Dual Complementary Pair Plus Inverter

The MC14007UB multipurpose device consists of three N-Channel and three P-Channel enhancement mode devices packaged to provide access to each device. These versatile parts are useful in inverter circuits, pulse-shapers, linear amplifiers, high input impedance amplifiers, threshold detectors, transmission gating, and functional gating.

Features

- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low–power TTL Loads or One Low–power Schottky TTL Load Over the Rated Temperature Range
- Pin-for-Pin Replacement for CD4007A or CD4007UB
- This device has 2 outputs without ESD Protection. Antistatic precautions must be taken.
- Pb-Free Packages are Available*

MAXIMUM RATINGS (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
V _{in} , V _{out}	Input or Output Voltage Range (DC or Transient)	–0.5 to V _{DD} +0.5	V
I _{in} , I _{out}	Input or Output Current (DC or Transient) per Pin	±10	mA
P _D	Power Dissipation, per Package (Note 1)	500	mW
T _A	Ambient Temperature Range	-55 to +125	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C
TL	Lead Temperature (8 second Soldering)	260	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

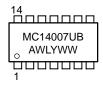
1. Temperature Derating:

Plastic "P and D/DW" Packages: - 7.0 mW/°C from 65°C 5o 125°C.

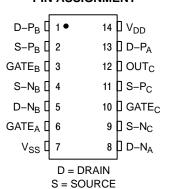
http://onsemi.com

MARKING DIAGRAMS

PDIP-14 P SUFFIX CASE 646



SOIC-14 D SUFFIX CASE 751A


SOEIAJ-14 F SUFFIX CASE 965

A = Assembly Location

WL, L = Wafer Lot YY, Y = Year WW, W = Work Week

PIN ASSIGNMENT

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

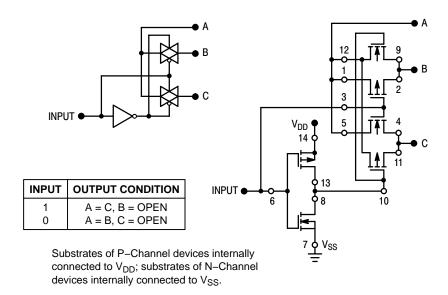


Figure 1. Typical Application: 2-Input Analog Multiplexer

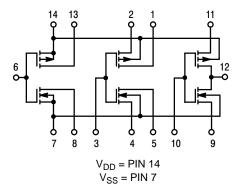
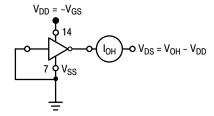
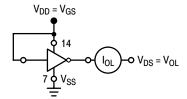


Figure 2. Schematic

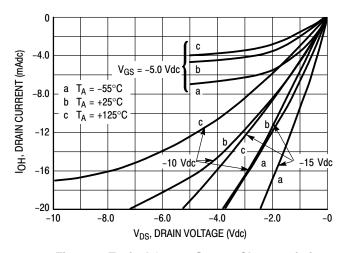
ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})


			-55	5°C		25°C		125	i°C	
Symbol	Characteristic	V _{DD} Vdc	Min	Max	Min	Typ (Note 2)	Max	Min	Max	Unit
V _{OL}	Output Voltage "0" Leve V _{in} = V _{DD} or 0	5.0 10 15	- - -	0.05 0.05 0.05	- - -	0 0 0	0.05 0.05 0.05	- - -	0.05 0.05 0.05	Vdc
V _{OH}	$V_{in} = 0 \text{ or } V_{DD}$ "1" Leve	5.0 10 15	4.95 9.95 14.95	- - -	4.95 9.95 14.95	5.0 10 15	- - -	4.95 9.95 14.95	- - -	Vdc
V _{IL}	Input Voltage "0" Leve (V _O = 4.5 Vdc) (V _O = 9.0 Vdc) (V _O = 13.5 Vdc)	5.0 10 15	- - -	1.0 2.0 2.5	- - -	2.25 4.50 6.75	1.0 2.0 2.5	- - -	1.0 2.0 2.5	Vdc
V _{IH}	$(V_O = 0.5 \text{ Vdc})$ "1" Leve $(V_O = 1.0 \text{ Vdc})$ $(V_O = 1.5 \text{ Vdc})$	5.0 10 15	4.0 8.0 12.5	- - -	4.0 8.0 12.5	2.75 5.50 8.25		4.0 8.0 12.5		Vdc
I _{OH}	Output Drive Current $ (V_{OH} = 2.5 \text{ Vdc}) $ Source $ (V_{OH} = 4.6 \text{ Vdc}) $ $ (V_{OH} = 9.5 \text{ Vdc}) $ $ (V_{OH} = 13.5 \text{ Vdc}) $	5.0 5.0 10 15	-3.0 -0.64 -1.6 -4.2	- - -	-2.4 -0.51 -1.3 -3.4	-5.0 -1.0 -2.5 -10	- - -	-1.7 -0.36 -0.9 -2.4	- - -	mAdc
I _{OL}	$(V_{OL} = 0.4 \text{ Vdc})$ Sink $(V_{OL} = 0.5 \text{ Vdc})$ $(V_{OL} = 1.5 \text{ Vdc})$	5.0 10 15	0.64 1.6 4.2	- - -	0.51 1.3 3.4	1.0 2.5 10	- - -	0.36 0.9 2.4	- - -	mAdc
l _{in}	Input Current	15	_	±0.1	_	±0.00001	±0.1	_	±1.0	μAdc
C _{in}	Input Capacitance (V _{in} = 0)	-	_	-	_	5.0	7.5	_	-	pF
I _{DD}	Quiescent Current (Per Package)	5.0 10 15	- - -	0.25 0.5 1.0	- - -	0.0005 0.0010 0.0015	0.25 0.5 1.0	- - -	7.5 15 30	μAdc
lΤ	Total Supply Current (Notes 3 and 4) (Dynamic plus Quiescent, Per Gate) (C _L = 50 pF)	5.0 10 15			$I_{T} = (1.$	7 μΑ/kHz) f - 4 μΑ/kHz) f - 2 μΑ/kHz) f -	+ I _{DD} /6			μAdc

