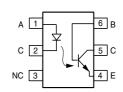


Optocoupler, Phototransistor Output, With Base Connection, 300 V BV_{CFO}


Features

- Good CTR Linearity with Forward Current
- · Low CTR Degradation
- Very High Collector-emitter Breakdown Voltage, BV_{CER} = 300 V
- Isolation Test Voltage: 5300 V_{RMS}
- · Low Coupling Capacitance
- High Common Mode Transient Immunity
- Phototransistor Optocoupler 6 Pin DIP Package with Base Connection
- · Lead-free component
- Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC

Agency Approvals

- UL1577, File No. E52744 System Code H or J, Double Protection
- DIN EN 60747-5-2 (VDE0884)
 DIN EN 60747-5-5 pending
 Available with Option 1
- CSA 93751
- BSI IEC60950 IEC60065

i179004

Description

The SFH 640 is an optocoupler with very high BV_{CER} , a minimum of 300 V. It is intended for telecommunications applications or any DC application requiring a high blocking voltage.

Order Information

Part	Remarks
SFH640-1	CTR 40 - 80 %, DIP-6
SFH640-2	CTR 63 - 125 %, DIP-6
SFH640-3	CTR 100 - 200 %, DIP-6
SFH640-2X007	CTR 63 - 125 %, SMD-6 (option 7)
SFH640-3X007	CTR 100 - 200 %, SMD-6 (option 7)
SFH640-3X009	CTR 100 - 200 %, SMD-6 (option 9)

For additional information on the available options refer to Option Information.

Absolute Maximum Ratings

 $T_{amb} = 25$ °C, unless otherwise specified

Stresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute Maximum Rating for extended periods of the time can adversely affect reliability.

Input

Parameter	Test condition	Symbol	Value	Unit
Reverse voltage		V_{R}	6.0	V
DC Forward current		I _F	60	mA
Surge forward current	$t_p \le 10 \ \mu s$	I _{FSM}	2.5	A
Total power dissipation		P _{diss}	100	mW

Document Number 83682 www.vishay.com

Rev. 1.3, 20-Apr-04

SFH640

Vishay Semiconductors

Output

Parameter	Test condition	Symbol	Value	Unit
Collector-emitter voltage		V _{CE}	300	V
Collector-base voltage		V _{CBO}	300	V
Emitter-base voltage		V _{EBO}	7.0	V
Collector current		I _C	50	mA
Surge collector current	$t_p \le 1.0 \text{ ms}$	I _{FSM}	100	mA
Total power dissipation		P _{diss}	300	mW

Coupler

Parameter	Test condition	Symbol	Value	Unit
Isolation test voltage (between emitter and detector, refer to climate DIN 40046 part 2, Nov. 74)		V _{ISO}	5300/7500	V _{RMS} /V _{PK}
Isolation resistance	V_{IO} = 500 V, T_{amb} = 25 °C	R _{IO}	≥ 10 ¹²	Ω
	$V_{IO} = 500 \text{ V}, T_{amb} = 100 \text{ °C}$	R _{IO}	≥ 10 ¹¹	Ω
Insulation thickness between emitter and detector			≥ 0.4	mm
Creepage			≥ 7.0	mm
Clearance			≥ 7.0	mm
Comparative tracking index per DIN IEC 112/VDE 0303, part 1			175	
Storage temperature range		T _{stg}	- 55 to + 150	°C
Operating temperature range		T _{amb}	- 55 to + 100	°C
Junction temperature		T _j	100	°C
Soldering temperature	max. 10 s, dip soldering: distance to seating plane ≥ 1.5 mm	T _{sld}	260	°C

Electrical Characteristics

T_{amb} = 25 °C, unless otherwise specified
Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.

Input

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Forward voltage	I _F = 10 mA	V_V		1.1	1.5	V
Reverse voltage	I _R = 10 μA	V _R	6.0			V
Reverse current	V _R = 6.0 V	I _R		0.01	10	μΑ
Capacitance	V _R = 0 V, f = 1.0 MHz	Co		25		pF
Thermal resistance		R _{thja}		750		K/W

Output

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Collector-emitter breakdown voltage	I_{CE} = 1.0 mA, R_{BE} = 1.0 M Ω	BV _{CER}	300			V
Voltage emitter-base	I _{EB} = 10 μA	BV _{BEO}	7.0			V
Collector-emitter capacitance	V _{CE} = 10 V, f = 1.0 MHz	C _{CE}		7.0		pF

Document Number 83682 www.vishay.com Rev. 1.3, 20-Apr-04

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Collector - base capacitance	V _{CB} = 10 V, f = 1.0 MHz	C _{CB}		8.0		pF
Emitter - base capacitance	V _{EB} = 5.0 V, f = 1.0 MHz	C _{EB}		38		pF
Thermal resistance		R _{thja}		250		K/W

Coupler

Parameter	Test condition	Part	Symbol	Min	Тур.	Max	Unit
Coupling capacitance			C _C		0.6		pF
Saturation voltage, collector- emitter	I _F = 10 mA, I _C = 2.0 mA	SFH640-1	V _{CEsat}		0.25	0.4	V
	$I_F = 10 \text{ mA}, I_C = 3.2 \text{ mA}$	SFH640-2	V _{CEsat}		0.25	0.4	V
	$I_F = 10 \text{ mA}, I_C = 5.0 \text{ mA}$	SFH640-3	V _{CEsat}		0.25	0.4	V
Collector-emitter leakage current	V_{CE} = 200 V, R_{BE} = 1.0 $M\Omega$		I _{CER}		1.0	100	nA

