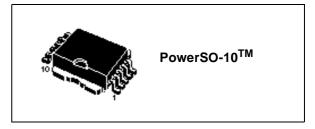
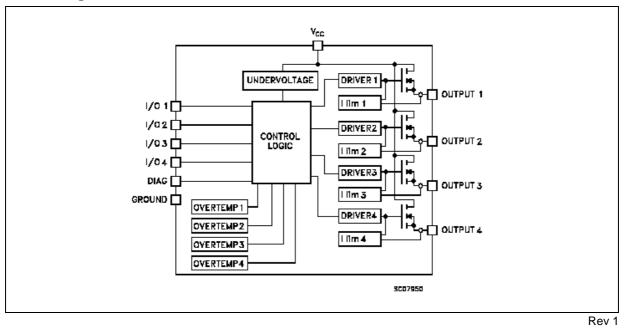


VN340SP-E QUAD HIGH SIDE SMART POWER SOLID STATE RELAY

General Features


Туре	V _{demag} (*)	R _{DSon} (*)	l _{out} (*)	v _{cc}
VN340SP-E	V _{CC} -55V	0.2Ω	0.7A	36V

Features

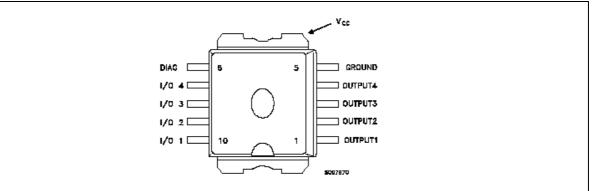

- OUTPUT CURRENT : 0.7A PER CHANNEL
- DIGITAL I/O's CLAMPED AT 32V MINIMUM VOLTAGE
- SHORTED LOAD AND OVERTEMPERATURE PROTECTIONS
- PROTECTION AGAINST LOSS OF GROUND
- BUILT-IN CURRENT LIMITER
- UNDERVOLTAGE SHUT-DOWN
- OPEN DRAIN DIAGNOSTIC OUTPUT
- FAST DEMAGNETIZATION OF INDUCTIVE LOADS
- CONFORMS TO IEC 61131-2

Block Diagram

Description

The VN340SP-E is a monolithic device made using STMicroelectronics VIPower technology, intended for driving four indipendent resistive or inductive loads with one side connected to ground. Active current limitation avoids dropping the system power supply in case of shorted load. Built-in thermal shut-down protects the chip from overtemperature and short circuit. The open drain diagnostic output indicates overtemperature conditions. Each I/O is pulled down when overtemperature condition of the relative channel is verified.

September 2005


1/12

57

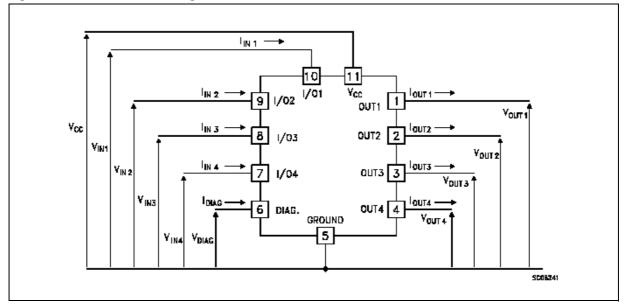

	5		
Symbol	Parameter	Value	Unit
V _{CC}	Power supply voltage	45	V
-V _{CC}	Reverse supply voltage	-4	V
I _{OUT}	Output current (continuos)	Internally limited	Α
I _R	Reverse output current (per channel)	-6	Α
I _{IN}	Input current (per channel)	± 10	mA
I _{DIAG}	Diag pin current	± 10	mA
V _{ESD}	Electrostatic discharge (R = 1.5KW; C = 100pF)	2000	V
E _{AS}	Single pulse avalanche energy per channel not simultaneously <i>Figure 3.</i>	400	mJ
P _{tot}	Power dissipation at $T_c = 25^{\circ}C$	Internally limited	w
TJ	Junction operating temperature	Internally limited	
T _{stg}	Storage Temperature	-55 to 150	°C

