

Current Transducer LA 100-P/SP13

For the electronic measurement of currents : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

YEARS CE

Electrical data							
I _{PN}	Primary nominal r.m.s	s. current	100		A		
I _P	Primary current, measuring range		0±160		Α		
R _м	Measuringresistance		R _{M min} R _{M m}		ax		
	with ± 12 V	$@ \pm 100 A_{max}$	10	65	Ω		
		@ ± 160 A _{max}	10	30	Ω		
	with ± 15 V	@ ± 100 A max	40	95	Ω		
		@ ± 160 A _{max}	40	50	Ω		
I _{sn}	Secondary nominal r.m.s. current		100		mA		
K	Conversion ratio		1:1000				
v _c	Supply voltage (±5%)	± 12	15	V		
I _c	Current consumption		10(@±15V)+ I _s m		mΑ		
Ňď	R.m.s. voltage for AC i	solation test, 50 Hz, 1 mn	2.5	. 0	kV		
	ccuracy - Dynamic	c performance data					

x	Accuracy @ $I_{_{PN}}$, $T_{_{A}}$ = 25°C	@ ± 15 V (± 5 %)	±0.45		%
		@ ± 12 15 V (± 5 %)	±0.70		%
e L	Linearity		< 0.15		%
			Тур	Max	
I .	Offset current @ $\mathbf{I}_{P} = 0$, $\mathbf{T}_{A} = 2$	25°C		±0.2	mΑ
I _{OM}	Residual current ¹⁾ @ $\mathbf{I}_{p} = 0$, a	fter an overload of $3 \times I_{PN}$		±0.3	mΑ
I _{OT}	Thermal drift of I _o	- 25°C + 70°C	±0.1	±0.5	mΑ
t _{ra}	Reaction time @ 10 % of $I_{_{PN}}$		< 500		ns
ţ	Response time ²⁾ @ 90 % of	I PN	< 1		μs
di/dt	di/dt accurately followed		> 200		Aõs
f	Frequency bandwidth (-1dB)	DC 2	200	kHz
G	eneral data				
T _A	Ambientoperatingtemperatur	e	- 25	+ 70	°C
T _s	Ambientstoragetemperature		- 40	+ 85	°C
R _s	Secondary coil resistance @	$\mathbf{T}_{A} = 70^{\circ} \mathrm{C}$	25		Ω
m	Mass	~	18		g
	Standards ³⁾		EN 50	178	U

$I_{PN} = 100 \text{ A}$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Printed circuit board mounting
- Insulated plastic case recognized according to UL 94-V0.

Special features

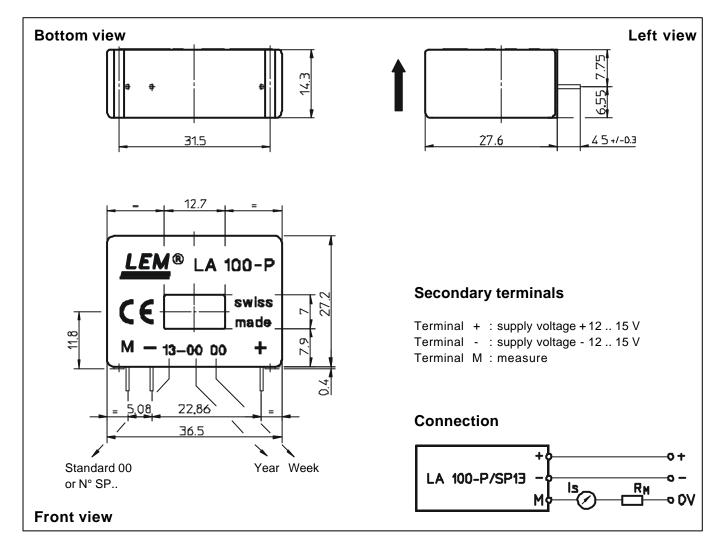
- $I_{P} = 0 ... \pm 160 \text{ A}$
- **K**_N = 1:1000
- $\mathbf{T}_{A} = -25^{\circ}C..+70^{\circ}C.$

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.


Notes: 1) The result of the coercive field of the magnetic circuit

 $^{\scriptscriptstyle 2)}$ With a di/dt of 100 A/µs

³⁾ A list of corresponding tests is available

020222/0

Dimensions LA 100-P/SP13 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- Generaltolerance
- Primarythrough-hole
- Fastening & connection of secondary

Recommended PCBhole

	±0.2mm
	12.7 x 7 mm
dary	3 pins
	0.63 x 0.56 mm
	0.9 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.