.

 FshLdWrt.prc is the command file for writing files created in SOFTUNE to the MB91F662

FLASH memory.

 This file executes the flash_erase_sec.bin (FLASH sector erase command) and flash_write.bin

(FLASH write command) programs.

 This file can be used without any modification for programs created using the

"sample_skeleton" project. (Note, the DATA_SIZE (*1) must be changed if the data size exceeds,

0x00004000.)

If you create a new workspace or project, the code indicated in italics (red) must be edited.

(All lines after the # are treated as comments.)

#---

set variable WRITE_SIZE = 0x00008000 # Data size to be written to FLASH

set variable DATA_SIZE = 0x00004000 #data size to initialize in FLASH (*1)

 (Erases the sector that includes this range.)

set variable WRITE_ADR = 0x00080000 #Starting address in FLASH memory to write to

#Write data

set variable DATA_FILE = Debug¥ABS¥sample_skeleton.bin #Specify using relative path

(*2)

(- omitted -)

= load/debug Debug¥ABS¥sample_skeleton.abs #Specify using relative path (*2)

#---

(*1) Must be changed if the data size exceeds, 0x00004000.

(*2) Change to name of program you are creating.

 125

(Project file name).abs will be generated after the make/build process.

The (project file name).bin file will be created from the mhx file using the converter program,

which in turn, will be created from the abs file. (This process will be described later)

This instruction in the FshLdWrt.prc file specifies the offset address of the user interrupt vector

area. Specify the same address as the starting address for the interrupt vector defined in main.c.

#---

set register TBR = 0x00080000

#---

1.3 SOFTUNE settings

 This section explains the settings that must be made to use the monitor debugger on

SOFTUNE.

(1) Project settings

From the menu, select "Project" - "Project settings" to call up the project settings window. The

settings necessary for each tab will be explained.

(1)-1 "C/C++ compiler" tab

Select the "C/C++ compiler" tab and add the relative patch to the I/O register definition files in the

"Include path" category.

(1)-2 "Linker" tab

In the [Deployment/Link] category, press the "Section settings" button. The window shown in the

 126

figure will appear. In "ROM/RAM area" select "_INROM01", and in section name specify "@INIT".

Then select "const" for the content type and press the "Set" button.

This area is where initial values for the variables with initial values (INIT area) will be located.

 127

(1)-3 "Converter" tab

 Place a check in the "Launch load module converter", and specify "Motorola S format (f2ms)"

as the conversion format. This setting will automatically generate an mhx file from the abs file

every time the make/build command is executed. (The mhx file is created inside the ABS folder.)

(2) Customize build settings

From the menu, select "Project" - "Customize build" to call up the window shown in the figure.

 From the "Converter" folder in the tree view, select "After" and click the icon next to "New file".

 128

Enter the name as shown below.

Title: M2BS (Any name may be specified)

Execution file name: C:¥Softune6¥Bin¥M2BS.EXE

Options: %X.mhx -o %X.bin -ran 0x00080000, 0x000FC000

Working directory: %x¥Debug¥ABS

After entering the above, click "OK" to save these settings.

These settings will convert the mhx file to a bin file. This file is written to the MB91F662 FLASH

memory using the FshLdWrt.prc file. (By registering this file in the customize build settings, the

bin file conversion is made each time the make/build command is executed.)

(3) Setup file

The setup file (extension sup) is located in the "Debug" folder of the SOFTUNE tree window. This

file must be configured before starting debugging.

Refer to Chapter 3, Section 3.2 for configuration instructions.

 129

(4) Customize bar

After starting debugging on SOFTUNE, click "View" - "Customize bar" and specify "start.prc".

You can either type "start.prc" in the "Entry" box, or specify the file by clicking the button to the

right of the text box. Click "Add" to register the prc file to the corresponding number.

This will enable the customize bar icon for the registered number. Pressing the button will

execute the prc file.

Executing start.prc returns the PC to the starting address of the program.

(Note that this only returns the PC to the start address. It does not reset the devices.)

 130

2 Verifying COM ports
This Section will explain how to verify the COM ports allocated on your PC.

2.1 For Windows XP

 Right-click "My Computer" and then select "Properties". In the "System properties" window,

select the "Hardware" tab and click the button "Device Manager".

In the device manager window, expand the "Ports (COM and LPT)" to see its contents.

Verify the number denoted by the ** in "USB Serial Port (COM**)".

 131

In this example, the COM port is assigned

to "COM2".