 Table 1.
 Absolute Maximum Rating

Figure 1. Connection Diagram (Top View)

Figure 2. Current and Voltage Conventions

VN340SP-E

Symbol	Symbol Parameter		Max Value	Unit
R _{thj-case}	Thermal resistance junction-case (Note 1)	Max	3	°C/W
R _{thj-amb}	Thermal resistance junction-ambient (Note:2)	Max	50	°C/W

Table 2. Thermal data

Note: 1.Per channel

Note: 2.When mounted using minimum recommended pad size on FR-4 board

Electrical Chracteristics (10V < V_{CC} < 36V; -25°C < TJ < 125°C; unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{CC}	Supply voltage		10		36	V
		I _{OUT} = 0.5A; T _J = 25°C			0.2	Ω
R _{ON}	On state resistance	I _{OUT} = 0.5A; T _J = 85°C			0.32	Ω
		I _{OUT} = 0.5A; T _J = 125°C			0.4	Ω
		All channels OFF			1	mA
۱ _S	Supply current	On state; V _{IN} = 30V; I _{OUT} = 0V				
		(T _J = 125°C)			6	mA
V _{OL}	Low state output voltage	$V_{IN} = V_{IL}; R_{LOAD} >= 10M\Omega$			1.5	V
V _{demag}	Output voltage at turn-off	I _{OUT} = 0.5A; L _{LOAD} >= 1mH	V _{CC} -65	V_{CC} -55	V _{CC} -45	V
I _{LGND}	Output current at turn-off	$V_{CC} = V_{INn} = V_{GND} = V_{STAT} = 18 \text{ to } 30V$ Tamb = - 25°C to 85°C <i>Figure 8</i> .			2	А

Table 3. Power Section

Table 4.Switching ($V_{CC} = 24V$)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(ON)}	Turn-on delay time of Output current	I_{OUT} = 0.5A, Resistive Load Input rise time < 0.1µs, T _J = 25°C		52	100	μs
t _r	Rise time of Output current $I_{OUT} = 0.5A$, Resistive Load Input rise time < 0.1μ s, $T_J = 25^{\circ}$ C			94	250	μs
t _{d(OFF)}	Turn-off delay time of Output current	I_{OUT} = 0.5A, Resistive Load Input rise time < 0.1µs, T _J = 25°C		34	50	μs
t _f	Fall time of Output current	$I_{OUT} = 0.5A$, Resistive Load Input rise time < 0.1 μ s, T _J = 25°C		8	20	μs

Unit

V

V

V

μΑ

V

V

Max.

2

25

Тур.

0.5

36

-0.7

32

 Symbol
 Parameter
 Test Conditions
 Min.

 V_{IL}
 I/O Input low level voltage

 V_{IH}
 I/O Input high level voltage Note:3.
 3.5

 V_{I(HYST)}
 I/O Input hysteresis voltage

 $V_{IN} = \overline{30V}$

 $I_{IN} = 1mA$

 $I_{IN} = -1mA$

Table 5. Logical Input

 I_{IN}

VICL

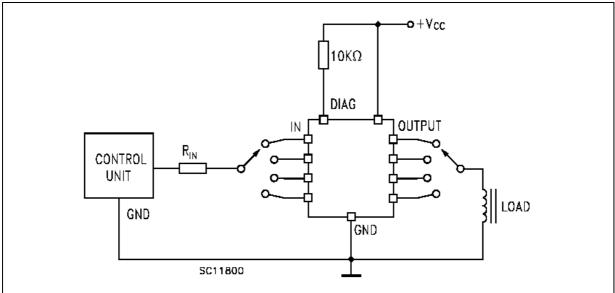
Note: 3.The input voltage is internally clamped at 32V minimum, it is possible to connect the input pins to an higher voltage via an external resistor calculate to not exceed 10mA

