16 V Rail-to-Rail, Zero-Drift, Precision Instrumentation Amplifier

FEATURES

Resistor programmable gain range: 10^{1} to 1000 Supply voltage range: $\pm 4 \mathrm{~V}$ to $\pm 8 \mathrm{~V},+8 \mathrm{~V}$ to +16 V Rail-to-rail input and output
Maintains performance over $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

EXCELLENT AC AND DC PERFORMANCE

110 dB minimum CMR @ $\mathbf{6 0 ~ H z , ~ G = 1 0 ~ t o ~} 1000$
$10 \mu \mathrm{~V}$ max offset voltage ($\mathrm{RTI}, \pm 5 \mathrm{~V}$)
$50 \mathrm{nV} /{ }^{\circ} \mathrm{C}$ max offset drift
20 ppm max gain nonlinearity

APPLICATIONS

Pressure measurements

Temperature measurements
Strain measurements
Automotive diagnostics

GENERAL DESCRIPTION

The AD8230 is a low drift, differential sampling, precision instrumentation amplifier. Auto-zeroing reduces offset voltage drift to less than $50 \mathrm{nV} /{ }^{\circ} \mathrm{C}$. The AD8230 is well-suited for thermocouple and bridge transducer applications. The AD8230's high CMR of $110 \mathrm{~dB}(\mathrm{~min})$ rejects line noise in measurements where the sensor is far from the instrumentation. The 16 V rail-to-rail, common-mode input range is useful for noisy environments where ground potentials vary by several volts. Low frequency noise is kept to a minimal $3 \mu \mathrm{~V}$ p-p making the AD8230 perfect for applications requiring the utmost dc precision. Moreover, the AD8230 maintains its high performance over the extended industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Two external resistors are used to program the gain. By using matched external resistors, the gain stability of the AD8230 is much higher than instrumentation amplifiers that use a single resistor to set the gain. In addition to allowing users to program the gain between 10^{1} and 1000 , users may adjust the output offset voltage.

Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Figure 1. Relative Offset Voltage vs. Temperature

Figure 2. Thermocouple Measurement
The AD8230 is versatile yet simple to use. Its auto-zeroing topology significantly minimizes the input and output transients typical of commutating or chopper instrumentation amplifiers. The AD 8230 operates on $\pm 4 \mathrm{~V}$ to $\pm 8 \mathrm{~V}(+8 \mathrm{~V}$ to $+16 \mathrm{~V})$ supplies and is available in an 8 -lead SOIC.

[^0]
AD8230

TABLE OF CONTENTS

Specifications 3
Absolute Maximum Ratings 5
ESD Caution5
Typical Performance Characteristics 6
Theory of Operation 10
Setting the Gain 10
Level-Shifting the Output. 11
Source Impedance and Input Settling Time 11
Input Voltage Range 11
Input Protection 11
Power Supply Bypassing 11
Power Supply Bypassing for Multiple Channel Systems 11
Layout 12
Applications 12
Outline Dimensions 13
Ordering Guide 13

REVISION HISTORY

10/04—Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=100 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega\left(@ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{G}=202, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\right.$, unless otherwise noted $)$.
Table 1.