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
 The formulas given are for the typical characteristics only at 25°C.
 To calculate total supply current at loads other than 50 pF: I_T(C_L) = I_T(50 pF) + (C_L – 50) Vfk where: I_T is in μA (per package), C_L in pF, V = (V_{DD} – V_{SS}) in volts, f in kHz is input frequency, and k = 0.003.


SWITCHING CHARACTERISTICS (Note 5) ($C_L = 50 \text{ pF}, T_A = 25^{\circ}\text{C}$)

Symbol	Characteristic	V _{DD} Vdc	Min	Typ (Note 6)	Max	Unit
t _{TLH}	Output Rise Time $t_{TLH} = (1.2 \text{ ns/pF}) \text{ C}_{L} + 30 \text{ ns} \\ t_{TLH} = (0.5 \text{ ns/pF}) \text{ C}_{L} + 20 \text{ ns} \\ t_{TLH} = (0.4 \text{ ns/pF}) \text{ C}_{L} + 15 \text{ ns}$	5.0 10 15	- - -	90 45 35	180 90 70	ns
t _{THL}	Output Fall Time $t_{THL} = (1.2 \text{ ns/pF}) \text{ C}_L + 15 \text{ ns} \\ t_{THL} = (0.5 \text{ ns/pF}) \text{ C}_L + 15 \text{ ns} \\ t_{THL} = (0.4 \text{ ns/pF}) \text{ C}_L + 10 \text{ ns}$	5.0 10 15	- - -	75 40 30	150 80 60	ns
t _{PLH}	Turn–Off Delay Time $t_{PLH} = (1.5 \text{ ns/pF}) \text{ C}_{L} + 35 \text{ ns} \\ t_{PLH} = (0.2 \text{ ns/pF}) \text{ C}_{L} + 20 \text{ ns} \\ t_{PLH} = (0.15 \text{ ns/pF}) \text{ C}_{L} + 17.5 \text{ ns}$	5.0 10 15	- - -	60 30 25	125 75 55	ns
t _{PHL}	Turn–On Delay Time $t_{PHL} = (1.0 \text{ ns/pF}) \text{ C}_L + 10 \text{ ns} \\ t_{PHL} = (0.3 \text{ ns/pF}) \text{ C}_L + 15 \text{ ns} \\ t_{PHL} = (0.2 \text{ ns/pF}) \text{ C}_L + 15 \text{ ns}$	5.0 10 15	- - -	60 30 25	125 75 55	ns


- 5. The formulas given are for the typical characteristics only. Switching specifications are for device connected as an inverter.
- 6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

All unused inputs connected to ground.

All unused inputs connected to ground.

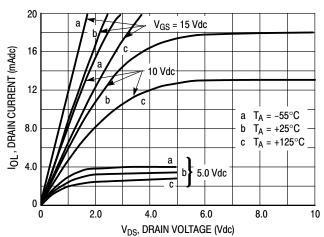
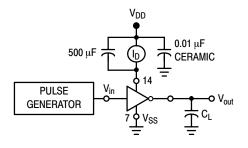



Figure 4. Typical Output Sink Characteristics

These typical curves are not guarantees, but are design aids. Caution: The maximum current rating is 10 mA per pin.

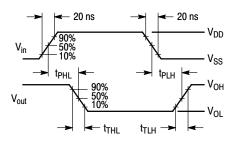
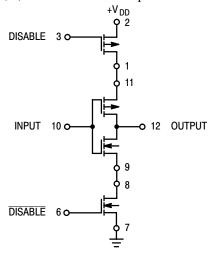
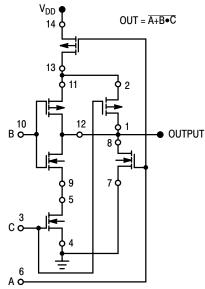



Figure 5. Switching Time and Power Dissipation Test Circuit and Waveforms

APPLICATIONS


The MC14007UB dual pair plus inverter, which has access to all its elements offers a number of unique circuit applications. Figures 1, 6, and 7 are a few examples of the device flexibility.