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{DIAG} (*)	Status voltage output low	I _{DIAG} = 5mA (Fault condition)			1	V
\/(*)	Status domo voltago	I _{DIAG} = 1mA	32	36		V
V _{SCL} (*)	Status clamp voltage	I _{DIAG} = 1mA		-0.7		V
V _{USD}	Undervoltage shut down		5		8	V
I _{LIM}	DC Short circuit current	$V_{CC} = 24V; R_{LOAD} < 10m\Omega$	0.7		2	А
I _{OVPK}	Peak short circuit current	$V_{CC} = 24V; V_{IN} = 30; R_{LOAD} < 10m\Omega$			4	A
I _{DIAGH}	Leakage ondiag pin in high state	V _{DIAG} = 24V			25	μΑ
I _{LOAD}	Output leakage current	V_{CC} = 10 to 36V; $V_{IN} = V_{IL}$			50	μA
t _{SC}	Delay time of current limiter				100	μs
T _{TSD}	Thermal shut down temperature		150	170		°C
Τ _R	Thermal reset temperature		135	155		°C

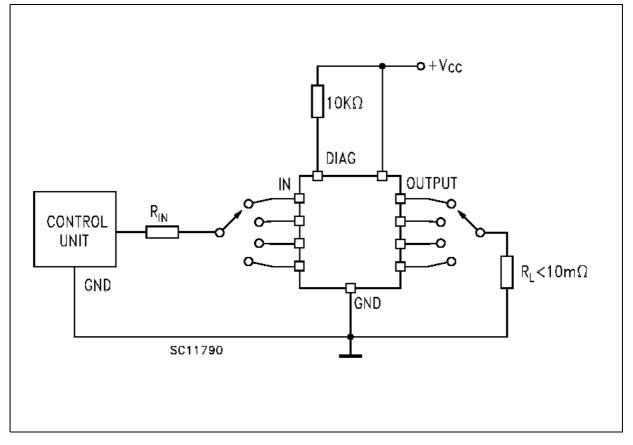
Table 6. Protection and Diagnostic

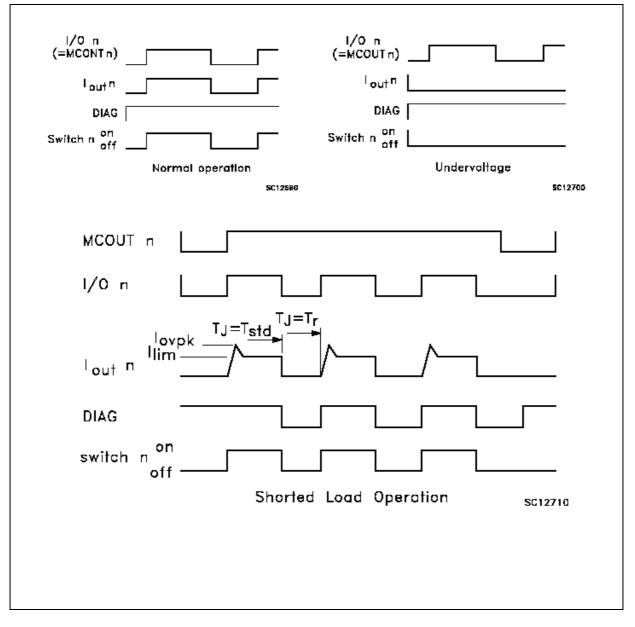
I/O Input current

Note:3


I/O Input clamp voltage

(*)Status determination > 100ms after the switching edge.


Note: If INPUT pin is floating the corrisponding channel will automatically switch OFF. If GND pin is disconnected, the channel will switch OFF provided VCC not exceed 36V.