 132

3 Installation and usage of the PC writer

This starter kit is shipped with the monitor program written in the FLASH area of the

microcontroller. The monitor program must be running in order to connect to SOFTUNE, and to

use the continuous run and stop functions. If for some reason the monitor program fails to

operate correctly, the PC Writer must be used to rewrite it to the memory. We will use the PC

Writer to write the monitor program to the FLASH memory of the microcontroller.

 The procedures for installing the PC writer are explained below.

Double-click "MB91F662_setup.exe" to launch the installer.

Click "Next".

 133

Click "Next".

Click "Install".

 134

Wait for the installation to complete.

Click the "Finish" button to complete the installation of the PC writer.

After installing the PC writer, check the switch settings on the board before launching the

software.

 135

(1) Set to "USB Mini-B".

(2) Set MODE0 to "PROG".

(3) MODE1 to "Debug".

(4) Set to "FUNC".

 136

After setting the switches on the board, connect the PC and board using the USB B to Mini-B

cable supplied with the starter kit.

To USB Mini-B connector

Do not connect the cable to

"USB FUNC" or "USB

HOST".

 137

After setting the switches on the board and connecting to the PC, launch PC Writer from the

Windows Start menu.

Click the "Set Environment" button and select the COM port being used. Refer to Appendix

12.1 to verify the COM port.

Select the COM port and click "OK" to close the Environment Settings window.

 138

Click "Open", or drag and drop the file from Explorer onto the GUI to specify the file to write.

The monitor program file is "monitor.mhx (*)".

(*) bits_pot_black/monitor/monitor.mhx

Click "Full Operation (D+E+B+P)".

 139

When the following window appears, press the reset button on the board, and then click OK on

the screen.

To USB Mini-B connector

Do not connect the cable to

"USB FUNC" or "USB

HOST".

After pressing the reset

button on the board, click

"OK" on the PC application.

 140

Wait for the monitor program to finish writing to the microcontroller FLASH memory.

Writing to FLASH is complete when the message "Full Operation OK!" appears.

Click "OK" to close the window.

 141

4 Monitor debugger

4.1 Explanation of the monitor debugger

Microcontrollers are usually made available as an evaluation device for program development

and test evaluation (debugging), and as a production device. The evaluation device connects to

the PC via an ICE (in-circuit emulator) that allows program development and debugging using

SOFTUNE on the PC. The ICE and evaluation device are equipped with debug-specific

functions.

On the other hand, the monitor debugger allows program development and debugging on the

production device. Monitor debugger is equipped with a minimum set of functions for debugging.

The user may use other additional functions for debugging as well. Although the monitor

debugger has limited functionality compared to debugging with an ICE, it is sufficient for program

development and debugging of small programs. The monitor debugger also allows program

development and debugging without the dedicated ICE hardware.

 142

4.2 Resources used by monitor debugger

The resources used by the monitor debugger on this starter kit are listed in the following Table.

Resource Condition Remarks

RAM Approximately 8 Kbytes

0x3E000 to 0x3FFFF

FlashROM Approximately 8 Kbytes

0xFE000 to 0xFFFFF

Monitor vector table is placed at

0xFFC00 to 0xFFFFF

Multifunction

serial I/F

ｃh0

Wild register 0 to 16 ch Software break function

Reload timer ch2 Time measurement function

External interrupts:

ch30 (INT30) *

Forced break function I/O port

General-purpose I/O port: P63 Auto-boot function

INT9

(INTE command element)

Defines software break handler *1

(dbg_h)

INT12

(Step trace trap element)

Defines the step trace trap handler *2

(str_h)

Interrupt

External interrupt number for

forced break

Defines forced break handler *3 (abt_h)

Not necessary if not implementing the

force break function

* External interrupt: External interrupt channels 24 to 29, and 31 (INT24 to 29, 31) that share

the interrupt vector for ch30 (INT30) cannot be used as interrupts.

 143

4.3 Memory map with monitor debugger installed

The figure below shows the memory map when the monitor debugger is installed on this starter

kit.

Built-in RAM

(48Kbyte)

Built –in ROM

(512Kbyte)

MB91F662

 144

4.4 Monitor debugger limitations

The monitor debugger provided on this starter kit is functionally limited compared to an ICE as

listed below.

- "Program stop", "Reset" must be done by pressing the switch on the board.

(This cannot be controlled from SOFTUNE on the PC.)

- The operating clock for the CPU must not be changed as the monitor debugger program

performs data communications internally with the PC using asynchronous communications.

(This does not apply when checking the operation of a completed program.)

- The resources used by the monitor debugger cannot be used by the user.