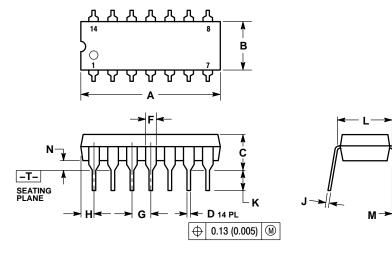
INPUT	DISABLE	OUTPUT
1	0	0
0	0	1
Х	1	OPEN

Figure 6. 3-State Buffer

X = Don't Care

Substrates of P–Channel devices internally connected to V_{DD} ; Substrates of N–Channel devices internally connected to V_{SS} .

Figure 7. AOI Functions Using Tree Logic


ORDERING INFORMATION

Device	Package	Shipping [†]
MC14007UBCP	PDIP-14	500 Units / Rail
MC14007UBCPG	PDIP-14 (Pb-Free)	500 Units / Rail
MC14007UBD	SOIC-14	55 Units / Rail
MC14007UBDR2	SOIC-14	2500 / Tape & Reel
MC14007UBDR2G	SOIC-14 (Pb-Free)	2500 / Tape & Reel
MC14007UBFEL	SOEIAJ-14	2000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

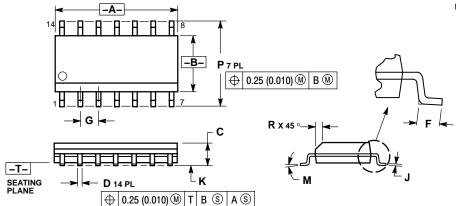
PACKAGE DIMENSIONS

P SUFFIX PLASTIC DIP PACKAGE CASE 646-06 ISSUE N

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING
 PER ANSI Y14.5M, 1982.

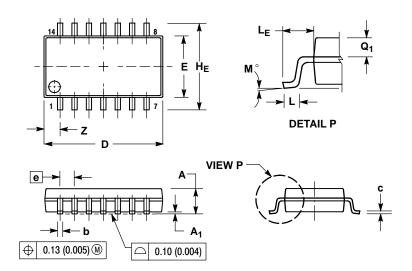

 2. CONTROLLING DIMENSION: INCH.

 3. DIMENSION L TO CENTER OF LEADS
 WHEN FORMED PARALLEL.
- 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

 5. ROUNDED CORNERS OPTIONAL.

	INCHES		MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.715	0.770	18.16	18.80
В	0.240	0.260	6.10	6.60
С	0.145	0.185	3.69	4.69
D	0.015	0.021	0.38	0.53
F	0.040	0.070	1.02	1.78
G	0.100	BSC	2.54 BSC	
Н	0.052	0.095	1.32	2.41
J	0.008	0.015	0.20	0.38
K	0.115	0.135	2.92	3.43
L	0.290	0.310	7.37	7.87
М		10 °		10 °
N	0.015	0.039	0.38	1.01

D SUFFIX PLASTIC SOIC PACKAGE CASE 751A-03 **ISSUE G**


- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
- PER SIDE.

 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE
 DAMBAR PROTRUSION SHALL BE 0.127 0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	8.55	8.75	0.337	0.344
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC	0.050	BSC
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0 °	7°	0 °	7°
Р	5.80	6.20	0.228	0.244
R	0.25	0.50	0.010	0.019

PACKAGE DIMENSIONS

F SUFFIX PLASTIC EIAJ SOIC PACKAGE CASE 965-01 **ISSUE O**

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2 CONTROLLING DIMENSION: MILLIMETER.
 3 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
- PER SIDE.
 TERMINAL NUMBERS ARE SHOWN FOR
 REFERENCE ONLY.
 THE LEAD WIDTH DIMENSION (b) DOES NOT
 INCLUDE DAMBAR PROTRUSION. ALLOWABLE
 DAMBAR PROTRUSION SHALL BE 0.08 (0.003) DANIBATT HOTTOGON STRALE DE USE (USCOS)
 TOTAL IN EXCESS OF THE LEAD WIDTH
 DIMENSION AT MAXIMUM MATERIAL CONDITION.
 DAMBAR CANNOT BE LOCATED ON THE LOWER
 RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α		2.05		0.081
A ₁	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
С	0.18	0.27	0.007	0.011
D	9.90	10.50	0.390	0.413
E	5.10	5.45	0.201	0.215
е	1.27	BSC	0.050 BSC	
HE	7.40	8.20	0.291	0.323
0.50	0.50	0.85	0.020	0.033
LE	1.10	1.50	0.043	0.059
M	0 °	10 °	0 °	10°
Q ₁	0.70	0.90	0.028	0.035
Z		1.42		0.056

ON Semiconductor and was are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its partnif rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.