	MCOUTn	l/On	OUTPUTn	Diagnostic
Normal operation	L H	L H	L H	H H
Overtemperature	L H	L	L	H L
Undervoltage	L H	L H	L	H H
Shorted load (Current limitation)	L H	L H	L H	H H

Table 7. Truth Table

Figure 5. Switching Waveforms

57

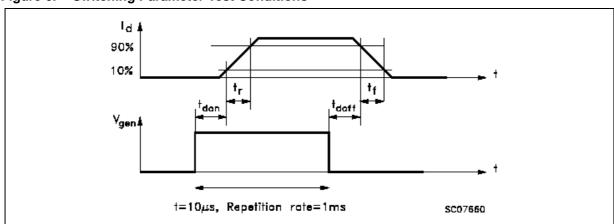
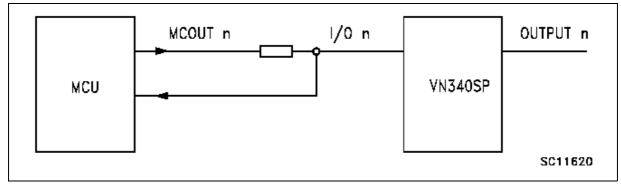
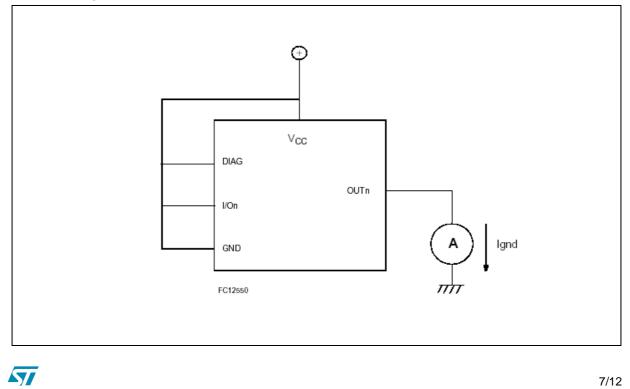
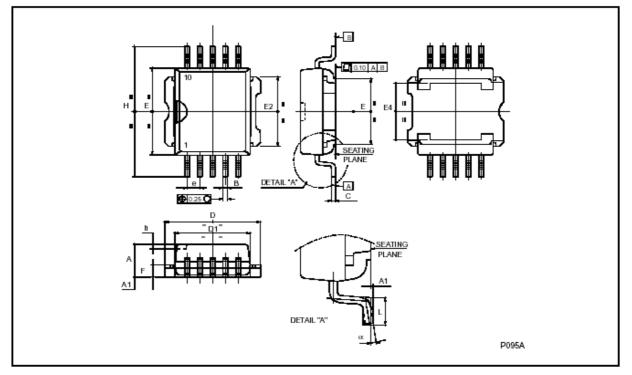




Figure 6. **Switching Parameter Test Conditions**

I_{LGND} Test Configuration Figure 8.


Mechanical Data

In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

	mm.	mm.		inch		
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX
A	3.35		3.65	0.132		0.144
A (*)	3.4		3.6	0.134		0.142
A1	0.00		0.10	0.000		0.004
В	0.40		0.60	0.016		0.024
B (*)	0.37		0.53	0.014		0.021
Ċ	0.35		0.55	0.013		0.022
C (*)	0.23		0.32	0.009		0.0120
D	9.40		9.60	0.370		0.378
D1	7.40		7.60	0.291		0.300
E	9.30		9.50	0.366		0.374
E2	7.20		7.60	0.283		300
E2 (*)	7.30		7.50	0.287		0.295
E4	5.90		6.10	0.232		0.240
E4 (*)	5.90		6.30	0.232		0.248
e		1.27			0.050	
F	1.25		1.35	0.049		0.053
F (*)	1.20		1.40	0.047		0.055
Н	13.80		14.40	0.543		0.567
H (*)	13.85		14.35	0.545		0.565
h		0.50			0.002	
L	1.20		1.80	0.047		0.070
L (*)	0.80		1.10	0.031		0.043

(*) Muar only POA P013P

Table 8.Order Codes

Package	Tube	Tape and Reel
PowerSO-10 TM	VN340SP-E	VN340SPTR-E

VN340SP-E

Table 9.Revision History

Date	Revision	Changes
5-Sep-2005	1	First Version

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2005 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