Parameter	Conditions	Min	Typ	Max	Unit
VOLTAGE OFFSET RTI Offset, Vosı Offset Drift	$\begin{aligned} & \mathrm{V}_{+\mid N}=\mathrm{V}_{-1 \mathrm{~N}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {+IN }}=\mathrm{V}_{-1 \mathrm{~N}}=0 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & 10 \\ & 50 \end{aligned}$	$\mu \mathrm{V}$ $\mathrm{nV} /{ }^{\circ} \mathrm{C}$
COMMON-MODE REJECTION (CMR) CMR to 60 Hz with $1 \mathrm{k} \Omega$ Source Imbalance	$\mathrm{V}_{\text {см }}=-5 \mathrm{~V}$ to +5 V	110	120		dB
VOLTAGE OFFSET RTI vs. SUPPLY (PSR) $\begin{aligned} & \mathrm{G}=2 \\ & \mathrm{G}=202 \end{aligned}$		$\begin{aligned} & 120 \\ & 120 \end{aligned}$	$\begin{aligned} & 120 \\ & 140 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
GAIN Gain Range Gain Error $\begin{aligned} & G=2 \\ & G=10 \\ & G=100 \\ & G=1000 \end{aligned}$ Gain Nonlinearity	$\mathrm{G}=2\left(1+\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{\mathrm{G}}\right)$	10^{1}	$\begin{aligned} & \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.02 \end{aligned}$	1000 20	V/V \% \% \% \% ppm
INPUT Input Common-Mode Operating Voltage Range Over Temperature Input Differential Operating Voltage Range Average Input Offset Current ${ }^{2}$	$\begin{aligned} & \mathrm{T}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -V_{s} \\ & -V_{s} \end{aligned}$	$\begin{aligned} & 750 \\ & 33 \end{aligned}$	$\begin{aligned} & +V_{s} \\ & +V_{s} \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{mV} \\ & \mathrm{pA} \end{aligned}$
OUTPUT Output Swing Over Temperature Short-Circuit Current	$\mathrm{T}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & -V_{s}+0.1 \\ & -V_{s}+0.1 \end{aligned}$	15	$\begin{aligned} & +V_{s}-0.2 \\ & +V_{s}-0.2 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~mA} \end{aligned}$
REFERENCE INPUT Voltage Range		-1		+1	V
NOISE Voltage Noise Density, 1 kHz, RT। Voltage Noise	$\begin{aligned} & V_{\mathbb{I N}+,} V_{\text {IN }-}, V_{\text {REF }}=0 \\ & f=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \end{aligned}$				$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\mu \mathrm{V}$ p-p
SLEW RATE	$\mathrm{V}_{\text {IN }}=500 \mathrm{mV}$, G = 10		2		V/ $\mu \mathrm{s}$
INTERNAL SAMPLE RATE			6		kHz
POWER SUPPLY Operating Range (Dual Supplies) Operating Range (Single Supply) Quiescent Current	$\mathrm{T}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 4 \\ & +8 \end{aligned}$		$\begin{aligned} & \pm 8 \\ & +16 \\ & 3.5 \end{aligned}$	V V mA
TEMPERATURE RANGE Specified Performance		-40		+125	${ }^{\circ} \mathrm{C}$

[^1]
AD8230

$\mathrm{V}_{\mathrm{S}}= \pm 8 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=100 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega$ ($@ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{G}=202, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, unless otherwise noted $)$.
Table 2.

Parameter	Conditions	Min	Typ	Max	Unit
VOLTAGE OFFSET RTI Offset, Vosı Offset Drift	$\begin{aligned} & \mathrm{V}_{+\mathbb{N}}=\mathrm{V}_{-1 \mathrm{~N}}=0 \mathrm{~V} \\ & \mathrm{~V}_{+\mathbb{N}}=\mathrm{V}_{-1 \mathrm{~N}}=0 \mathrm{~V}, \\ & \mathrm{~T}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & 20 \\ & 50 \end{aligned}$	$\mu \mathrm{V}$ $\mathrm{nV} /{ }^{\circ} \mathrm{C}$
COMMON-MODE REJECTION (CMR) CMR to 60 Hz with $1 \mathrm{k} \Omega$ Source Imbalance	$\mathrm{V}_{\text {cm }}=-8 \mathrm{~V}$ to +8 V	110	120		dB
VOLTAGE OFFSET RTI vs. SUPPLY (PSR) $\begin{aligned} & \mathrm{G}=2 \\ & \mathrm{G}=202 \end{aligned}$		$\begin{aligned} & 120 \\ & 120 \end{aligned}$	$\begin{aligned} & 120 \\ & 140 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
GAIN Gain Range Gain Error $\begin{aligned} & G=2 \\ & G=10 \\ & G=100 \\ & G=1000 \end{aligned}$ Gain Nonlinearity	$\mathrm{G}=2\left(1+\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{\mathrm{G}}\right)$	10^{1}	$\begin{aligned} & \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.02 \end{aligned}$	1000 20	$\begin{aligned} & \mathrm{V} / \mathrm{V} \\ & \\ & \% \\ & \% \\ & \% \\ & \% \\ & \mathrm{ppm} \end{aligned}$
INPUT Input Common-Mode Operating Voltage Range Over Temperature Input Differential Operating Voltage Range Average Input Offset Current ${ }^{2}$	$\begin{aligned} & \mathrm{T}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -V_{s} \\ & -V_{s} \end{aligned}$	$\begin{aligned} & 750 \\ & 33 \end{aligned}$	$\begin{aligned} & +V_{s} \\ & +V_{s} \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{mV} \\ & \mathrm{pA} \end{aligned}$
OUTPUT Output Swing Over Temperature Short-Circuit Current	$\mathrm{T}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & -V_{s}+0.1 \\ & -V_{s}+0.1 \end{aligned}$		$\begin{aligned} & +V_{s}-0.2 \\ & +V_{s}-0.4 \end{aligned}$	V V mA
REFERENCE INPUT Voltage Range		-1		+1	V
NOISE Voltage Noise Density, 1 kHz, RTI Voltage Noise	$\begin{aligned} & V_{V_{N+},} V_{I N-}, V_{\text {REF }}=0 \\ & f=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \end{aligned}$		$\begin{aligned} & 240 \\ & 3 \end{aligned}$		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\mu \mathrm{V}$ p-p
SLEW RATE	$\mathrm{V}_{\mathrm{IN}}=500 \mathrm{mV}, \mathrm{G}=10$		2		V/ $\mu \mathrm{s}$
INTERNAL SAMPLE RATE			6		kHz
POWER SUPPLY Operating Range (Dual Supplies) Operating Range (Single Supply) Quiescent Current	$\mathrm{T}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 4 \\ & +8 \end{aligned}$		$\begin{aligned} & \pm 8 \\ & +16 \\ & 4 \end{aligned}$	V V mA
TEMPERATURE RANGE Specified Performance		-40		+125	${ }^{\circ} \mathrm{C}$

