Current Transducer HXS 50-NP/SP2

For the electronic measurement of currents : DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

All Data are given with a $R_1 = 10 \text{ k}\Omega$

Electrical data

Γ

Ele	ectrical data		
I _{PN}	Primary nominal r.m.s. current	±50	А
I _P	Primary current measuring range	±150	A
ν _{ουτ}	Analog output voltage @ I	V _{REF} ±(0.628	5· I _/ I _N) V
001	$I_{\rm p} = 0$	$V_{\text{REF}} \pm 0.01$	
\mathbf{V}_{ref}	Internal Reference ¹⁾ - Output voltage	2.5 ± 0.025	
REF	V _{REF} Output impedance typ.	200	Ω
	V _{REF} Load impedance	≥ 200	kΩ
R,	Output load resistance	≥ 2	kΩ
R _{out}	Output impedance	< 10	Ω
C	Max. output capacitive load	< 1	μF
V _c	Supply voltage (± 5 %)	5	V
I _c	Current consumption @ $V_c = 5 V$	22	mA
Ac	curacy - Dynamic performance data		
х	Accuracy ²⁾ $(\mathbf{I}_{PN}, \mathbf{T}_{A} = 25^{\circ}C$	≤±1	% of I _{PN}
e i	Linearity 0 I	≤ ± 0.5	% of I _{PN}
-	$3 \times I_{PN}$	≤ ± 1	% of I _{PN}
TCV	Thermal drift of $\mathbf{V}_{OUT} @ \mathbf{I}_{P} = 0$	≤ ± 0.4	mV/K
	Thermal drift of V_{REF}	≤ ± 0.01	%/K
	V_{REF} Thermal drift of $V_{\text{OUT}} / V_{\text{REF}} @ I_{\text{P}} = 0$	≤ ± 0.2	mV/K
	Thermal drift of the gain	≤ <u>+</u> 0.05% of	reading/K
V _{OM}	Residual voltage @ $I_{P} = 0$, after an overload of 3 x $I_{PN DC}$	<±1	% of $I_{_{\rm PN}}$
t _{ra}	Reaction time @ 10 % of I _{PN}	< 3	μs
tŗ	Response time @ 90 % of I _{PN}	< 5	μs
di/dt	di/dt accurately followed	> 50	A/µs
	Output noise (DC10 kHz)	< 15	mVpp
	(DC 1 MHz)	< 40	mVpp
f	Frequency bandwidth (-3 dB) 3)	DC 50	kHz
Ge	eneral data		

General data				
T _A	Ambient operating temperature	- 40 + 105	°C	
T _s	Ambient storage temperature	- 40 + 105	°C	
dČp	Creepage distance	> 5.5	mm	
dCl	Clearance distance	> 5.5	mm	
CTI	Comparative tracking index (Group I)	> 600	V	
	UL94 classification	V0		
m	Mass	10	g	
	Standards		10-01)	

Features

- Hall effect measuring principle
- Multirange current transducer through PCB pattern lay-out
- Galvanic isolation between primary and secondary circuit
- Isolation test voltage 2500V
- Low power consumption
- Extremely low profile, 10mm
- Single power supply +5V
- Fixed offset & gain

Special Feature

• **T**_A = -40 .. +105 °C

Advantages

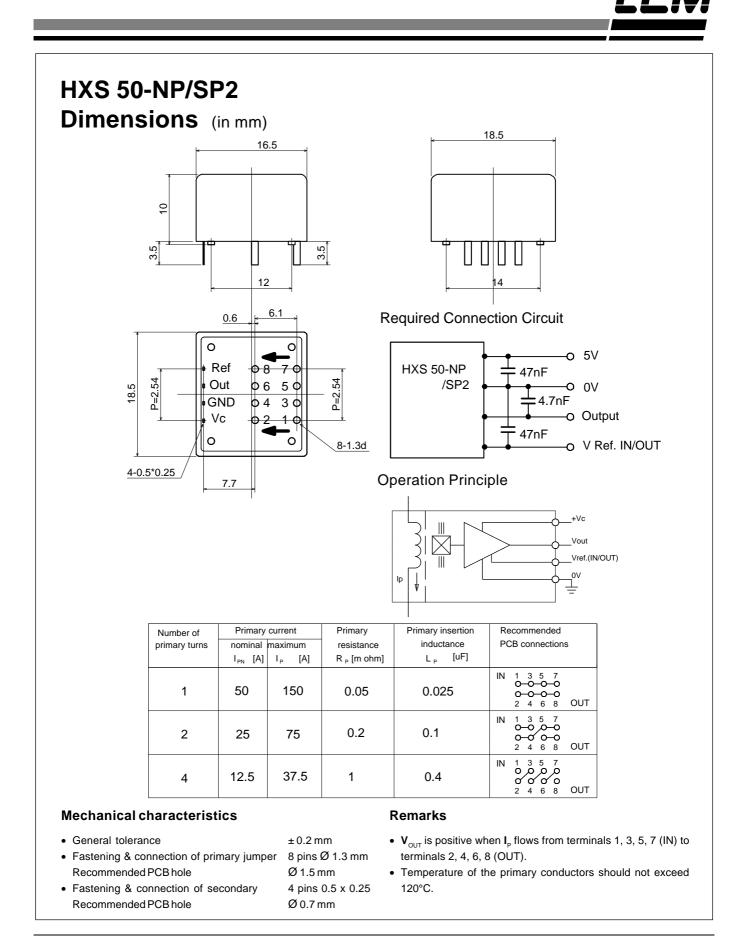
- Small size and space saving
- Only one design for wide current ratings range
- High immunity to external interference.
- Internal & external reference

Applications

- AC variable speed drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Current Transducer HXS 50-NP/SP2

Insulation category			
V _b	Nominal Voltage with IEC 61010-1 standards and following conditions - Single insulation - Over voltage category III - Pollution degree 2 - Heterogeneous field	150	V r.m.s.
V _b	Nominal Voltage with EN 50178 standards and following conditions - Reinforced insulation - Over voltage category III - Pollution degree 2 - Heterogeneous field	300	V r.m.s.
V _d V _e V _w	R.m.s. voltage for AC isolation test, 50/60 Hz, 1 mn R.m.s. voltage for partial discharge extinction @ 10pC Impulse withstand voltage 1.2/50µs	2.5 >1 6	kV kV kV


 $\frac{Notes}{2} : {}^{1)} It is possible to overdrive ~V_{\text{REF}} with an external reference voltage between 2 - 2.8 V providing its ability to sink or source approximately$

2.5 mA.

²⁾ Excluding offset and hysteresis.

³⁾Small signal only to avoid excessive heatings of the magnetic core.

Safety :	This transducer shall be used in accordance with manufacturer instruction. Power supply shall be a low voltage source and shall have an efficient
	protective system against over current.
	Power supply must incorporate a circuit breaker.
	This transducer shall be used in an electric/electronic equipment in respect
Caution, risk of danger	of standards rules and applicable safety requirements.
	Primary bar and output terminals can provide hazardous voltage.
4	This transducer is a built in device, of which conducting parts must be
Caution, risk of electrical shock	inaccessible by installation.
	Protective envelope or additional shield must be used.

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.