Current Transfer Ratio

Parameter	Test condition	Part	Symbol	Min	Тур.	Max	Unit
Current Transfer Ratio	$I_F = 10 \text{ mA}, V_{CE} = 10 \text{ V}$	SFH640-1	I _C /I _F	40		80	%
	I _F = 1.0 mA, V _{CE} = 10 V	SFH640-1	I _C /I _F	13	30		%
	I _F = 10 mA, V _{CE} = 10 V	SFH640-2	I _C /I _F	63		125	%
	I _F = 1.0 mA, V _{CE} = 10 V	SFH640-2	I _C /I _F	22	45		%
	I _F = 10 mA, V _{CE} = 10 V	SFH640-3	I _C /I _F	100		200	%
	I _F = 1.0 mA, V _{CE} = 10 V	SFH640-3	I _C /I _F	34	70		%

Switching Characteristics

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Turn-on time	$I_C = 2.0 \text{ mA}, R_L = 100 \Omega,$ $V_{CC} = 10 \text{ V}$	t _{on}		5.0		μS
	V _{CC} = 10 V					
Rise time	$I_C = 2.0 \text{ mA}, R_L = 100 \Omega,$ $V_{CC} = 10 \text{ V}$	t _r		2.5		μS
	V _{CC} = 10 V					
Turn-off time	$I_C = 2.0 \text{ mA}, R_L = 100 \Omega,$ $V_{CC} = 10 \text{ V}$	t _{off}		6.0		μS
	V _{CC} = 10 V					
Fall time	I_C = 2.0 mA, R_L = 100 Ω , V_{CC} = 10 V	t _f		5.5		μS
	V _{CC} = 10 V					

Typical Characteristics (Tamb = 25 °C unless otherwise specified)

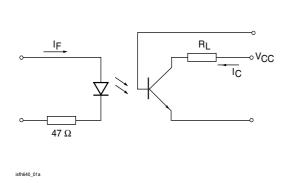


Figure 1. Switching Times Measurement-Test Circuit and Waveform

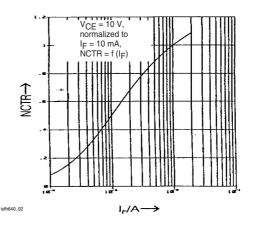


Figure 3. Current Transfer Ratio (typ.)

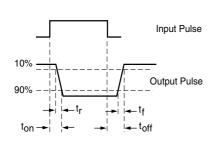


Figure 2. Switching Times Measurement-Test Circuit and Waveform

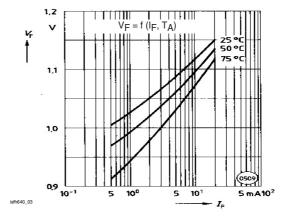


Figure 4. Diode Forward Voltage (typ.)

isfh640_01b

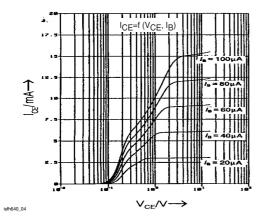


Figure 5. Output Characteristics (typ.)

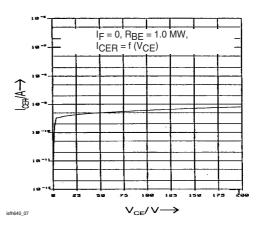


Figure 8. Collector-Emitter Leakage Current (typ.)

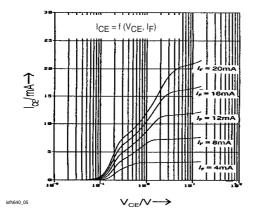


Figure 6. Output Characteristics (typ.)

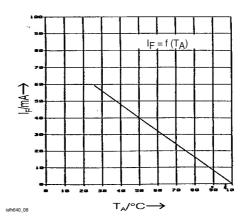


Figure 9. Permissible Loss Diode

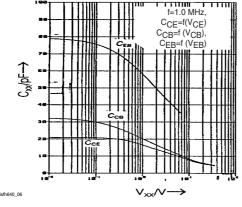


Figure 7. Transistor Capacitances (typ.)

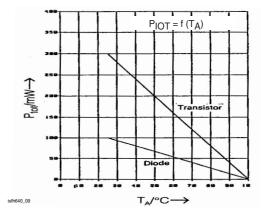
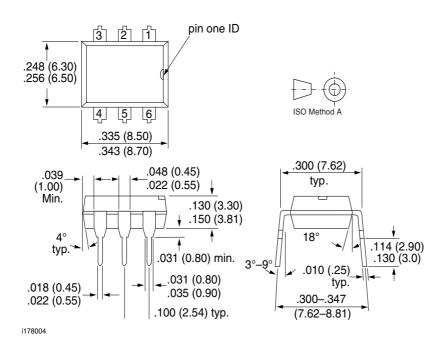
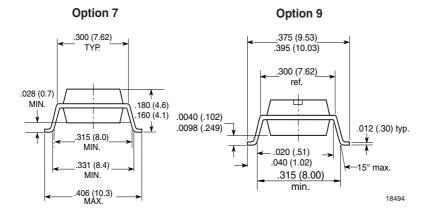




Figure 10. Permissible Power Dissipation

Package Dimensions in Inches (mm)

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

> We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423

Document Number 83682 www.vishay.com Rev. 1.3, 20-Apr-04

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

Document Number: 91000 www.vishay.com