[^2]
ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
Supply Voltage	$\pm 8 \mathrm{~V},+16 \mathrm{~V}$
Internal Power Dissipation	304 mW
Output Short-Circuit Current	20 mA
Input Voltage (Common-Mode)	$\pm \mathrm{V}_{\mathrm{s}}$
Differential Input Voltage	$\pm \mathrm{V}_{\mathrm{S}}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operational Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Specification is for device in free air: SOIC: θ_{JA} (4-layer JEDEC
board) $=121^{\circ} \mathrm{C} / \mathrm{W}$.

CONNECTION DIAGRAM

Figure 3.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

AD8230

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. Offset Voltage (RTI) Distribution at $\pm 5 \mathrm{~V}, \mathrm{CM}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Figure 5. Offset Voltage (RTI) Drift Distribution

Figure 6. Offset Voltage (RTI) vs. Temperature

Figure 7. Offset Voltage (RTI) vs. Common-Mode Voltage, $V_{s}= \pm 5 \mathrm{~V}$

Figure 8. Offset Voltage (RTI) vs. Common-Mode Voltage, $V_{s}= \pm 8 \mathrm{~V}$

Figure 9. Offset Voltage (RTI) vs. Source Impedance, 1μ F Across Input Pins

Figure 10. Offset Voltage (RTI) vs. Reference Voltage

Figure 11. Common-Mode Rejection vs. Frequency

Figure 12. Common-Mode Rejection vs. Source Impedance, 1.1 μ F Across Input Pins

Figure 13. Clock Frequency vs. Temperature

Figure 14. Average Input Bias Current vs. Common-Mode Voltage $-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C},+85^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$

Figure 15. Supply Current vs. Temperature

Figure 16. Gain vs. Frequency, $G=2$

Figure 17. Gain vs. Frequency, $G=10$

Figure 18. Gain Nonlinearity, $G=20$

Figure 19. Gain vs. Frequency, G=100

Figure 20. Gain vs. Frequency, $G=1000$

Figure 21. Gain Error vs. Differential Source Impedance

Figure 22. Voltage Noise Spectral Density

Figure 23. 0.1 Hz to 10 Hz RTI Voltage Noise $(G=100)$

Figure 24. Positive PSR vs. Frequency, RTI

Figure 25. Negative PSR vs. Frequency, RTI

Figure 26. Output Voltage Swing vs. Output Current, $-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C},+85^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$

THEORY OF OPERATION

Auto-zeroing is a dynamic offset and drift cancellation technique that reduces input referred voltage offset to the $\mu \mathrm{V}$ level and voltage offset drift to the $\mathrm{nV} /{ }^{\circ} \mathrm{C}$ level. A further advantage of dynamic offset cancellation is the reduction of low frequency noise, in particular the $1 / \mathrm{f}$ component.

The AD8230 is an instrumentation amplifier that uses an auto-zeroing topology and combines it with high commonmode signal rejection. The internal signal path consists of an active differential sample-and-hold stage (preamp) followed by a differential amplifier (gain amp). Both amplifiers implement auto-zeroing to minimize offset and drift. A fully differential topology increases the immunity of the signals to parasitic noise and temperature effects. Amplifier gain is set by two external resistors for convenient TC matching.

