

TECHNICAL DATA SHEET	Code	YE00398
concept	version	2
	date	2005-11-04
COAX CT100	page	1/2

APPLICATION

Coaxial cables used in cabled distribution networks designed according the European Standard EN 50117 operating at frequencies between 5 MHz and 2150 MHz, the International Standard IEC 1196 and the RN-electronics Benchmark RNE678/100-07 2004

CONSTRUCTION

Inner conductor
Dielectric
Solid soft annealed copper
cell semi air spaced PE

3.1 Foil Copper

3.2 Braid Annealed copper

4 Sheath PVC according the European Standard HD 624.

REQUIREMENTS AND TEST METHODS

Test methods in accordance with European standard EN 50117-1.

Mechanical characteristics

1. Inner conductor.

Diameter: $0.96 \text{ mm} \pm 0.02 \text{ mm}$

2. Dielectric:

Diameter: $4.7 \text{ mm} \pm 0.15 \text{ mm}$

3. Outer conductor:

Diameter screen: $5.35 \text{ mm} \pm 0.15 \text{ mm}$

4. Sheath:

Diameter: $6.65 \text{ mm} \pm 0.2 \text{ mm}$ Tensile strength: $\geq 12.5 \text{ N/mm}^2$ Elongation at break: $\geq 150 \%$

5. Cable:

Storage/operation temperature: -15°C to $+70^{\circ}\text{C}$

Minimum static bend radius: 35 mm Total weight: 51 g/m

TECHNICAL DATA SHEET	Code	YE00398
concept	version	2
	date	2005-11-04
COAX CT100	page	2/2

Electrical characteristics

Mean characteristic impedance: $75 \pm 3 \Omega$ Regularity of impedance:>40dB or <1%</td>DC loop resistance: $\leq 41 \text{ Ohm/km}$ DC resistance inner conductor: $\leq 26 \text{ Ohm/km}$ DC resistance outer conductor:< 15 Ohm/km

Capacitance: $55.0 \text{ pF/m} \pm 2.0 \text{ pF/m}$

Velocity ratio: 0.82 ± 0.02

Screening efficiency before flexing

30-1000 MHz: ≥ 85 dB 1000-2150 MHz: ≥ 75 dB

Screening efficiency after flexing

30-1000 MHz: \geq 65 dB 1000 – 2150 MHz: \geq 65 dB

Flexing with 5 test cycles and 75mm radius

Return loss at 5-470 MHz: $\geq 23 \text{ dB}^*$

470-862 MHz: $\geq 20 \text{ dB*}$ 862-2150 MHz: $\geq 18 \text{ dB*}$

^{*}Max. 3 peak values 4 dB lower than specified.

Attenuation at	Maximal	Attenuation at	Maximal
5 MHz:	1.6 dB/100m	860 MHz:	19.5 dB/100m
50 MHz:	4.6 dB/100m	1000 MHz:	21.5 dB/100m
100 MHz:	6.5 dB/100m	1750 MHz:	29.0 dB/100m
200 MHz:	9.5 dB/100m	2150 MHz:	32.5 dB/100m
460 MHz:	15.0 dB/100m		