(Refer to Appendix 4.2 for resources used by the monitor debugger.)

- Monitor debugger uses the following memory area. User programs cannot use this area.

 RAM: 0x3E000 to 0x3FFFF, ROM: 0xFE000 to 0xFFFFF

 (Refer to Appendix 4.3 for the memory map when the monitor debugger is installed.)

- Default interrupt vector area (TBR: 0xFFC00) is used by the monitor debugger. This area

cannot be overwritten when loading the monitor debugger. Therefore, the TBR is set to

0x80000 when monitor debugger launches.

- Only 16 break points (code breaks) are allowed.

- Monitor debugger uses user interrupts for the break function, communication functions, etc.

 To use these interrupts in the user program, the interrupt vector addresses must be defined

outside of the monitor debugger.

Changing interrupt levels and enabling/disabling settings for interrupts in the user program

may disable certain monitor debugger functions.

- Do not press the Reset button on the board when launching the debugger.

- Do not press the Reset button on the board during continuous execution.

 145

4.5 Stand-alone operation of the sample program

The starter kit can run sample programs without launching the debugger.

To run a program stand-alone, follow these procedures.

1. Make sure the program operates normally using monitor debugger.

2. Stop the monitor debugger

3. Change the microcontroller operation mode switch settings on the board from debug mode

to stand-alone mode. (See figure below)

4. Supply power to the board and press the Reset button to run the program.

 (This example shows the connection for supplying USB bus power via the USB Mini-B cable.)

Figure Settings to run programs stand-alone

MODE0: RUN

MODE1: Stand-alone

	Warranty and Disclaimer
	Revision History
	Table of Contents
	1 Preparations
	1.1 Checking package contents
	1.2 Other items required
	1.3 Required software
	1.4 External appearance of the starter kit board and major components
	1.5 Starter kit parts
	1.6 Power supply methods

	2 Setting up the PC
	2.1 Installing the integrated development environment SOFTUNE (bits pot dedicated version)
	2.2 Installing the USB driver

	3 Launching SOFTUNE and using the monitor debugger
	3.1 Launching SOFTUNE
	3.2 Setting and launching the monitor debugger
	3.3 Using the monitor debugger
	3.4 Exiting monitor debug

	4 What is a USB?
	4.1 What is a USB?
	4.2 Features of the USB
	4.3 Connection formats
	4.4 Plug
	4.5 Transfer rate
	4.6 Transfer rate detection
	4.7 Transfer methods
	4.8 Configuration of a device
	4.9 Enumeration
	4.10 Device class

	5 Let's make a USB mouse
	5.1 Overview of the USB sample program
	5.2 Overview of USB communications flow
	5.2.1 Overview of USB communications flow
	5.2.2 Device request (PC -> Starter kit)
	5.2.3 Descriptor (PC <- Starter kit)

	5.3 Sample program sequence
	5.3.1 Main routine
	5.3.2 USB initialization process
	5.3.3 USB interrupt processing
	5.3.4 EP0 data receive process
	5.3.5 Setup command receive process
	5.3.6 Switch operation detection process
	5.3.7 HID data notification process

	6 Humidity sensor
	6.1 What is humidity?
	6.2 What is a humidity sensor?

	7 Let's make a hygrometer
	7.1 Overview of the sample program
	7.2 Details on the humidity sensor
	7.2.1 Wiring the humidity sensor
	7.2.2 Driving the humidity sensor
	7.2.3 Humidity sensor characteristics

	7.3 Sample program operating details
	7.3.1 Main routine
	7.3.2 A/D converter interrupt processing
	7.3.3 Humidity calculation process

	8 What is an FRAM?
	9 Let's make a counter
	9.1 Overview of the sample program
	9.2 Details on the FRAM　MB85RS256
	9.3 Explanation of the sample program
	9.3.1 Main routine

	10 USB Host function (mass storage SW-sample)
	10.1 Overview of the sample program
	10.2 Detailed sample program description
	10.3 Additional option: Using terminal program for interaction
	Appendix

	1 Creating projects/sample programs as new projects
	1.1 Sample project configuration
	1.2 Explanation of the program
	1.3 SOFTUNE settings

	2 Verifying COM ports
	2.1 For Windows XP

	3 Installation and usage of the PC writer
	4 Monitor debugger
	4.1 Explanation of the monitor debugger
	4.2 Resources used by monitor debugger
	4.3 Memory map with monitor debugger installed
	4.4 Monitor debugger limitations
	4.5 Stand-alone operation of the sample program