The signal sampling rate is controlled by an on-chip, 6 kHz oscillator and logic to derive the required nonoverlapping clock phases. For simplification of the functional description, two sequential clock phases, A and B, are used to distinguish the order of internal operation, as depicted in Figure 27 and Figure 28, respectively.

Figure 27. Phase A of the Sampling Phase
During Phase A , the sampling capacitors are connected to the inputs. The input signal's difference voltage, $\mathrm{V}_{\text {DIFF }}$, is stored across the sampling capacitors, Csample. Since the sampling capacitors only retain the difference voltage, the common-mode voltage is rejected. During this period, the gain amplifier is not connected to the preamplifier so its output remains at the level set by the previously sampled input signal held on ChoLd, as shown in Figure 27.

Figure 28. Phase B of the Sampling Phase

In Phase B, the differential signal is transferred to the hold capacitors refreshing the value stored on Cног. The output of the preamplifier is held at a common-mode voltage determined by the reference potential, $\mathrm{V}_{\text {ref. }}$. In this manner, the AD8230 is able to condition the difference signal and set the output voltage level. The gain amplifier conditions the updated signal stored on the hold capacitors, CHold.

SETTING THE GAIN

Two external resistors set the gain of the AD8230. The gain is expressed in the following function:

Figure 29. Gain Setting
Table 4. Gains Using Standard 1\% Resistors

Gain	$\mathbf{R}_{\mathbf{F}}$	$\mathbf{R}_{\mathbf{G}}$	Actual Gain
2	0Ω (short)	None	2
10	$8.06 \mathrm{k} \Omega$	$2 \mathrm{k} \Omega$	10
50	$12.1 \mathrm{k} \Omega$	499Ω	50.5
100	$9.76 \mathrm{k} \Omega$	200Ω	99.6
200	$10 \mathrm{k} \Omega$	100Ω	202
500	$49.9 \mathrm{k} \Omega$	200Ω	501
1000	$100 \mathrm{k} \Omega$	200Ω	1002

Figure 29 and Table 4 provide an example of some gain settings. As Table 4 shows, the AD8230 accepts a wide range of resistor values. Since the instrumentation amplifier has finite driving capability, make sure that the output load in parallel with the sum of the gain setting resistors is greater than $2 \mathrm{k} \Omega$.

$$
R_{L} \|\left(R_{F}+R_{G}\right)>2 \mathrm{k} \Omega
$$

Offset voltage drift at high temperature can be minimized by keeping the value of the feedback resistor, R_{F}, small. This is due to the junction leakage current on the R_{G} pin, Pin 7. The effect of the gain setting resistor on offset voltage drift is shown in Figure 30. In addition, experience has shown that wire-wound resistors in the gain feedback loop may degrade the offset voltage performance.

Figure 30. Effect of Feedback Resistor on Offset Voltage Drift

LEVEL-SHIFTING THE OUTPUT

A reference voltage, as shown in Figure 31, can be used to levelshift the output 1 V from midsupply. Otherwise, it is nominally tied to midsupply. The voltage source used to level-shift the output should have a low output impedance to avoid contributing to gain error. In addition, it should be able to source and sink current. To minimize offset voltage, the $V_{\text {REF }}$ pins should be connected either to the local ground or to a reference voltage source that is connected to the local ground.

Figure 31. Level-Shifting the Output

SOURCE IMPEDANCE AND INPUT SETTLING TIME

The input stage of the AD8230 consists of two actively driven, differential switched capacitors, as described in Figure 27 and Figure 28. Differential input signals are sampled on CsAMPLE such that the associated parasitic capacitances, 70 pF , are balanced between the inputs to achieve high common-mode rejection. On each sample period (approximately $85 \mu \mathrm{~s}$), these parasitic capacitances must be recharged to the common-mode voltage by the signal source impedance ($10 \mathrm{k} \Omega \mathrm{max}$).

INPUT VOLTAGE RANGE

The input common-mode range of the AD8230 is rail to rail. However, the differential input voltage range is limited to, approximately, 750 mV . The AD8230 does not phase invert when its inputs are overdriven.

INPUT PROTECTION

The input voltage is limited to within one diode drop beyond the supply rails by the internal ESD protection diodes. Resistors and low leakage diodes may be used to limit excessive, external voltage and current from damaging the inputs, as shown in Figure 32. Figure 34 shows an overvoltage protection circuit between the thermocouple and the AD8230.

