FJP13007
High Voltage Fast-Switching NPN Power Transistor

High Voltage High Speed Power Switch Application
• High Voltage Capability
• High Switching Speed
• Suitable for Electronic Ballast and Switching Mode Power Supply

Absolute Maximum Ratings \(T_C = 25^\circ C \) unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CEO})</td>
<td>Collector-Emitter Voltage</td>
<td>400</td>
<td>V</td>
</tr>
<tr>
<td>(V_{EBO})</td>
<td>Emitter-Base Voltage</td>
<td>9</td>
<td>V</td>
</tr>
<tr>
<td>(I_C)</td>
<td>Collector Current (DC)</td>
<td>8</td>
<td>A</td>
</tr>
<tr>
<td>(I_{CP})</td>
<td>Collector Current (Pulse)</td>
<td>16</td>
<td>A</td>
</tr>
<tr>
<td>(I_B)</td>
<td>Base Current</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>(P_C)</td>
<td>Collector Dissipation (T_C = 25^\circ C)</td>
<td>80</td>
<td>W</td>
</tr>
<tr>
<td>(T_J)</td>
<td>Junction Temperature</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>(T_{STG})</td>
<td>Storage Temperature</td>
<td>-65 – 150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Electrical Characteristics

$T_C = 25^\circ C$ unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV_{CEO}</td>
<td>Collector-Emitter Breakdown Voltage</td>
<td>$I_C = 10mA, I_B = 0$</td>
<td>400</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{EBO}</td>
<td>Emitter Cut-off Current</td>
<td>$V_{EB} = 9V, I_C = 0$</td>
<td></td>
<td>1</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>h_{FE1}</td>
<td>DC Current Gain *</td>
<td>$V_{CE} = 5V, I_C = 2A$</td>
<td>8</td>
<td>60</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>h_{FE2}</td>
<td></td>
<td>$V_{CE} = 5V, I_C = 5A$</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{CES(sat)}$</td>
<td>Collector-Emitter Saturation Voltage</td>
<td>$I_C = 2A, I_B = 0.4A$</td>
<td>1.0</td>
<td></td>
<td>3.0</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_C = 5A, I_B = 1A$</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_C = 8A, I_B = 2A$</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{BE(sat)}$</td>
<td>Base-Emitter Saturation Voltage</td>
<td>$I_C = 2A, I_B = 0.4A$</td>
<td>1.2</td>
<td></td>
<td>1.6</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_C = 5A, I_B = 1A$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_T</td>
<td>Current Gain Bandwidth Product</td>
<td>$V_{CE} = 10V, I_C = 0.5A$</td>
<td>4</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>C_{ob}</td>
<td>Output Capacitance</td>
<td>$V_{CB} = 10V, f = 0.1MHz$</td>
<td>110</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>t_{ON}</td>
<td>Turn On Time</td>
<td>$V_{CC} = 125V, I_C = 5A$</td>
<td>1.6</td>
<td></td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>t_{STG}</td>
<td>Storage Time</td>
<td>$I_{B1} = -I_{B2} = 1A$</td>
<td></td>
<td></td>
<td>3.0</td>
<td>μs</td>
</tr>
<tr>
<td>t_f</td>
<td>Fall Time</td>
<td>$R_L = 25\Omega$</td>
<td></td>
<td></td>
<td>0.7</td>
<td>μs</td>
</tr>
</tbody>
</table>

* Pulse Test: $PW \leq 300\mu s$, Duty Cycle $\leq 2\%$

h_{FE} Classification

<table>
<thead>
<tr>
<th>Classification</th>
<th>H1</th>
<th>H2</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_{FE1}</td>
<td>15 ~ 28</td>
<td>26 ~ 39</td>
</tr>
</tbody>
</table>
Typical Characteristics

Figure 1. DC Current Gain

Figure 2. Saturation Voltage

Figure 3. Collector Output Capacitance

Figure 4. Turn On Time

Figure 5. Turn Off Time

Figure 6. Forward Biased Safe Operating Area
Typical Characteristics (Continued)

Figure 7. Reverse Biased Safe Operating Area

- $V_{CC} = 50V$
- $I_{B1} \leq 1A$, $I_{B2} \leq 1A$
- $L = 1mH$

V_{CE}, COLLECTOR-EMITTER VOLTAGE

IC, COLLECTOR CURRENT

Figure 8. Power Derating

- P_{D}, POWER DISSIPATION
- T_{C}, CASE TEMPERATURE

V_{CE}, COLLECTOR-EMITTER VOLTAGE

IC, COLLECTOR CURRENT
Mechanical Dimensions

TO220

NOTES: UNLESS OTHERWISE SPECIFIED
A) REFERENCE JEDEC, TO-220, ISSUE K,
VARIATION AB, DATED APRIL 2002.
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONING AND TOLERANCING PER
ANSI Y14.5-1973
D) LOCATION OF THE PIN HOLE MAY VARY
(LOWER LEFT CORNER, LOWER CENTER
AND CENTER OF THE PACKAGE)
△ DOES NOT COMPLY JEDEC STANDARD VALUE.
F) "A1" DIMENSIONS REPRESENT LIKE BELOW:
SINGLE GAUGE = 0.51 - 0.61
DUAL GAUGE = 1.14 - 1.40
G) DRAWING FILE NAME: TO220B03REV6
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks:

Build it Now™
CorePLUS™
CoreFOMER™
CROSSVOLT™
CTL™
Current Transfer Logic™
EcoSpark™
EfficientMax™
EZSWITCH™
FairChalk™
Fairchild Semiconductor®
FACT Quiet Series™
FACT™
FastCore™
FlashWriter™
FPF™
F-PFET™
FFS™
F-FFS™
Global Power Resource™
Green FFS™
Green FFS e-Series™
HeraVOLT™
InstaMAX™
Isoplanar™
KinetiMax™
MicroCoupler™
MicroFET™
MicroPak™
MillerDrive™
Motor-SPMTM
MotorMax™
OptoLogic®
OptoPlanar®
PDP-SPM™
Power-SPM™
PowerTrench™
Programmable Active Drop™
QFET™
Quiet Series™
RapidConfigure™
Saving our world, 1W at a time™
ProMax™
SmartStart™
STO™
SVP™
STEALTH®
SuperFET™
SuperSOT™ 3
SuperSOT™ 6
SuperSOT™ 8
SuperMC™
SyncFET™
USBOnDes™
VisionMax™
The Power Franchise®
TinyBoost™
TinyLogic™
TinyOpto™
TinyPower™
TinyPWM™
USBOnDes™
Ultralytic™
UVPET™
VCore™
VisualMax™

* EZSWITCH™ and FlashWriter™ are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HERIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXCLUDE THE POSSIBILITY OF ERRORS AND DIFFERENCES BETWEEN THE ACTUAL AND SPECIFIED PERFORMANCE. THESE SPECIFICATIONS ARE FOCUSED ON THE MAIN CHARACTERISTICS OF THE DEVICE, MAY NOT COVER ALL OF ITS PROPERTIES, AND ARE NOT INTENDED TO BE COMPLETE. CONSIDERATION SHOULD BE GIVEN TO ALL APPENDICES, WARNINGS, AND DISCLAIMERS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:
1. Life support devices or systems are devices or systems which, if (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who occasionally purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect itself and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed on our web page cited above. Products purchased from either Fairchild directly or from Authorized Fairchild Distributors are genuine parts. All counterfeit parts will be covered by the Fairchild standard warranty and warranty coverage will be addressed by purchasing direct or from an authorized distributor.

PRODUCT STATUS DEFINITIONS
Definition of Terms

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative/In Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not in Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>