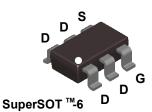
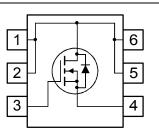
FAIRCHILD SEMICONDUCTOR®

FDC2612 200V N-Channel PowerTrench[®] MOSFET

General Description


This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $R_{DS(ON)}$ and fast switching speed.

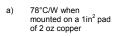

Applications

DC/DC converter

Features

- 1.1 A, 200 V. $R_{DS(ON)}$ = 725 m Ω @ V_{GS} = 10 V
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- High power and current handling capability
- Fast switching speed
- Low gate charge (8nC typical)

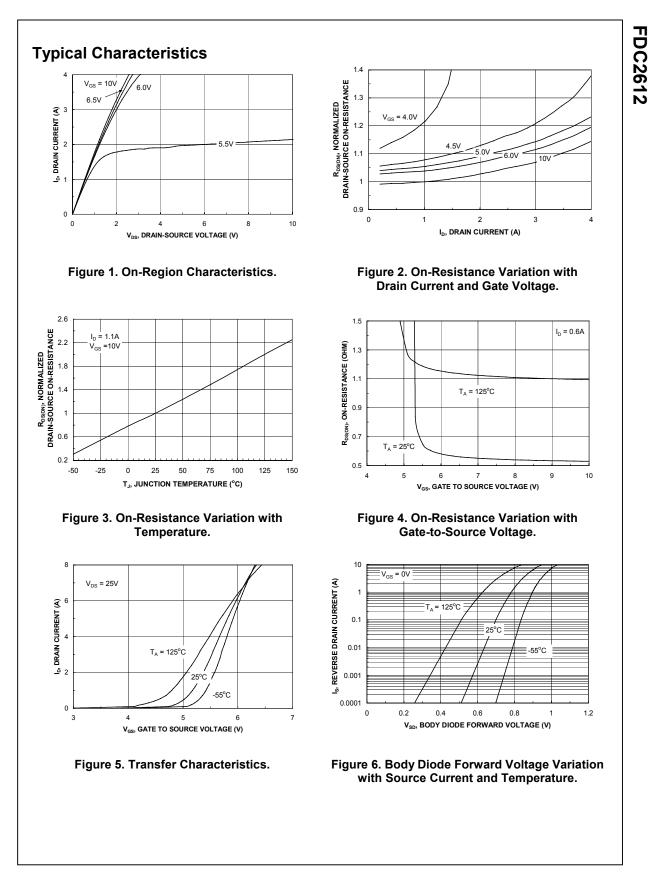
Absolute Maximum Ratings TA=25°C unless otherwise noted