Figure 32. Overvoltage Input Protection

POWER SUPPLY BYPASSING

A regulated dc voltage should be used to power the instrumentation amplifier. Noise on the supply pins may adversely affect performance. Bypass capacitors should be used to decouple the amplifier.

The AD8230 has internal clocked circuitry that requires adequate supply bypassing. A $0.1 \mu \mathrm{~F}$ capacitor should be placed as close to each supply pin as possible. As shown in Figure 29, a $10 \mu \mathrm{~F}$ tantalum capacitor may be used further away from the part.

POWER SUPPLY BYPASSING FOR MULTIPLE CHANNEL SYSTEMS

The best way to prevent clock interference in multichannel systems is to lay out the PCB with a star node for the positive supply and a star node for the negative supply. Each AD8230 has a pair of traces leading to the star nodes. Using such a technique, crosstalk between clocks is minimized. If laying out star nodes is unfeasible, then use thick traces to minimize parasitic inductance and decouple frequently along the power supply traces. Examples are shown in Figure 33. Care and forethought go a long way in maximizing performance.

AD8230

Figure 33. Use Star Nodes for $+V_{s}$ and $-V_{s}$ or Use Thick Traces and Decouple Frequently Along the Supply Lines

LAYOUT

The AD8230 has two reference pins: Vref 1 and $V_{\text {ref }} 2$. $V_{\text {ref }} 1$ draws current to set the internal voltage references. In contrast, $\mathrm{V}_{\text {ref }} 2$ does not draw current. It sets the common mode of the output signal. As such, $\mathrm{V}_{\text {REF }} 1$ and $\mathrm{V}_{\text {ReF }}$ should be star-connected to ground (or to a reference voltage). In addition, to maximize CMR, the trace between $\mathrm{V}_{\text {REF }} 2$ and the gain resistor, R_{G}, should be kept short.

APPLICATIONS

Figure 34. Type J Thermocouple with Overvoltage Protection and RFI Filter
The AD8230 may be used in thermocouple applications, as shown in Figure 2 and Figure 34. Figure 34 is an example of such a circuit for use in an industrial environment. It has voltage overload protection (see the Input Protection section for more information) and an RFI filter in front. The matched $100 \mathrm{M} \Omega$ resistors serve to provide input bias current to the input transistors and also serve as an indicator as to when the
thermocouple connection is broken. Well-matched $1 \% 4.99 \mathrm{k} \Omega$ resistors are used in the RFI filter. It is good practice to match the source impedances to ensure high CMR. The circuit is configured for a gain of 193, which provides an overall temperature sensitivity of $10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.

Figure 35. Bridge Measurement with Filtered Output
Measuring load cells in industrial environments can be a challenge. Often, the load cell is located some distance away from the instrumentation amplifier. The common-mode potential can be several volts, exceeding the common-mode input range of many 5 V auto-zero instrumentation amplifiers. Fortunately, the AD8230's wide common-mode input voltage range spans 16 V , relieving designers of having to worry about the common-mode range.

OUTLINE DIMENSIONS

Figure 36. 8-Lead Standard Small Outline Package [SOIC] Narrow Body (R-8)
Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD8230YRZ 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC	R-8
AD8230YRZ-REEL 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC, 13" Tape and Reel	R-8
AD8230YRZ-REEL7 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC, 7 " Tape and Reel	R-8
AD8230-EVAL		Evaluation Board	

[^3]NOTES

NOTES

AD8230

NOTES

[^0]: ${ }^{1}$ The AD8230 can be programmed for a gain as low as 2, but the maximum input voltage is limited to approximately 750 mV .

[^1]: ${ }^{1}$ The AD8230 can operate as low as $\mathrm{G}=2$. However, since the differential input range is limited to approximately 750 mV , the AD8230 configured at $\mathrm{G}<10$ does not make use of the full output voltage range.
 ${ }^{2}$ Differential source resistance less than $10 \mathrm{k} \Omega$ does not result in voltage offset due to input bias current or mismatched series resistors.

[^2]: ${ }^{1}$ The AD8230 can operate as low as $\mathrm{G}=2$. However, since the differential input range is limited to approximately 750 mV , the AD8230 configured at $\mathrm{G}<10$ does not make use of the full output voltage range.
 ${ }^{2}$ Differential source resistance less than $10 \mathrm{k} \Omega$ does not result in voltage offset due to input bias current or mismatched series resistors.

[^3]: ${ }^{1} \mathrm{Z}=\mathrm{Pb}$-free part.