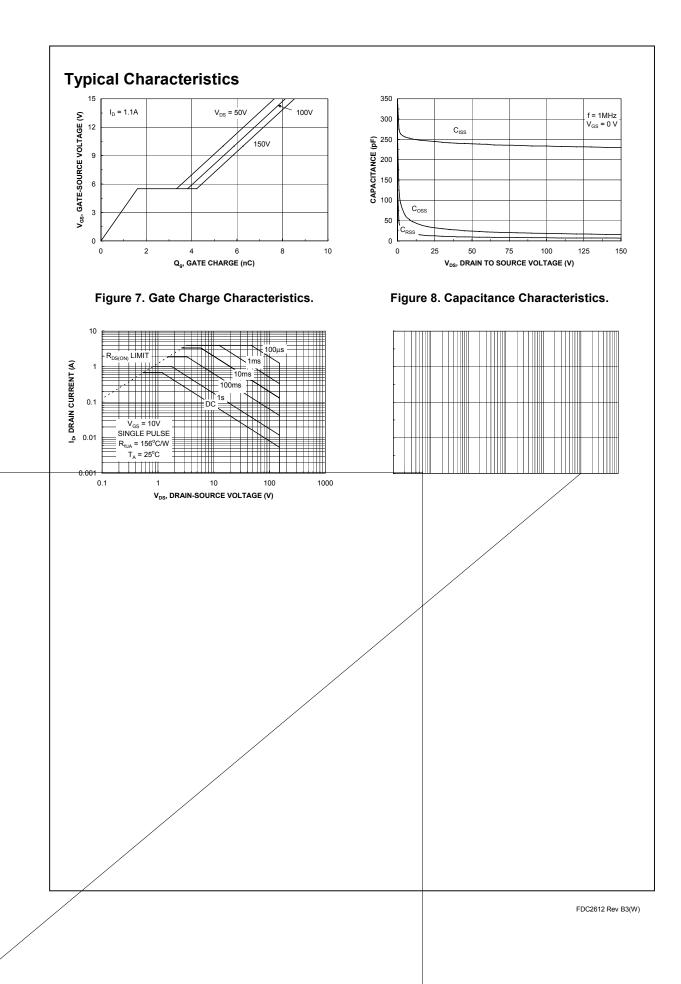

Symbol	Parameter			Ratings	Units	
V _{DSS}	Drain-Sourc	e Voltage		200	V	
V _{GSS}	Gate-Source	e Voltage	± 20			
ID	Drain Currer	nt – Continuous	(Note 1a)	1.1	A	
	– Pulsed			4		
P _D	Maximum Power Dissipation		(Note 1a)	1.6	W	
			(Note 1b)	0.8		
T _J , T _{STG}	Operating a	nd Storage Junction Tem	perature Range	–55 to +150 °C		
			0			
	I Charact	teristics sistance, Junction-to-Amb	ient (Note 1a)	78	°C/W	
$R_{ ext{ hetaJA}}$	Thermal Res		. ,	78 30	_	
R _{θJA} R _{θJC}	Thermal Res Thermal Res	sistance, Junction-to-Amb	e (Note 1)		_	
R _{əja} R _{əjc} Packag	Thermal Res Thermal Res	sistance, Junction-to-Amb sistance, Junction-to-Case	e (Note 1)		°C/W °C/W	

©2002 Fairchild Semiconductor Corporation

FDC2612

Symbol	Parameter	Test Conditions	Min	Тур	Мах	Units
Off Char	acteristics					1
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = 250 \mu A$	200			V
<u>ΔBV_{DSS}</u> ΔT _J	Breakdown Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C		246		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 160 V, V _{GS} = 0 V			1	μA
I _{GSSF}	Gate-Body Leakage, Forward	V _{GS} = 20 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate–Body Leakage, Reverse	$V_{GS} = -20 V$, $V_{DS} = 0 V$			-100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_{D} = 250 \mu A$	2	4	4.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C		-8.7		mV/°C
R _{DS(on)}	Static Drain–Source On Resistance	V_{GS} = 10 V, I_D = 1.1 A V_{GS} = 10 V, I_D = 1.1 A, T_J = 125°C		605 1133	725 1430	mΩ
I _{D(on)}	On–State Drain Current	V_{GS} = 10 V, V_{DS} = 10 V	4			Α
g FS	Forward Transconductance	$V_{DS} = 10 V$, $I_D = 1.1 A$		4.4		S
Dynami	c Characteristics					
C _{iss}	Input Capacitance	$V_{DS} = 100 V$, $V_{GS} = 0 V$,		234		pF
C _{oss}	Output Capacitance	f = 1.0 MHz		18		pF
C _{rss}	Reverse Transfer Capacitance	1		8		pF
Switchi	ng Characteristics (Note 2)					
t _{d(on)}	Turn–On Delay Time	$V_{DD} = 100 V$, $I_D = 1 A$,		6	12	ns
tr	Turn–On Rise Time	V_{GS} = 10 V, R_{GEN} = 6 Ω		6	12	ns
$t_{d(off)}$	Turn–Off Delay Time	1		17	30	ns
t _f	Turn–Off Fall Time	1		8	16	ns
Qg	Total Gate Charge	V _{DS} = 100 V, I _D = 1.1 A,		8	11	nC
Q _{gs}	Gate–Source Charge	V _{GS} = 10 V		1.6		nC
Q_{gd}	Gate–Drain Charge			2.2		nC
Drain-S	ource Diode Characteristics	and Maximum Ratings				
ls	Maximum Continuous Drain-Sourc				1.3	Α
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_S = 1.3 A(Note 2)$		0.8	1.2	V
rr	Diode Reverse Recovery Time	$I_F = 1.1A,$ $d_{iF}/d_t = 300 \text{ A}/\mu \text{s}$ (Note 2)		74.5		nS




b) 156°C/W when mounted on a minimum pad of 2 oz copper

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%

FDC2612 Rev B3(W)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DenseTrench™ DOME™ **EcoSPARK™** E²CMOS[™] EnSigna™ FACT™ FACT Quiet Series™ FAST ® FASTr™ FRFET™ GlobalOptoisolator[™] POP[™] GTO™ HiSeC™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™

OPTOLOGIC™ OPTOPLANAR™ PACMAN™ Power247™ PowerTrench[®] QFET™ QS™ QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER®

SMART START™ VCX™ STAR*POWER™ Stealth™ SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET™ TinyLogic™ TruTranslation[™] UHC™ UltraFET[®]

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY. FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.		
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.		
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.		
	In Design First Production Full Production		